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The vibrational kinetics of molecules under nonequilibrium conditions produced by resonant laser 
emission is considered within the framework of the harmonic-oscillator model. An approach is 
developed, with which it is possible to investigate the response of the system to the action of an 
external field whose frequency coincides with the frequency of one of the vibrational levels (resonance 
of arbitrary multiplicity). The nonequilibrium distribution function is calculated in the stationary and 
quasistationary regime. The dependences of the vibrational energy and of the decay rate of the 
system on the external parameters are determined. The limiting characteristics are determined. Similar 
questions are examined in the case of nonequilibrium conditions considered by resonant emission via 
the cascade mechanism of populating the vibrational levels. 

INTRODUCTION 

With further progress in laser technology (increased 
radiation power, broadband frequency tuning) the num­
ber of problems connected with the action of laser radia­
tion on the internal structure of microscopic objects 
(atoms, ions, molecular complexes, etc.) becomes lar­
ger. 

These problems can be divided into two classes. The 
first includes the determination of the cross sections of 
the elementary acts and questions in the kinetics of an 
isolated system (outside the statistical ensemble) in the 
presence of the field. There have been theoretical[lJ 
and experimental [ZJ investigations of multiphoton tran­
sitions of atoms under the influence of a strong field. 
The study of elementary processes stimulated by laser 
radiation, and of those causing changes in the intra­
molecular structure, is the subject of[3-5J . 

The second class of problems covers the investiga­
tion of the behavior of an ensemble of interacting parti­
cles in the presence of a resonance-radiation field, 
namely: redistribution of the energy among particles, 
exchange between different degrees of freedom, realign­
ment of energy bonds, etc. The study of these problems 
is of particular importance in connection with the devel­
oping possibility of initiating and controlling chemical 
reactions with the aid of infrared (IR) lasers with tunable 
frequency. 

A number of recent papers report experiments on the 
stimulation of chemical reactions (of the substitution 
type) in the field of a resonant IR source[S-lOJ. We note 
also work on selective laser excitation of high vibra­
tional levels of molecules [l1J, initiation of dissocia­
tion[lZ,13J, and the two-step dissociation method[14,15J. 
Theoretical investigations of these topics have been re­
ported in[lS-19,8J. Even during the early discussions of 
laser stimulation of chemical reaction[20J it became 
clear that to determine beforehand the course of the re­
action it is necessary to realize a "fast adiabatic pass­
age" of a selected vibrational mode of the molecule, i.e., 
a rapid (without energy losses) filling of the high vibra­
tional levels. Artamonova, Platonenko, and Khokhlov [lSJ 
obtained a number of important results, namely, they 
determined the conditions for selective "heating" of the 
vibrational mode of the molecule, and estimated the 
corresponding parameters of the (IR) laser radiation. 
A theoretical analysis of the excitation of molecule os­
cillations in the diffuse approximation was carried out 
in [8, 17J. The influence of rotational relaxation on the 

918 Sov. Phys.·JETP, Vol. 38, No.5, May 1974 

process of laser excitation of oscillations was consid­
ered in [19J 1) . 

The present paper is devoted to a study of vibrational 
kinetics of a molecular gas under nonequilibrium condi­
tions produced by resonant multiphoton laser pumping 
(resonance of arbitrary multiplicity), and also by laser 
radiation via cascade population of the vibrational levels. 
The approach developed below is free of the limitations 
connected with the diffusion model, and makes it possible 
to take full account of the principal processes that bring 
about the nonequilibrium distribution over the vibrational 
levels. 

I. EXCITATION OF MOLECULE VIBRATIONS BY 
LASER RADIATION AT A RESONANCE OF 
ARBITRARY MULTIPLICITY 

1. Formulation of Problem 

The action of resonant radiation on a selected vibra­
tional mode initiates migration of the molecules to the 
upper branch of the mode spectrum, owing to exchange 
of vibrational energy between the colliding partners. An 
investigation of vibrational kinetics under conditions of 
nonequilibrium excitation reduces to a determination of 
distribution function of the particles over the vibrational 
levels. Solution of this problem provides the answer to 
questions of practical importance, concerning the re­
serve of vibrational energy, the rate of decay of the sys­
tem, etc. 

Taking into account mUltiquantum field-induced tran­
sitions 0 ~ m (transition rate Wm), vibrational exchange 
processes (characteristic time TVV)' vibrational-transla­
tional relaxation (time TvT)' single-quantum spontaneous 
transitions (Einstein coefficient AlO), and the decay of 
the p-th level (rate ~), we write down, within the frame­
work of the model of cut-off harmonic oscillator, a sys­
tem of kinetic equations for the populations of the vibra­
tional levels in the form [22, 23J 

dy. =1] (Yo-Ym) (b.m-b.o) +s (1-e-e) -'{ (n+1) y.+, (1-b. p ) 

dt 

- [n+ (n+l) c e (1-Il. p } ]Y. +ne-ey._,}+{ (n+l) (e+1) Y.+, (1-b. p ) 

y. de (1.1) 
-[ (n+1) e(1-b.p } +n(e+l) ]y.+ney._,}-Ily.b. p - -;;Tt' 

n=O, 1, 2, ... , p>m (p=D/hv), 

where the time and the characteristic time-dependent 
constants are normalized to TVV' ~ = Tvv(T,/T + A10), 
1) = WmTvv, () = kpTvv' Yn = xn(t)/N(t) (xn is the density 
of the molecules at the n-th level, N(t) is the total den-
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sity), c = N(t)/N(O), E = ~nyn(t) is the average number of 
quanta (per oscillator), 0ik is the Kronecker symbol, 
S = hv/kT (T is the gas temperature and hv is the vibra­
tional quantum), and D is the activation (in particular, 
dissociation) energy2). 

The standard procedure makes it possible to obtain 
with the aid of (1.1) equations for the decay rate and for 
the energy of the system 

1 de 
W'" -;; dt =-6yp (t), 

de at =-~ (e-eo) +mT] (Yo-Ym) + (p-e) w, 

(1.2) 

(1.3) 

where Eo is the equilibrium vibrational-energy reserve 
(p »1). 

We solve the initial nonlinear system by the generat­
ing-function method [24, 25J, which is valid, strictly speak­
ing, for a system with an infinite number of equidistant 
levels. The system (1.1) is therefore supplemented 
formally to form an infinite system with "inclusion" of 
the coupling between the levels p and p + 1. This ap­
proach, obviously, introduces a certain error in the 
calculation of the populations Yn(t), the largest deviation 
taking place for the populations of the levels numbered 
n::::< p. At sufficiently large p-Ievel decay rates, the ac­
curacy of the solution is greatly increased, this being 
due phYSically to the weakening of the coupling between 
the levels p and p + 1. For the model of "instantaneous" 
decay of the p level (formally 0 - 00), the employed me­
thod is exact. It should be noted, however, that even at 
moderate values of 0 the errors incurred in the calcula­
tion of yp are relatively small3). Generally speaking, in 
the case of the collision mechanism the decay rate de­
pends on the physical parameters of the system. Inas­
much as 0 is arbitrary in the present problem, it follows 
naturally that the value of 0 corresponding to this de­
pendence is included here as a particular case. It should 
be noted here that: 1) if the system decay is due to 
chemical reactions (via an excited complex), then the 
decay rate ~ can greatly exceed the rate of exchange 
for the activation level (0 »p); 2) in real conditions 
the anharmonicity of the oscillations leads to a condensa­
tion of the levels near the dissociation threshold D, mak­
ing it necessary to consider multiquantum exchange 
processes and to take into account the decay of the levels 
adjacent to the level p in the range ~kT; 3) the kinetics 
of the decay of "hot" molecules should take into account 
the rather important process of the transition of the 
rotation energy of the nondissociating molecules into 
vibrations of the dissociating molecules [28 ,22J. The lat­
ter circumstances introduce into the decay probability 
within the framework of the cut-off harmonic OSCillator, 
an uncertainty that is obviously retained even in the 
most consistent investigations of the kinetics of thermal 
dissociation [22J . 

Regarding the energy reserve E and the system decay 
rate w as functions of the time, we can easily obtain for 
the generating function G(z, t) = ~ znyn(t) the equation 

n 

aG ( ()G) ( aG ) ( aG ) at= ---;)i 0+ at m + at p' 

( ac.) = [e(Z-1)'-(Z-1) (1+6 1-ze_-e
e )1~+(Z-1) (e+6eo)G, 

Ot 0 1-e az (1.4) 

(!..£) = (zm-1)T](Yo-Ym), (~) =w(zp-G). 
Ot m at p 

The terms in the right-hand side of (1.4) are due 
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respectively to relaxation processes, multiphoton laser 
pumping, and the decay process. The method of charac­
teristics makes it possible to obtain from (1.4) an in­
tegral representation of the function G(z, t): 

G(z, t) =GO+Gm+G .. 

eqt 1 . 
Go= 

c(l) e't--(z-1)[80+H(O,t)] ' 
t (1.5) 

l1eq'Sc(t')[Yo(t')-Ym(t')]dt'{[ (z-1~e'" 1m } Gm=- 1+ -1 
1:(/) "e"-(z-l)H(t',t) e,t-(z-1)H(t',t) , 

eq' ' c(t')w(t')dt' [ (z-l)e'" 1 p 

C'=-:w f~,;t--r;-1)H(t'7) 1+ eq'-(z-1)H(t',t) , 

where q = 1 + ~, 

II(t',t)= S eq'''[dt'')+£80]dt''; 

" 
(1.5) corresponds to an initial Boltzmann distribution. 
Recognizing that 

1 DnG 
Yn(t)=--/ 

n! 8z ll 2=0' 

we obtain with the aid of (1.5) the following relation for 
the distribution function: 

Yn (t) =Y,:') (t) +y~m) (t) +y~P) (t), 

(0) eq'[eo+H(O, t)]n 
Yn = --;---:-;--,--,---,=,-~~-

c(t) [eqt+eo+H(O, t) ]n+< 

P n 

+.E.E (-1),-n+'C,,'C/A:+,<D,,(t) ], 
k_n+t T~O 

(1.6) 

Y(m)=~[~ ~ (-1),-n+'C'C'A n l (t) 
n nl c(/) ~ ~ m n h+,', 

k=1 'I'=n-II 

+ t t(-l),_n+'Cm'Cn'A,:,I,,(t)], n.;;m, 
k=n+l '1'=0 

where 

C/=jl/il (j-i) I, A/=jl/ (j-i) I, 

, H' (t' t) dt' 
I (t)- Sc(t') ( ) 'qt' ' 
.. - YO-Ym e [eq'+H(t', t) ]'+'+" 

o 

II! I = S c(t')w(t')e'q"H'(t',t)dt' 
.. ( ) [e'I'+II(t' I) ]h+Hi • 

o ' 

Thus, the obtained relations (1.6) yield an integral 
representation of the distribution function Yn(t). The 
derived expressions contain E(t) and wet). To determine 
the latter it is necessary to turn to (1.2) and (1.3), where 
(1.6) must be taken into account. This procedure enables 
us to find, in particular, an equation in closed form for 
the reserve of vibrational energy E(t). For example, in 
the absence of a decay process and in the case of single­
quantum pumping (m = 1) the equation for the vibrational 
energy is 

-2 j eq" [:;, +6(8(t')-80)] [eq'+H(t',t)]-'dt'}. 
o 

In the general case, the determination of E(t) is a compli-

N. G. Basov et al. 919 



cated problem even in the case of single-quantwn pump­
ing. The relations obtained in this section will be used 
later on to determine the distribution functions in the 
stationary and quasistationary cases. 

2. Quasistationary Regime 

If there is no p-level decay, then the system admits 
of a solution corresponding to the stationary regime 
(Yn = 0). This regime corresponds physically to cancel­
lation of the effects due, on the one hand, to laser pump­
ing, and on the other to v-T relaxation and spontaneous 
transitions. The stationary distribution function can be 
determined rigorously as the asymptotic form of the 
function Yn (t,d/ t-oo. In the presence of decay proces­
ses, this transition to the limits is no longer correct, for 
in this case, as shown by an analysis (see also [26,27, 29J), 
it is impossible in principle to realize exactly the condi­
tion Yn = 0 as t - 00. In addition, it must be recognized 
that when the concentration c (t) differs noticeably from 
unity, the vibrational-exchange time TVV increases, and 
consequently the parameters L 7J, and 0 cannot be re­
garded as constant. If the condition Ic -ldc/dt I « 1 is 
satisfied, then the initial system admits of a solution 
corresponding to the quasistationary regime. Asswning 
that this regime is established at large but finite values 
qt » 1, we write down for the distribution function 

Yn (e, t) 1,,», ""Yn (e) =y~') +Yn(m) +y~'). 

In the quasistationary regime, the form of the func­
tion (1.6) becomes noticeably simpler. Calculating, for 
example, y~ct)(E), we represent the integral in the corre­
sponding formula in the form 

I, I 

H(O,t)= J e,"(e+s80)dt'+ J e"'(e+seo)dt'. 
o I, 

The value of tl is chosen here large enough to be able to 
put E(t) ~ const at t' > t 1 ; then 

e+s80 
H(O, t) ,,"const+--(e"-e"'), 

q 

and consequently, for times t » tl we have 
e+68 

H(O, t) "" __ 0 e"[1+0(e-") J. 
q 

Thus, the quasistationary expression for yri°) takes the 
form 

y~') =q (e+se.) OJ (q+8+se.) 0+'. 

A similar procedure is used in the calculation of y(m) 
and y ~p). Carrying out the corresponding summatign 
operations in (1.6) and taking into account the identity . 

1: k-'{1 +cn'x'- (1+x)'}=0, ._, 
we obtain a complete expression for the quasistationary 
distribution function 

where 

920 

Yn=Y!') +y!'") +y!,), 

(.) qa' (m) a' . 
y. = bo+" Y. = b'+' 1') (Y.-Ym) (L.-Rm), (2.1) 

a,""a(8)=e+seo, b,""b(e) =q+e+6eo, R,=.t. k-', 
k_' 

s={ n, n,.;;;m. 
m, n~m 
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We note that in the absence of laser pwnping (7J = 0) 
and in the absence of decay (0 = 0) expression (2.1) des- . 
cribes the Boltzmann distribution Yn = E~/(EO + 1)n+1. 
For the populations Yo, Ym' and yp we get from (2.1) 

Yo=[q-1') (Yo-Ym)Rm-wRp] b-., 

Yo,=[q+'l (Yo-Ym) (Lm-Rm)+w(Lm-Rp) Jamb-m-., 

Yp= [q+ ! (e-eo) (Lm-Rm) ] aPb-p- 1 
(2.2) 

{ ( a) p+1 [ p-e ]} -. x 1H(e+seo)-' -j; Lp-Rp---;:;;-(Lm-Rm) . 

The expression for yp takes into account (1.2) and !he 
energy equation (1.3) expressed in the stationary (E = 0) 
form: 

1 
1') (Y.-Ym) = -;;[6 (e-e.) HYp(p-e) ). (2.3) 

Relations (2.2) and (2.3) yield an algebraic equation for 
the reserve of vibrational energy E. It can be shown that 
the sought value of E is the smallest positive root of this 
equation. Let us consider separately some particular 
cases. 

a) Single-photon pumping. At m = 1 it is easy to ob­
tain from the general relations of the present section, 
assuming the initial energy reserve to be Eo = 0, the fol­
lowing equation for E: 

6e(q+e)'=1'][ (q+e) (q- se)-q2e J-6Yp'{ (q+e)'(p-e) 

• • (2.4) 
+1'] [ (q+e) (p-e- .E k- ' ) +q(p-e-1) +e .E k- ' n, 

k_l k=z 

where 

q'eP {' eP 
[ ~ ( q+e )' ~. p-e ]}-' 

YP= (q+e)P+1 1+6 (q+e)P+' ~k-l -e- - ~k-'-q-e-
. "=1 "=1 

At relatively small 0, from approximately 1 to 10, the 
perturbation of the distribution function as a result of 
the p-level decay is small. In the case p » 1, ~ = 0, and 
7J - 00, it is easy to obtain from (2.4) a relation that per­
mits an estimate of the reserve of vibrational energy: 

( e~1 ) 0+' ";'6-1 {p+[ (6p) 'f(p+l)-1](2p-1-!np-Co) 

-(3+ (6P),L,q))-' 

(Co ~ 0.677 is the Euler constant). 

At large pump intensities 7J - 00 (saturation regime) 
and at ~ = 0, in the case of absolute "transparency" of 
the potential barrier (0 - 00) we have 

1-lwlm~{ (2+e) (p-e)-e-1- i>-'} =0, .-, 
where 

• 
Iwlm~=6Ypl,_oo= [H L C:k-'e-']-' 

.-, 
• • I (2.5) 

={1+ .Ek-I(He-')k-P8-1_~ k-'f • 
k=i A_I 

The last formula gives the limiting value of the decay 
rate of the system in the case of single-quantum pwnp­
ing. It is easy to obtain from (2.5) an equation for the 
reserve of the vibrational energy in the limiting regime: 

1:, k- ' (He- ' )'+(e+2) (e+i-:-p).-pe-'=O. 

The relations obtained in this section were used to 
calculate different variants for a sufficiently wide range 
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FIG_ 1. Distribution function Yn and dependence of the system decay 
rate W for different parameters (single-photon pumping, m = I; quasi­
stationary regime): a-curves I, 2-for Yn(~ = 10-3), curves 3 to 5-for 
Yn/Yn + 1 (~= 10-4 ); p = 22,1/ = 10; 1-8 = 1,2-8 = 103 ,3-8 = 10,4-8 
= 102 ,5-8 = 103 ; b) curves I to 3-for w(1/), curve 4-for w(8); p = 22, 
~ = 10-4; 1-8 = 1,2-8 = 10,3-8 = 102, 4-1/ = 103 . 
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FIG. 2. Dependence of € and W on the system parameters and form 
of the distribution function Yn in the quasistationary regime (multiphoton 
pumping): a) t = 10-2 ,8 = 102 , P = 22;I-m = I, 2-m = 2, 3-m = 3, 4-
m = 4, 5-m = 5, 6-1/ = 1,7-1/ = 10,8-1/ = 100 (variants I to 5-for 
€(1/)), variants 6 to 8-for w(m)); b) ~ = 10-2, p = 22, 8 = 1/ = 100; I-m 
= 2, 2-m = 3, 3-m = 5. 

of external parameters. Figure 1a illustrates the influ­
ence of the decay rate of the activation level on the form 
of the distribution function of the molecules with respect 
to the vibrational levels. An increase of the degree of 
"transparency" of the potential barrier (6 2: 100) affects 
significantly the form of the distribution in the vibra­
tional-spectrum region close to the threshold value; at 
the same time, as expected, for large 6 the dependence 
of the decay rate w(6) is quite weak (Fig. 1b). At ~ ~ 1, 
a change of 6 in the interval 10-104 corresponds to an 
increase of approximately 10% in the decay rate. The 
saturation effect (Fig. 1b) is connected with the increase 
of the rate TJ of the (0 - 1) induced transitions. At 
~ ~ 1, the characteristic value TJ sat of the saturation 
parameter is ~ 102 • Notice should be taken of the rather 
weak dependence of the reserve of vibration energy on 
the degree of transparency of the barrier in the region of 
large 6; thus, at ~ ~ 1 in the saturation regime (71 » 1), 
a change of 6 ranging from 10 to 103 corresponds to an 
energy increment AE :;; 1. The limiting characteristics 
(6 - (0) in the case of single-photon pumping are shown 
in Fig. 6b below. On the basis of the obtained data we 
can easily verify that the stationarity condition IWmax I 
~ 1 is satisfied. The influence of the spontaneous and 
vibrational-translational relaxation on the quasistation-
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ary characteristics of the system is reflected in Fig. 6a. 

b) Multiphoton pumping. The calculations in the case 
of multiquantum pumping of the vibrational mode were 
carried out with the aid of the general relations 
(2.1)-(2.3). It follows from the performed analysis that 
at relatively weak laser pumping (71 ::; 1) of even high 
multiplicity (m ~ 10) the decay-rate constant w is small 
and satisfies well the condition Iw I ~ 1. On the other 
hand, if TJ is large (at small and moderate values of the 
potential barrier, p < 20-30), then high decay rates 
(Iw I ~ 1) are readily attained at large m; obviously, 
under these conditions the quasistationary analysis no 
longer holds, 

Figure 2 contains information that gives an idea of the 
singularities of the quasistationary regime under condi­
tions of multiphoton laser pumping. Figure 2a shows the 
form of the dependence of the reserve of vibrational en­
ergy on the pump level for a number of values of m from 
1 to 5. We see that no fundamental difference from the 
case of single-photon pumping is observed here; we note 
only that the growth of the vibrational energy slows down 
with increasing multiplicity m. The plots of w(m), which 
are also shown in Fig. 2a, make it possible to estimate 
the decay rates at different pump values. The form of 
the quasistationary distribution function (a regime close 
to saturation) is illustrated in Fig. 2b. We note the 
singularities in the behavior of the distribution function, 
which becomes manifest at the first two levels of the 
vibrational spectrum, namely an intense multiphoton 
pumping leads to inversion of the 1 - 0 transition. Of 
course, at high pump levels and at relatively short 
times, an inversion is realized also with respect to the 
transitions n - n - 1 (n ~ m), but in the transition reg­
ime the inversion for 2 ~ n ~ m becomes "dissolved" 
and remains in the quasistationary regime only for the 
1 - 0 transition. This circumstance is connected with 
the fact that with increasing number of the level n the 
collision processes in which molecules take part become 
more intense. 

3. Stationary Regime 

If the decay rate is negligibly small (6 - 0), then a 
stationary regime is realized. In this case the form of 
the distribution function (2.1) becomes much simpler (we 
assume for simplicity Eo = 0)4) 

n~m 

(3.1) 

q+ ~ [t k-' ( q:e ) _h - .t k- ' ] , n~m 
~_i Jr._1 

If the rate of the inhibition processes is small (~ ~ 1), 
then in the saturation regime (TJ - (0), in the case of 
arbitrary pump multiplicity, the populations of the zeroth 
and m-th levels, which are coupled by the laser field, 
correspond to the relations 

YQ=-q-(l-~~ k-') , Ym""q'em(q+e)-m-I 
q+e mq ~ , ,_I 

while the equation for the energy takes the form 

q(q+e)m_~e (q+e)m ~ 1: k-'-q'e"=O. 
k=t 

It is easy to obtain from this equation the limiting value 
of the energy (for not too large m) 
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(3.2) 

The results obtained in this section generalize the re­
sults of [16J , where the stationary regime at m = 1 is 
considered. 

Figure 3 illustrates the influence of different param­
eters on the characteristics of the stationary regime. 
The qualitative behavior of the curves is understandable. 
We note only the singularity in the case of multiquantum 
pumping (m ;::; 2), namely, at sufficiently high rate of the 
induced processes (1] » 1) population inversion sets in 
with respect to the transition 1 - 0 (Fig. 3b), i.e., this 
singularity is retained also in the stationary regime 
(see Sec. 2). 

II. VIBRATIONAL KINETICS OF MOLECULES IN THE 
CASCADE EXCITATION MECHANISM 

4. Possibility of Cascade Excitation Mechanism. 

In this section we investigate the vibrational kinetics 
of molecules under nonequilibrium conditions produced 
by resonant laser radiation as a result of the cascade 
mechanism of population of the vibrational levels [13 ,aoJ. 
The study of the kinetic processes under these conditions 
is of undoubted interest, since the cascade mechanism, 
from the point of view of selective excitation of high sec­
tions of the vibrational spectrum of the molecule, has 
obvious advantages, since it permits rapid excitation of 
a Single-out vibrational branch without energy loss to the 
excitation of other degrees of freedom of the molecules. 

Cascade population can be realized in principle by 
using multifrequency radiation produced, for example, 
with several lasers with tunable frequency[aOJ . Such a 
system makes it possible to overcome in natural fashion 
the difficulties due to anharmonicity of the molecule 
vibrations. A practical realization of this method, how­
ever, is difficult because, in particular, the question of 
producing an effective tunable laser in the IR band is 
presently only in the speculative state [30,31J . 

In the case of single-frequency laser radiation, the 
realization of the cascade mechanism imposes definite 
conditions on the spectroscopic properties of the reson-
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FIG. 3. Dependence of the reserve of vibrational energy 10(1/) and 
form of the distribution function Yn in the stationary regime (/) = 0) at 
different system parameters: a) singlequantum pumping (m = \); curves 
I to 4-for 10(1/); I-~ = 10-1 , 2-~ = 10-2 , 3-~ = 10-3 , 4-~ = 10-4 ; curves 
5 to 7-for Yn at 1/ = 100; 5-~ = I, 6-~ = 10-1 , 7-E = 10-2; b) multi­
quantum pumping; curves I to 4-for H1/) at E = 10-2 ; I-m = I, 2-m 
= 2, 3-m = 3, 4-m = 10; curves 5 to 7 for Yn at m = 2; 5-1/ = 100, 6-1/ 
= 10,7-1/ = I. 
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ant molecules and on the irradiated gas mixture as a 
whole. ~t us formulate these conditions: 1) the vibra­
tional-rotational absorption lines of the selected mode 
must overlap, so as to enable the field to "capture" 
resonantly several lower vibrational bands. 2) The rate 
of excitation of the vibrations should exceed the rate of 
energy dissipation into other degrees of freedom, there­
by ensuring selectivity of the excitation of the given 
mode, 

From the point of view of satisfying the first condi­
tion, it is preferable to use molecules with sufficiently 
weak anharmonicity and with low values of the rotational 
constant. Such properties are possessed by many heavy 
polyatomic molecules. For example, for the molecules 
Cili4S, OS04, HaCaOa, (CH3)aCO, the minimum value of 
the rotational constant Be [in cm-1] are respectively 
0.10, 0.11, 0.14, and 0.16, and the anharmonicity amounts 
to wexe ~ 1.5 cm -a [3aJ. If the impact broadening is 
~1I ~ 5 X 109 Hz/atm, then at Be ~ 10-1 cm-1 the lines 
begin to overlap at a pressure p ~ Beckll ~ 0.5 atm 5 ). 

It should be noted that overlap of the vibrational-rota­
tional lines can be achieved at moderate pressures by 
using a mixture that is rich in different isotopes of the 
irradiated molecule; thus, for example, at p ~ 1 atm, 
for the COa molecule, which has 18 isotopic formations, 
the width of the overlap region is ~kT ~ 200 cm-1[31J. 
The second condition corresponds to molecules having a 
relatively low probability of deactivation of the vibra­
tional excitation (PI0 ~ 10-3_10-5). 

Several theoretical papers published to date [8,17, 19J 
deal with certain questions connected with the cascade 
excitation of molecule vibrations. In particular, the non­
stationary process of populating vibrational 1evels is 
investigated in [19J on the basis of a certain simplified 
model. A quasistationary excitation regime is consid­
ered in (8, 17J within the framework of the diffusion ap­
proximation. 

It should be noted that in the general case vibrational­
kinetic problems reduce in essence to a determination of 
a discrete distribution function, the evolution of which 
explains the features of the excitation process itself 
under various conditions. The diffuse model, on the 
other hand, yields a certain averaged picture. In this 
part we use three regimes of laser excitation of vibra­
tional degrees of freedom under conditions of cascade 
population: nonstationary, stationary, and quasistation­
ary. 

5. General Relations. Nonstationary Regime 

The competition between the cascade population of 
vibrational levels and different relaxation processes that 
tend to bring the system into thermodynamic equilibrium 
predetermines the resultant distribution function of the 
molecules over the spectrum of the selected vibrational 
branch. In the case of multiphoton pumping, the evolu­
tion of the distribution function Yn is described by the 
system (1.1). In the case of cascade population, all that 
changes in this system is the term corresponding to the 
specific features of the pumping (it is assumed that the 
laser radiation "captures" m lower vibrational levels): 

( 
dYn ) [. n+I.J(n+l) n.J(n) ] (1 R ) ----;;;- = (n+1) Yn+lT]h,J(n) -YnT}71+1,J(n+1) . -Unm 

[ 
A,J(n) n-t,J(n-i) ] ,;:: 

-n YnT)n-t,J(n-1)-Yn-t1')n,Jtn) ,n-...;;;::m, 
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where fkJ(k) is the relative fraction of the molecules on 
the J-th vibrational sublevel of the k-th vibtationallevel 
(it is assumed that only two rotational sublevels of each 
of the captured bands are coupled by the resonant radia­
tion and that the equilibrium with respect to rotation sets 
in instantaneously), gk,J(k) is the degeneracy factor, 
I [erg/cm2sec] is the intensity, ~v is the impact half­
width of the lines, g(v) is the form factor, Vo is the laser 

frequency, and 1I~,~t~f(n + 1) is the frequency of the 

vibrational-rotational lines. If the interaction of the 
laser radiation with the rotational substructure of each 
of the vibrational bands is spelled out concretely, the 
problem becomes quite cumbersome (although straight­
forward in principle). To simplify the analysis and to 
clarify the principal features of the cascade excitation 
mechanism, we shall assume henceforth that 1)k,J(k) == 1). 

i, J(i) 

In this case, the equation for the average energy 
reserve, with allowance for (5.1), takes the form 

d Tn-i 

d: =-£(8-8,)+'1 [&,y,-mYm ]+(p-el w. (5.2) 

The cascade excitation mechanism introduces into (1.4) 
and (1.5) the following changes: 

BG .-'. (-at) • ='1 (z-1) L (i+1)Z'(Y'-Y'+I)' 
i=O 

(5.3) 
G (z t)=~~' (i+1) ~ C'-!S'C(t') (y,-y,+!) (z-1)'e"" dt' 
m, c(t) ~ ~' [e"- (Z-1)H(t', t) l'+! 

• 1=0 A_I 0 

A chemical reaction stimulated by laser emission has a 
selective character if the condition of rapid population 
of the levels of the selected molecule vibration mode is 
satisfied. From the practical point of view, therefore, 
the question of the rate of excitation of the vibrations is 
one of the most important ones. Obviously, the most 
favorable possibilities in this sense is a system in which 
the radiation extends over all the levels. If we neglect 
the decay process in (5.2) ~ = 0) and let m - eo, then 
we can easily obtain the law governing the variation of 
the average energy E with time: 

e(t) =e,+ ; (l-e- I '), (5.4) 

where Eo is the initial energy reserve. From (5.4) at 
t - eo we obtain Eeo = Eo + 1)/~, i.e., the stationary energy 
reserve in the considered idealized case is directly 
proportional to the rate of induced transitions and is 
inversely proportional on the rate of the inhibiting proc­
esses. If the rates of spontaneous transitions and of the 
v-T relaxation are small, then E(t) is a linear function: 

e (t) ""e'+'1t, £t«1. 
This relation characterizes the maximum possible rate 
of laser excitation of the molecule vibrations (E = 1)). It 
is easy to obtain the nonstationary distribution function 
in explicit form. The equation for the generating func­
tion simplifies as m - eo, and when (5.3) is taken into 
account it can be expressed in the form 

~={ (8+'1) (z-1)'+(z-1) [1+6 1-Ze-O
]} ~+(z-1) (8+'1+6Eo)G. 

iJt 1_p-o iJz 

This equation is easy to solve (the initial distribution 
coincides with the equilibrium distribution): 

G (z, t) =e" {e"- (z-1) [ e.+ j e'" (e+'1+68.)dt' ] r1 

o 
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The standard procedure [24,25] with allowance for the ex­
plicit form of the generating function yields for the dis­
tribution function the expression 

y.(t) =e n (t)/[1+e(t) ]n+" 

where E(t) is determined by (5.4). Thus, if the radiation 
extends over the entire vibrational mode, then the dis­
tribution of the molecules over the levels retains its 
Boltzmann character in the course of time 
(Yn(O) = E~/(l + Eo)n+1). For the limiting value of the 
effective vibrational temperature (t - eo, Eo;::; 0), we can 
write down the expression 

hv [( 6 -! T.ib.~= k In 1+ --;j)] , 
and at ~ - 1) we obtain Tvib ~ hll/k. 

6. Quasistationary Regime 

The form of the quasistationary distribution function 
can be obtained with the aid of the method used in Sec. I. 
In this case we shall use a simple approach. From the 
initial system of kinetic equations, with allowance for 
(5.1), it is easy to obtain in the quasistationary regime 
(Iw I <t:: 1) the following recurrence relations: 

d w 
Yn= -;;-Yn+,- (n+1)c' n~m-1, 

(6.1) 
b w 

Yn= -;;Yn+1- (n+1)a' m~n~p-l, 

where we have introduced the additional notation 
c==c (E) =8+'1+6eo, d==d(e) =q+S+IJ+6so. 

Using the explicit form of the generating function G(z, t) 
(see (1.5) and (5.3)), and taking into account the relation 
YO(E, t) = G(O, t), we easily find the asymptotic form of 
yo(E): 

• 
Yo(s)=[ q-'1(Yo-Y.)-w L k- I ] (q+e+sso)-!. 

'_1 
The last relation in (6.1) enables us to find the distribu-
tion function 

Y = cndm-n {q+W[-R+~f,k-'(~)·-']} 
n dm+!-'1c"' • d ~ d 

11=1 

W n (c)n-' +a: L k- ' d ,n~m, 
h=t (6.2) 

w ( a ) ._m ~ _I ( C ) m_' W ~ _! ( a ) .-k 

+at; .L.Jk a +b~k b ' n~m. 

11=1 h=m+l 

Using (1.2) and (6.2), we obtain for the system decay 
rate 

w=-t!qaP-'"cm {b.-m (d m +'_'1cm ) [ 1 +~ t k- ' ( : ) p-' 

h=m+l 

+Ilap- m [ dm.t k-! ( ~_) m-' -bmRp ]} -! 
(6.3) 

.-! 
If the potential barrier is absolutely "transparent" 
(0 - eo), i.e., the molecules decay instantaneously after 
reaching the activation-energy level, then the expression 
for the decay rate of the system (6.3) takes the form 
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FIG. 4. a) Dependence of the reserve of vibrational energy in the 
stationary regime (Ii = 0) on the excitation level 7] at different m and ~ 
(cascade population): I-m = I, 2-m = 2, 3-m = 3, 4-m = 4, 5-m = 5, 
solid lines-~ = 10-3 , dashed-~ = 10-1 ; b) stationary and quasistationary 
distribution functions Yn at ~ = 10-3, 7] = I, p = 22, and m = 3 (cascade 
population); I-Ii = 0, 2-1i = 10, 3-1i = 00. 

-lQ E 

5 
!J.'iI 

DJD II 

/J 

J 

Z 
FIG. 5. Vibrational energy and sys­

tem decay rates vs. pump level 7] for 
different m in the case of instantaneous 
decay of the p level (Ii = 00), ~ = 10-3, 
P = 22, solid lines-e(7]), dashed-w(7]); 
I-m = I, 2-m = 2, 3-m = 3, 4-m = 4 
(cascade population). 

It is easy to verify that in the case of single-cascade 
excitation the relations obtained in this section coincided 
identically with the relations corresponding to the par­
ticular situation m = 1 of Chap. L 

If we add to (6.2) and (6.3) the energy equation (5.2), 
expressed in the stationary form (E = 0) 

SQB-Bo)=Tj (~2Yi-mYm )+w(p-e), 
i=O 

then the problem of determining the character of the 
quasistationary nonequilibrium distribution function and 
of the principal parameters of the system becomes 
closed. It is clear that a solution of this problem can 
be obtained in the general case only by numerical me­
thods. 

Under the conditions of cascade population, the quasi­
stationary distribution function decreases monotOnically 
with increasing number of the vibrational level (compare 
with the multiquantum pumping in the saturation regime, 
TJ » 1). With increasing degree of transparency of the 
potential barrier (0 » 1), the "tail" of the distribution 
becomes significantly deformed (0 - 00, yp-1/yp _ 00). 

With decreasing rate of decay of the activation level, the 
distribution function acquires a more gently sloping 
character (Fig. 4b). 

Figure 5 shows plots of the margin of the vibrational 
energy E and of the decay-rate constant w on the laser­
pumping level TJ in the case of absolute transparency of 
the potential barrier (the number of cascades is 
m = 1-4). As follows from the foregoing calculation 
that at not too large m and small ~, the saturation 
regime is reached at 1] ;::: 102 (p ::; 40). An increase of 
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FIG. 6. Dependence of the reserve of vibrational energy and of the 
system decay rate on the rate ~ of inhibition processes and on the num­
ber p of the activation level for different values of m at Ii = 00; I-m = I, 
2-m = 2, 3-m = 3, 4-m = 4: a-em (solid lines) and w(O (dashed) for 
p = 22 and 7] = 10; b) e(p) (solid lines) and w(p) (dashed) for ~ = 10-3 

and7];'102 . 

the number of cascades to m = 4 increases the average 
vibrational energy by ~2-3 quanta (per oscillator). 
Attention is called to the strong dependence of the sys­
tem decay rate Iw I on the pump level in the range of 
relatively small TJ. and this dependence becomes 
stronger with increasing number of vibrational bands 
captured by the field (for example, for m = 4, the rate 
changes by a factor of 10 in the range of TJ from 0.1 to 1, 
and by a factor 1.5-2 in the range from 10 to 102), The 
reason is that far from saturation the system decay rate 
is quite sensitive to the total reserve of vibrational en­
ergy. 

Figure 6a gives an idea of the influence of the inhibi­
tion processes (spontaneous decay, v-T relaxation) on 
the parameters of the excited system. As follows from 
the calculations, this influence comes into play for in­
hibition rates ~ ;::: 10-2 and becomes appreciable at 
~ ~ 10-1• Of course, at sufficiently large v-T relaxa­
tion rates, the analysis must take into account thermal 
effects that lead to an increase in the total temperature 
"background. " 

Figure 6b contains information on the dependence of 
the vibrational energy and of the system decay rate on 
the activation energy. Although the quasistationary en­
ergy reserve increases with increasing potential barrier, 
the rate of decay of the system decreases. As seen from 
the figure, the function E(p) is practically linear, and at 
small p the decay rate increases sharply. It should be 
noted that inasmuch as the existence of the quasistation­
ary regime calls for satisfaction of the condition Iw I 
« 1, in the case of large rates (Iw I ~ 0.3), the analysis 
within the framework of the assumed model becomes in 
general less rigorous. 

7. Stationary Regime 

Neglecting the system decay process (0 = 0), let us 
find the characteristics of the stationary excitation 
regime under conditions of cascade population of the 
vibrational levels. In this case, the form of the distribu­
tion function (6.2) becomes much simpler: 

(7.1) 

Neglecting the initial energy reserve (Eo r:::< 0), we express 
the equation for the vibrational-energy reserve in the 
form 
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; m-' 
~[(q+e+T])m+t_T] (e+T])m]~ '\1 (e+T])'(q+e+T])m~'-m(e+T])m 
'N ~ 

M (7.2) 

It is easy to obtain the solution of this equation in the 
saturation regime, when 'Tj - 00 and ~ < 1. In this case 
Eq. (7.2) becomes simpler and takes the following form 
(the number of cascades m is not too large, and E »1) 

;e'+s(mH)e-'j.qm(mH) ~o, 

whence 

mH f[ 2qm l'" } Bm~ ""-2-1. 1+ s(m+1) -1. 

If the rate of the inhibition processes is small (~ < 1), 
then 

8 mu""l'm(m+1)/2s. 

This result demonstrates the advantages of the 
m-C'Lscade pumping over m-photon excitation (cf. (3.2)). 
If the laser radiation covers the entire vibrational mode 
(m - 00) then, as can be easily shown, solution of (7.2) 
yields for the maximum stationary energy reserve the 
value Emax = Eoo = 'TjIL which coincides with the result 
obtained in Sec. 5. 

Figure 4a illustrates the dependence of the average 
vibrational energies stored by the molecule in the laser 
field on the excitation level 'Tj in the case when several 
cascades are captured (m = 1-5) at different rates of 
the inhibition processes. An increase in the number of 
cascades leads to an increase of E (for values of 'Tj in the 
interval 1-102, a change of m from 1 to 5 corresponds 
to an increase in the energy reserve by approximately 
three times). An increase in the inhibition rate ~ de­
creases the reserve appreciably (by one order of mag­
nitude in the saturation regime when ~ varies in the 
interval 10-3_10-1). Figure 4b shows the distribution 
function of the molecules with respect to the vibrational 
spectrum in the case of three-cascade pumping (for 
comparison, we present several quasistationary distri­
butions). 

CONCLUSION 

The foregoing analysis of the nonequilibrium vibra­
tional kinetics of molecules in the presence of a resonant 
laser field was based on a number of assumptions (see 
Sec. 1), which naturally limit the applicability of its re­
sults. Nonetheless, the analysis developed above explains 
the specific features of the kinetics under conditions of 
nonequilibrium decay. It should be noted that modern 
theory of chemical reactions (regardless of how they 
are initiated) is considerably model-dependent. The 
primary reason is lack of exact knowledge of the multi­
dimensional surface potential energy of the interaction 
of the system particles, and lack of knowledge of the 
mechanism of the energy-exchange processes between 
the vibrationally-excited polyatomic molecules. In the 
latter case, the situation becomes greatly complicated 
by the anharmonicity of the molecules. The anharmonic­
ity leads to interaction of the normal modes, and ex­
change interaction becomes particularly strongly mani­
fest in the case when the energy defect t.E between the 
fundamental tone (or overtone) of one mode in the over­
tone of another mode is small enough (t.E/kT < 1). 
Allowance for anharmonicity should include the multi­
photon (generally of the Raman type) energy-exchange 
processes. 

Letokhov and Makarov[19J called attention to the 
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question of the role of rotational relaxation in the proc­
ess of saturation of a vibrational transition acted upon 
by a laser field. It is clear from general considerations 
that if the frequency of the laser radiation coincides 
with one of the rotational-vibrational lines of the vibra­
tional band, then at sufficiently high radiation intensity 
the rate of filling of the rotational spectrum of the upper 
vibrational level is limited by the rate of rotational re­
laxationS). Allowance for the influence of the rotational 
relaxation calls for a correct analysis of the correspond­
ing kinetics responsible for the redistribution of the 
molecules over the rotational sublevels. Unfortunately 
the theory has made very little progress so far in this 
direction. 

A theory free of the indicated limitations is of undis­
puted interest. In addition, research connected with dif­
ferent modifications of the considered excitation me­
thods is worthy of attention. In particular, one of the 
possible modifications of the cascade excitation mechan­
ism was pointed out in (13J • If a polyatomic molecule has 
multiple frequencies, then levels of different vibrational 
modes can be made to participate in the excitation proc­
ess (owing to the combined effect due, on the one hand, 
to the induced transitions and on the other hand to 
resonant v-v energy exchange between these modes). 

I) After this paper sent to press, an article dealing with some analogous 
problems was published by Gordiets, Osipova, and Panchenko [21 J. 

2)In this paper we do not take into account the process inverse to the 
p-Ievel decay, the processes of v-v exchange of energy between a given 
oscillation mode and others, thermal effects, and effects connected with 
relaxation of the vibrational sublevels. The latter, generally speaking, 
are negligible in the case of multifrequency pumping. On the other hand, 
if the laser frequency is tuned to a single vibrational-rotational line of 
the 0 --> m band, then it is assumed that the rate of the induced transi­
tions (OJ --> mJ') is smaller than the rotational-relaxation rate (in the 
case Wm = a oJ rnJ'If(1'), where f(1') is the equilibrium fraction of the 
molecules at the vibrational sublevel J', aOJ mJ' is the cross section of 
the induced transition, and I is the intensity). 

3)We note that, in any approach, the calculation of the distribution func­
tion Yn in the quasistationary regime entails in principle a definite error 
due to the specifics of the regime itself [26,27]. 

4)We recall that formulas (2.1) yield the exact stationary distribution 
function for an infinite system of kinetic equations. 

5)In principle, the anharmonicity can be cancelled out by broadening the 
levels with a sufficiently strong field F]. In this case the necessary 
fields E are determined from the relation IlE/h ~ 2wexev, where Il is 
the dipole moment and v is the number of the vibrational level. If v = 5 
and we assume that Il = 5 X 10-19 cgs esu, then we get E ~ 105 -I 06 
V/cm for wexe ~ 1-10 em-I. Many other processes become important 
in such fields (for example, breakdown in gas). 

6)Obviously, optimal conditions for multiphoton pumping are obtained 
by tuning the laser to the frequency of the transition between the ro­
tational sublevels with maximum relative population, i.e., with Jmax 
""yT/2Elrot (Elrot is the characteristic rotational temperature). Within 
the framework of the model of ['9], the rotational quantum number 
Jmax corresponds to a vibrational-transition saturation time ~Trot/ 
f(1 max) (case of large pump intensities). 
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