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The partial numerical simulation method is used to examine the interaction of an intense flux of 
electrons with a relatively small number of electrons trapped in a potential well. It is found that if 
the well is not very deep, w 2/W I ::510-2 (where W 2 and W I are the energies of the trapped electrons 
and of the electrons in the flux. respectively). a "monochromatic" space-charge wave is unstable with 
respect to excitation of satellites with shorter wavelength. When the potential well depth is increased 
(w 2/W I > 10-2). the dominant role in the space-charge wave packet is assumed by the wave with the 
maximal increment. The nonlinear stage of the interaction is characterized by heating of the electrons 
trapped in the potential well. 

We consider in this paper the nonlinear stage of the 
interaction between the space-charge waves of an in­
tense electron beam and a relatively small number of 
electrons trapped in a potential well. Such a problem 
arises in the study of the behavior of an electron beam 
produced by an adiabatic gun in a number of microwave 
devices. A similar situation also obtains in experiments 
with a toroidal discharge. Skarsgard et al. [1], for ex­
ample, investigated the free acceleration of electrons in 
an argon plasma. They observed a rapid departure of 
the electrons from the free-acceleration regime with 
simultaneous heating of the plasma electrons. The au­
thors of that paper have demonstrated experimentally 
that the cause of the departure of the electrons from the 
free-acceleration regime is the appearance in the plasma 
plasma of an relatively small number of electrons 
trapped in potential wells produced by the corrugated 
magnetic field that confines the plasma. 

The linear theory of space-charge oscillations in an 
electron beam passing through a region with trapped 
electrons was considered by one of us [2J in the geome­
trical-optics approximation. It was shown that the pres­
ence of trapped particles leads to instability in the beam. 
With increasing oscillation amplitude, the interaction of 
the beam with the trapped electrons becomes essentially 
nonlinear and cannot be described analytically. To solve 
the problem we therefore used the method of partial 
numerical simulation[3,7-9J in the present study. 

At a density n2 of the trapped electrons that is low in 
comparison with the density No of the electrons in the 
beam (n2 « No), the amplitude of the excited wave is 
sufficiently low and it can be assumed that the motion of 
the beam electrons is described by the linear approxima­
tion. This makes it possible to combine an analytic 
description of the particle behavior in the beam, 
regarded as a continuous medium, with simulation of the 
trapped electrons by individual particles. At the instant 
t = 0 the trapped electrons are uniformly distributed 
over the length of the space-charge wave, an equation of 
motion is written for each particle, and the trajectory of 
each individual particle is determined. 

1, We consider the following simplified one-dimen­
sional model. Trapped electrons are contained in a given 
potential well. A homogeneous monoenergetic electron 
beam passes through them. It is assumed that the en­
ergy of the beam electrons is high enough so that we can 
neglect the influence of the well potential on their mo­
tion. The potential energy W2 of the trapped electrons is 
chosen for simplicity in the form 
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where V 2 is the maximum velocity of the trapped elec­
trons and L is the dimension of the well. We assume 
also the presence of an immobile background that com­
pensates for the space charge. 

We obtain equations describing the interaction of the 
monoenergetic beam of electrons with the trapped par­
ticles. We use for this purpose the Poisson equation 

aE/ax=-4ne (n,+n,). (1) 

where n1 is the perturbation of the beam density and fi2 
is the density of the trapped electrons, and also the 
equations of motion and of charge conservation 

(!...-+v,!...-) v,=-~E, (~+v,~) n,=_N,iJv" 
at ax m at ax ax 

where V 1 and No are the unperturbed velocity and den­
sity of the electron beam, e and m are the charge and 
mass of the electron, and V1 is the velocity perturbation 
of the beam electrons. 

From the equations of motion and charge conserva­
tion for the particles we have 

(2) 

Applying to the Poisson equation (1) the operator 
(a/at + V 1a/ax)2 and substituting (2) in this equation, we 
obtain 

a a a )' ] ( a a )' - [(-+v,- E+wp,'E =-4ne -+V,- n,. 
ax at ax at ax 

(3) 

At n2 = 0, Eq. (3) describes the propagation of a fast and 
a slow space-charge wave in the electron beam, the phase 
velocity of the waves being determined by the relation 
v ph = V 1 ± Wpl/k, the plus and minus signs referring to 
the fast and slow waves, respectively. It is clear that 
the trapped electrons will interact most effectively with 
the slow space-charge wave, since the synchronism con­
dition vph "" V2 « V 1 is satisfied for them in this case. 
The maximum instability increment is reached in this 
case at kV 1"" Wpl' 

We seek the solution of (3) at n2 F 0 by the Bogolyubov 
method in the form 

E(x, t)=E(t) sin (kx+a(t), (4) 

which determines the slow space-charge wave. Here a 
is the oscillation phase shift, and the wave vector k is 
determined by the condition k = Wpl/V 1, where wpl 
= 47Te2No/m is the plasma frequency of the beam elec-
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trons. We regard the quantities E and a as slow func­
tions of the time, the characteristic time of variation of 
these functions being T » 1lwpl' 

The density of the trapped electrons is represented 
in the form 

1 M 

n,(x,t)=s ~1l(x-XJ(t)), (5) 
j=t 

where Xj(t) are the coordinates of the trapped particles, 
M is the number of particles in the well, and S is the 
beam cross section area. 

Assuming E ~ na/No ~ (Tw lfl ~ 1, substituting (4) 
and (5) in Eq. (3), discarding J.I terms of order higher 
than E, and using the orthogonality of the trigonometric 
functions, we obtain a system of equations describing the 
slow variation of the amplitude and phase of the wave: 

diS 1 M 

"d-;=-M ~ sin(xSJ+a.), 
j='1 

da. 1 M 

_= __ '\1 cos(x"+a.) 
dT 8M.t...J '0, • 

;=' 

We have introduced here the dimensionless variables 

T= (n,/No) 'I'W"t, s=2nx/L, 

8=E[4nn,mV,'(n,fNo)'I·j-"'. 

(6) 

The quantity K = 1Wpt!21TV 1 is an integer that shows how 
many space-charge wavelengths are spanned by a seg­
ment of length 1. 

The trajectories of the trapped electrons are deter­
mined by integrating the equations of motion (in dimen­
sionless variables) 

dsJidT=V;, 

(7) 

where 

v - v, Vo = "V V', ( Nn,o ) 'h ; 
- xV,(n,INo)'I. • ~ 

here Va is the velocity of the trapped electrons and 
f3 = Z/L. The quantity 1 was introduced for convenience. 
The case when f3 = 1 and K = 10, for example, describes 
the interaction of a space-charge wave of length A 
= Ll10 with trapped electrons; the case f3 = 10 = K 

describes the interaction between a wave with A = L and 
trapped electrons. 

The system (6) and (7) was computer-integrated by 
the Runge -Kutta method [ 5J . 

The electrons trapped in a potential well were simu­
lated by individual particles distributed in the interval 
-1T ~ ~ ~ 1T. The number of particles was varied between 
200 and 300. The results of the calculation did not de­
pend in this case on the number of particles. The parti­
cles were distributed over the segment at each point, 
with the points equally spaced 41Tlm apart. The initial 
particle velocity was specified by the formula 
v = ± vocos (f3~/2) (i.e., the trapped electrons initially 
had equal total energies). One of the particles was given 
a plus sign, and the other a minus sign. A constant inte­
gration interval was used. In accordance with the re­
quirement that the problem be correct, the interval 
chosen was such as to ensure stability of the solution. 

Several variants of the calculation were performed. 
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The ratio of the density of the trapped electrons to the 
density of the beam electrons was always chosen to be 
the same at 10-3. The ratio K of the well length to the 
wavelength was assumed to be either 1 or 10. The cal­
culations were carried out with intervals ranging from 
2 x lO-a to 5 X 10-2 and with initial wave amplitude 
r! = 1O-3 _1O-a• The initial amplitude was chosen here 
not only to satisfy the condition that it be small com­
pared with the maximum amplitude (the wave amplitude 
must not exceed the noise level), but also from the con­
dition that the perturbation of the trapped electrons by 
the wave field be small in comparison with the action of 
the well potential on the electrons. 

Figure 1 shows plots of the wave electric -field ampli­
tude (in dimensionless variables) in terms of the time T. 

Figure 1a describes the behavior of the field amplitude 
when a wave of length A = LI 10 « L is excited in the 
electron beam. Figures 1b and 1c describe the behavior 
of the field amplitude when a wave with length equal to 
the dimension of the potential well is excited in the 
beam, at different depths of the well. 

At r! « 1 it is easy to find the linear instability in­
crement. At A « L the instability increment coincides 
with the increment obtained in[2J in the geometrical­
optics approximation, and is equal to 0.684wp1 (na INo) 1/3. 
For A = L, the instability increment during the linear 
stage is equal to 2.5wp1(n2 /No)l13 (Fig. 1b) and 
2.8wp1(na/No)l13 (Fig. 1c). The subsequent time de­
pendence of the electric field (Fig. 1) shows the pres­
ence of amplitude oscillations, which (as in [9J) have an 
irregular character. Figures 2 and 3 show plots of the 
velocity v of the trapped electrons against the coordinate 
~ at different instants of time T for A « L and A = L. 
As follows from Figs. 2b and 3b, which correspond to 
the maximum of the wave amplitude, the trapped elec­
trons have no time to become completely bunched and 
have a noticeable spread both in velocity and in the co­
ordinates. 

The oscillations have a different character for each 
different case, and are connected with the presence of 
two characteristic times in the system comprising the 
beam and trapped electrons, the period Tl of the oscilla­
tions of the trapped electrons in the well and the period 
Ta of the oscillation of the bunch of trapped electrons 

1i 
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FIG. I. Time dependence of the electric-field amplitude when one 
wave is excited in the beam: a-w2/w, = 10-2, A = L/1 0; b-W2/W, = 10-2, 

A = L; C-W2/W, > >10-2, A = L (is the wavelength and L is the dimension 
of the potential well). 
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FIG. 2. Dynamics of the phase plane of the trapped electrons, w2/w, 
= 10-2 , A = L/IO. 
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FIG. 3. Dynamics of the phase plane of the trapped electrons, w2/w, 
= 10.2 , A= L. 

captured by the wave field near the maximum of the 
field. The times 71 and 72 can easily be determined by 
linearizing the right-hand sides of (7) (~ ~ 1, O! = O) [6J : 

't,=4n/~vo, 't,=2n/'I0 MU' 

The quantities Va and {3 were chosen as follows: Vo = 0.1 
and {3 == 1 for Fig. la, Vo = 0.1 and {3 = 10 for Fig. 1b, and 
Vo = 0.25 and {3 = 10 for Fig. 1c. This yields for 71 and 72 
the values 

for Fig. 1a 't,=120, '['2::::::6; 

for Fig. 1b 't,=13 , 't2"'6; 

for Fig. 1c LIZ 4 , 't2"'4, 

Figure 1b, for example, clearly shows the beats of the 
wave amplitude, with characteristic times coinciding 
with the times 71 and 72. Amplitude beats can also be 
traced in Fig. 1a. For the third case (Fig. 1c), there 
should be no beats, since the times 71 and 72 are ap­
proximately equal. 

The incomplete capture of the trapped electrons by 
the wave field does not lead to a damping of the oscilla­
tions, since the violation of the condition for the buildup 
of oscillations as a result of the decreased velocity of 
the wave-captured trapped particles is compensated for 
by the change in the phase shift O! of the wave. The 
trapped electrons "attune themselves" as it were, and 
the wave amplitude, dropping to a certain level, begins 
to increase again. 

However, a numerical experiment on the excitation of 
only one oscillation mode cannot provide an accurate 
picture of the considered instability. When an electron 
beam interacts with trapped electrons, the increment of 
the resultant instability is not a 15 function (see[2J ). The 
trapped electrons excite primarily oscillations whose 
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growth increment is close to maximal. As a result there 
is excited in the passing beam a narrow packet of waves 
with wave vectors k close to wpl /V 1. The excitation of 
the wave packet can significantly distort the character of 
the interaction of the electron beam with the trapped 
electrons and lead to cessation of the instability. 

2. The system of equations describing the behavior of 
the system consisting of the passing beam and the trapped 
trapped electrons when a wave packet is excited in the 
electron beam is obtained in analogy with the preceding 
system, and takes the following form (in dimensionless 
variables): 

(8) 

Here j = 1, ... , M; i = 1, ... , N; M is the number of par­
ticles, N is the number of waves in the packet, Ki = l/Ai' 
Ai is the length of the i-th wave, and K = lWp1/27TVl is 
an integer showing the number of waves with maximum 
increment spanned by a segment of length l. The num­
bers Ki are integers for all the waves of the packet. We 
investigated two cases, 1 = L and 1 = K L. 

The system (8) was integrated by the Runge-Kutta 
method for different numbers of particles M. The re­
sults of the calculations were in this case independent 
of M. The number of particles ranged from 200 to 300. 
The particle velocities and coordinates were specified 
in the same manner as when one mode was excited. We 
considered the time variation of the amplitude and phase 
of waves whose length was smaller than the segment 1 
by factors of 8, 9, 10, 11, and 12 respectively (i.e., we 
investigated the 8th, 9th, 10th, 11th, and 12th harmonics). 
The growth increment was largest for the 10th harmonic. 

A plot of 6"i (7) for five harmonics is shown in Fig. 4. 
Figure 4a corresponds to the case 1 = L, and Figs. 4b 
and 4c to the case 1 == 10L. The potential well has differ­
ent depths in Figs. 4b and 4c. In Fig. 4b we have W2/Wl 
= 10-2, and in Fig. 4c we have W2/Wl == 6 X 10-2 (here W2 
and Wi are the energies of the trapped and beam elec­
trons, respectively). 

At a small depth of the potential well (Figs. 4a and 
4b), the 11th and 12th harmonics increase in the packet 
in addition to the wave with the maximum increment 
(10th harmonic), and in the case 1 = L (Fig. 4a) the wave 
with the maximum increment is rapidly suppressed. In 
the case 1 = 10L (Figs. 4b and 4c), the wave with the 
maximum increment is excited during the initial stage 
of instability development (cf. Figs. 1 and 4). However, 
whereas in Fig. 4b the wave with the maximal increment 
is suppressed, and the 11th and 12th harmonics begin to 
grow rapidly in the packet, in Fig. 4c the wave with the 
maximum increment drops first to a value 0.3 Emax and 
then starts increasing again. The energy of the 10th 
harmonic (Fig. 4c) exceeds the energy of the 9th by one 
order of magnitude in this case, and the energies of the 
other waves in the packet by two orders of magnitude. 

The behavior of the electrons on the phase plane fol-
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FIG. 4. Dynamics of wave packet: a-AlO = L/lO, W2/W, = 10-2; b-AlO 
= L, w2/w, = 10-2; C-AlO = L, W2/W,~ 10-2• The numbers are those of the 
harmonics. 

lowing excitation of a wave packet in the beam has an 
irregular character. For the case 1 = L (A «: L), rapid 
randomization of the electrons sets in. For the case 
1 = 10L (A ~ L), the electrons behave during the initial 
stage in the same manner as when only one oscillation 
mode is excited. At succeeding times, appreciable scat­
ter of the electron velocity occurs in all cases. The ex­
citation of the wave packet in the beam is accompanied 
by heating of the trapped electrons, whose energy in­
creases by one order of magnitude. An exception is the 
case of a large well depth, when the heating is negligible. 

The results can be understood from the following 
physical considerations. The trapped electrons draw 
from the electric field of the excited wave an additional 
energy (in dimensionless variables) {5W2 ~ Iff /K2. At a 
small potential-well depth W2/W1 >:; 10-2, the energy ac­
quired by the trapped electrons from the field is much 
larger than their initial energy Iff /K2 »v~/2. The be­
havior of the trapped electrons is determined in this 
case mainly by their interaction with the field of the ex­
cited wave. In a coordinate system connected with the 
beam electrons, the trapped electrons constitute a low­
density beam passing through a plasma. The phase 
velocity vph of the excited waves differs and amounts to 
V 1 for the wave with A = 1/10. Shorter waves will have a 
velocity vph < V 1, and longer ones will have vph > V l' 
The growth of the waves in the packet is accompanied by 
slowing down of the beam and by violation of the reson­
ance condition vph = V 1 for the maximum-increment 
wave A = 1/10. Its growth increment y ~ kV1(n2/No)1i3 
decreases as a result. With decreasing beam velocity, 
the shorter waves with vph < V 1 enter into resonance. 
Their growth increment lncreases and becomes larger 
than the increment of the wave with A = 1/10. This leads 
to a transformation of the packet in the direction of the 
shorter wavelengths (Figs. 4a and 4b). 

With increasing well depth, the potential gradient in-
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creases and at v~/2 > tff/K2 (Fig. 4c) the decisive role 
in the behavior of the trapped particle is played by the 
well potential. The fraction of the resonant particles 
decreases noticeably in this case, since the only reson­
ant particles are those located in the narrow region at 
the edges of the well (the width of the region is deter­
mined by the quantity v~/2 - Iff/K2). The decrease in the 
number of resonant particles leads only to a slight heat­
ing of the trapped electrons (in comparison with the 
initial energy). Although the trapped electrons slow down 
somewhat in this case, the change in their velocity is 
negligible and consequently the wave with the maximum 
increment, which is at resonance with the beam, is the 
dominant one in the packet. 

We note that the initial distribution of the trapped 
electrons was chosen to be homogeneous 
(nonequilibrium). However, the results also remain valid 
for an inhomogeneous initial distribution. Indeed, the 
equilibrium distribution of the trapped electrons is char­
acterized by the fact that the bulk of the electrons are 
concentrated at the edges of the well. In the coordinate 
system connected with the passing beam, the trapped 
electrons constitute a beam of bunched electrons. For 
waves of length A «: L this causes the grouping of the 
trapped electrons into bunches captured by the excited­
wave field to start first with the electrons located at the 
edges of the well. Further development of the instability 
proceeds in the same manner as when the trapped elec­
trons are uniformly distributed inside the well. For 
waves of length A ~ L, allowance for the equilibrium 
initial distribution leads only to a somewhat more rapid 
growth of the wave with the maximum increment at the 
initial stage of the excitation. Subsequently, the behavior 
of the waves in the packet is the same. 

In an electron beam, as already noted above, there 
exist, besides slow space-charge waves, also fast waves 
of frequency w = kV 1 + wp1 > wp1' Therefore, for a 
packet of fast waves it follows from (3), after averaging 
over the rapid oscillations, that dEi/dT = dai/dT = 0, 
i.e., the amplitudes of the fast space-charge waves re­
main at the level of the thermal noise in the beam. 
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