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Angular measurements of the spectra of the I ~ y component of anisotropic light scattering have been 
carried out in quinoline. The phenomenological parameters involved in the hydrodynamic theory of 
anisotropic scattering in the presence of two relaxation processes are determined by analyzing the 
scattering spectra and the measurements of the Maxwell consta:It. The theoretical spectra are 
calculated with the aid of these data and are then modified by the apparatus function of the optical 
system. They are then compared with the experimental spectra. Quantitative agreement is observed 
between theory and experiment. For strong spacing of the relaxation times which are observed, the 
central part of the I~y component spectrum and the Maxwell constant are practically completely due 
to the anisotropy tensor, which possesses the larger characteristic time. The contribution of 
orientations to the shear viscosity is determined by comparing the results with molecular theories. It 
is shown that reorientation of molecules is of an individual nature to a large extent. 

The study of the interaction of electromagnetic radi­
ation with matter in the optical frequency range is today 
one of the most important methods for obtaining infor­
mation on the structure and kinetic properties of 
liquids. Great interest attaches to the spectral com­
poSition of that depolarized part of the scattered light, 
for the appearance of which the anisotropic fluctuations 
are responsible. When the incident radiation propagates 
along the x axis and is observed in the xy plane, the 
spectra of the Iiy and ~y components are completely 
different. Here the superscript denotes the direction of 
polarization of the incident light and the subscript that 
of the scattered light. 

The presence of two peaks in the intensity at the 
Mandel'shtam-Brillouin frequency, discovered by Steg­
eman and Stoicheff, is a distinguishing feature of the 
structure of the ~y contour.[l) The fine structure of 
the Iiy component was first observed by Starunov, 
Tiganovand FabelinskH,[2] and then by Stegeman and 
Stoicheff,lI) Further investigations showed that a broad, 
Lorentzian line is additionally present in the spectra of 
both componentsp,4) Neither the shape of the spectrum 
nor its angular and temperature dependences are de­
scribed by the simple phenomenological theory of Leon­
tOvich.[S) For the explanation of the observed behavior, 
a generalization of the Leontovich theory has been car­
ried out for the case of an arbitrary number of tensor 
and scalar relaxation variables.(6,7] It has been possi­
ble to explain qualitatively almost all the features of 
the observed scattering spectra within the framework 
of such a generalized model. However, serious difficul­
ties develop in the quantitative comparison, because 
many parameters that must be obtained from experi­
ments remain unknown, and very arbitrary assumptions 
must be made on their values. [5-7) 

Along with the phenomenological theory, there are 
also molecular theories of the depolarized light scat­
tering. [8-12] At the base of these theories lies the as­
sumption that the narrower Lorentzian line is connected 
with processes of reorientation of the molecules. The 
fine stX'ucture in the lines arises because of the inter­
action of the field of the orientations with longitudinal 
and trans verse acoustic modes. The experimental study 
of the fine structure parameters is most essential to 
test the validity of the molecular theories, since the 
theories are most sensitive to them. 

In the present paper, the spectrum of anisotropic 
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light scattering has been studied in detail in a pure 
liquid and in solutions. The characteristics of the spec­
tra have been determined and their dependence on the 
scattering angle and on the temperature have been in­
vestigated. The quantities that enter into the micro­
scopic theory have been calculated on the basis of these 
data and certain conclusions have been drawn on the 
character of the process of molecular reorientation. 

For quinoline, all the parameters of the phenomenon­
logical theory of anisotropic ally scattered light have 
been determined and a comparison made of the theo­
retically constructed spectra with the experimental 
ones. 

1. THE EXPERIMENTAL SETUP AND THE METHOD 
OF TREATMENT OF THE RESULTS 
OF MEASUREMENT 

Figure 1 shows the setup of the apparatus on which 
the study of the angular dependence of the ~y and ~y 
components of the scattered light in quinoline were 
carried out. We used an LG-36A He-Ne laser as the 
light source (the half-width of the apparatus function 
was 2 Ll.IIA = 0.025-0.30 cm- 1 at a spectral apparatus 
dispersion liD = 0.5 cm- 1 ), and also the single-fre­
quency laser LG-159 (2Ll.IIA = 0.011 cm-1 ). The scatter­
ing angle was varied by rotating the mirror Ml and 
moving it along the axis of the laser. All the other units 
of the apparatus remained immobile. The scattering 
angles were established accurate to 1.5 0 in the range 
from 30 to 1500

• 

A photoelectric recording method was used, employ­
ing a Fabry-Perot etalon, which scanned the spectrum 
by varying the air pressure in the pressure chamber of 
the etalon. Light passing through a diaphragm D3 of 
diameter ""'0.3 mm, which was located in the focal plane 
o(the objective L 3, fell on the photocathode of a cooled 
FEU-79 photomultiplier operating in a pulse-counting 
regime. The cooling apparatus for the photomultiplier 
is shown in Fig. 2. The cooling element was a semicon­
ductor microrefrigerator, fed by a current of 30 A from 
a VSP-22 source. The temperature in the microrefrig­
erator reached -27°C within one hour after COOling 
with running water was switched on. The electric pulses 
were recorded by the linear rate meter PI-4-1. The 
number of recorded pulses in our experiment with the 
LG-36A did not exceed 2000/sec. With the light source 
LG-159, the useful signal did not exceed 200 counts/sec 
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FIG. I. Schematic arrangement for angular measurements of the 
spectra of scattered light: LG-159 - single-frequency He-Ne laser; MI 
rotatable mirror; PI' P 3 - Frank - Ritter prisms, P 2 - half-wave plate; 
G - goniometer; C - cell; °1,°2 ,°3 - diaphragms; F - filter; 
L~, ~, L3 - lenses; F-P - Fabry-Perot etalon in pressure chamber; 
FEU-79- photomultiplier with exit diameter ~O.3mm; PI-4-1 -linear 
analog intensity meter, KSP - recording unit. 

z 

FIG. 2 FIG. 3 

FIG. 2. System for cooling the photomultipler: I - foamed plastic 
case, 2 - FEU-79 photomultiplier 3 - aluminum container; 4 - copper 
ring with ground connection; 5 - miniature refrigerator; 6 - plastic rod. 

FIG. 3. Spectrum of the I~y component for two neighboring orders 
of the Fabry-Perot etalon. J 1 -amplitude of the Ll line of given order, 
S; -amplitude of the contributions from the Ll lines of all orders ex­
cept the zeroth; Sl + J 2 -amplitude of the contributions of all Ll lines. 
The shaded region is the contribution from orders n = ± I, which distorts 
the shape of the spectrum. 

and the dark current of the cooled photomultiplier was 
8-12 counts/sec. The temperature of the liquid in the 
cylindrical cell C was kept constant to within ± 0.5 ° by 
a "Vobser" thermostat. 

As has been shown previously, [13) the spectrum of 
the Ii components can be represented as the superposi­
tion 07 three Lorentzians: two positi ve, L 1 and L2, with 
sharply differing half-widths al« a2, and a Single 
Lorentzian line Lneg in the central part of the spec­
trum. From this spectrum we can, in principle, deter­
mine both half-widths of the positive Lorentzian con­
tours, the ratio of their intensities, and also the rela-
ti ve depth of the dip. 

Inasmuch as the central dip distorts the half-width 
of the Ll dispersion contour, it is more accurate to 
use the spectrum of the Iiy component in its determina-
tion; this component is obtained at the scattering angle 
9 = 7T/2. At this angle, the component consists of the 
contours Ll and L2 and a weak doublet[I) at the 
Mandel'shtam-Brillouin frequency SlB. The tempera­
ture of 11 °C was chosen from the consideration that 
SlB> a 1 here, and, as is seen from Fig. 3, the Mandel' 
shtam-Brillouin doublet does not distort the contour Ll 
at the frequency a I. 

The half-width of the contour Ll was found from the 
spectrum by means of the method of successive ap­
proximations, similar to what was described in(14). The 
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half-width of the contour L2 is usually larger than or 
of the order of 5 cm-t, which far exceeds the range of 
disperSion of the interferometer; therefore, the spec­
trum of the contour L2, recorded on our apparatus, 
represents a straight line. To estimate the half-width 
of this line, we used the spectrum obtained on apparatus 
in which a DFS-12 spectrograph was used as the spec­
tral instrument. 

In the calculation of the ratio of the integrated inten­
sities of the contours Ll and L2, it is necessary to 
take it into account that the spectrum of gi ven order 
(n = 0) is composed of two Lorentzian curves 

L- I, 
,- 1+v'IL\,' ' 

L- I, 
,- 1+v'IL\,' 

with the maxima in the middle of this spectrum, and 
sums of the contributions 

and 

of the spectra of all the remaining orders (Fig. 3). in­
asmuch as the dispersion range of the interferometer 
liD is such that a2/ liD » 1, the quantities L2 and S2 
are practically independent of the frequency within the 
limits of a single order. Recognizing that in Fabry­
Perot interferometers with photoelectric recording by 
the scanning method all the amplitudes J<m are inde­
pendent of the number of the spectrum, we get the re­
sult that the area 

+- +-
(I +S)- ~ l,vD - S I,dv 

VD , '-n~~ 1+(nvDIL\,)'- _~ 1+ (v/L\,) , 

for the spectrum of each order is equal to the inte­
grated intensity of the line L2. 

So far as the quantity Sdll) is concerned, the con­
tribution to it from those parts of the orders n = ± 1 
which distort the shape of the spectrum, is taken into 
account directly. The remaining contribution and the 
contributions of the more distant orders S~ can be as­
sumed to be independent of II in the limits of the range 
of dispersion; it is calculated from the known a 1 and 
J 1 by direct summation. The area S~ 110 + s', as also 
in the case S2, makes the integrated intensity of the 
line Ll complete. 

Thus the ratio of the integrated intensities of the two 
lines is equal to 

(I,+s'+vDS.')/[ VD(S2+J,) l. 

where 
+vD/1 I d 

1- S ,v 
,- 1+ (v/L\,) , 

-vDI'I. 

and is determined by planimetry of the spectra. The 
accuracy of the determination of these quantities is of 
the order of 15%, and is limited by the fact that the 
high-frequency part of the wing of the Rayleigh line 
also makes a contribution to the line L2 and this is 
difficult to take into account. 

To obtain the relative depth of the dip, the spectrum 
of the Iiy component was augmented until the purely 
dispersion component with halfwidth a 1, obtained from 
the spectrum of the IIy component was obtained. For 
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this purpose, we estimated the position of the null line 
of the Ll contour from the overlap of the spectra. 
Then the level of the null line was varied with the aid 
of plots of 1/ J( IJ) against 1J2, where J( IJ) is the ampli­
tude of the spectrum, until best agreement of the half­
width of the constructed contour with ~ 1 is obtained. 
The experimental value was then subtracted from this 
contour. At the temperature of the experiment (11°C), 
the difference contour is itself a Lorentzian curve. 
~neg and the J neg( 0) obtained from it differ from the 
real value because of the apparatus function. The ap­
paratus function was approximated by the Voigt function 
and separated by the method suggested in[ ls1. 

2. COMPARISON OF THE RESULTS OF 
MEASUREMENT WITH THE MOLECULAR 
THEORIES 

The use of single-frequency lasers makes it possible 
to increase the resolution and obtain higher quality 
spectra of the scattered light in the low frequency range. 
For illustration, we have given the central part of the 
spectrum of the Iiy component, taken in quinoline at 
the scattering angle 8 = 60° with a multimode (Fig. 4a) 
and a single-mode (Fig. 4b) laser. It is seen from a 
comparison of the drawings that the details of the fine 
structure are much more distinguishable in the second 
case. Such measurements are necessary for compari­
son with molecular theories based on the reorientation 
of the molecules. The existence of a second, more 
rapid relaxation process, and also its effect on the fine 
structure, is in no way taken into account in them. 
Therefore, for a comparison with these theories, it 
suffices to investigate only the low-frequency part of 
the spectrum. For definiteness, we make use of the re­
sults of the work of Keyes and Kivelson[9,10]. In this 
research, the fluctuations of the dielectric tensor are 
considered; these are determined by a dynamic vari­
able-the denSity of t'he molecular reorientations. In 
addition to the primary variable, the density of the curl 
of the momentum also enters into the linear equation of 
motion. This quantity causes the interaction of the 
orientations with the shear modes. This theory gives 
the following for the spectral component liy( w) at 
small w: 

r cos'(8/2)R k"'l' 
1%,'(00) -L, (00) -Lneg(OO) - oo'+r' - oo'+(k''l/p)' p'r' 

where 1/r is the time of reorientation relaxation, 
k = (41Tn/A) sin (8/2) is the wave vector of the scatter­
ing fluctuation wave, n is the index of refraction, 1/ is 
the shear viscosity, R is the relative contribution made 
to the viscosity by the orientations. We note that the 
formulas of Keyes and Kivelson are easily obtained 

-fl.' 
, IJ.! ' 0 ' d, , 

V1cm-1 IJ.f 
'tJ cm-1 

FIG. 4. Apparatus function ~nd spectrum of the I~y component in 
quinoline (6 = 60°) with multimode laser LG-36A (a) and single-fre­
quency laser LG-159 (b). Lorentzian (0) and Gaussian (X) distribution 
of the intensity are shown on the spectra of the apparatus functions. 
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from the Leontovich theory if we assume that only that 
part of the shear viscosity relaxes which has the char­
acteristic time 1/ r. [16] It is seen from the formula for 
liy that the neighboring part of the spectrum repre­
sents the difference of the two Lorentz contours, as is 
confirmed by experiment. [13] Such a splitting of the 
Iiy component is very convenient for the treatment of 
the experimental spectra. The value predicted for the 
half-width of the negative contour, ~neg = k 2 ry/21Tp, 
admits of direct confirmation Table I gives the values 
of ~neg as a function of viscosity for different temper­
atures. It is seen from the table that the experimental 
and theoretical values are in agreement within the 
limits of experimental error. The dependence of ~neg 
on k2 is shown in Fig. 5. 

The contribution of the orientations to the shear 
viSCOSity can be determined by two methods: from the 
relative depth of the central dip 

R,= 1 Lneg(O) 
cos'(8/2) L, (0) 

with subsequent averaging over all the scattering angles 
and over the separation of the fine-structure compon­
ents 

8 ' 
R= (2v ma%)' / ( L1negr cos 2" ) . 

In the first case, R ~ 0.75 and in the second, R"" 0.60. 
This divergence is evidently connected with the com­
plexity of an accurate determination of IJmax by experi­
ment: IJmax enters into the expression for T in the 
fourth power. 

In a number of researches, [9, 10] the assumption has 
been made that the process of reorientation of the 
molecules in the optical experiments can be described 
by the Simple Debye formula ~ 1 ~ kBT/1/a 3, where a is 
the characteristic dimension of the molecules. How­
ever, the validity of such an assumption is not obvious 
a priori, inasmuch as the molecular reorientations are 
considered as collective modes in the description of the 
depolarization spectrum and not as the turnings of indi­
vidual molecules. Moreover, estimates show that, in 
quinoline for example, pair correlations of the orienta­
tions Significantly affect the integrated intensities of the 
contours IIy and Ii.YY] It is possible that this correla­
tion can also affect Rinetic processes. 

For the elucidation of the reorientation mechanism, 
we investigated the spectra of anisotropic scattering in 
solutions of quinOline in neutral solvents: benzene and 
carbon tetrachloride. The study of solutions is conven­
ient in that it allows us to change the degree of correla­
tion of orientations of the studied material. Inasmuch 
as the relaxation times of the anisotropy of CClt and 
benzene are much smaller, we can track the behavior 
of the quinoline molecules separately in these mix­
tures. Figure 6 shows the dependence of the orientation 
relaxation frequency on the parameter T/1/. It is seen 
from the drawing that the deviation from the dependence 
~ 1 ~ T/ry both for mixtures and for pure quinoline does 
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22 
49 

TABLE I 

A [0-3 I A [0-3 em-' 
ne~ -I n~culated 

expenment ' I values 

11 ± 1.0 
8.7±1.0 
5.1±0.7 

12.5 
9.5 
5.0 
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FIG. 5. Dependence of the half-widths of the negative line on k2 "" 

sin2 (IJ /2) with change in the scattering angle IJ. 

FIG. 6. Graph of the dependence of the half-width of the line LIon 
T /1/. The solid line is for pure quinoline. The points correspond to 
various concentrations of quinoline in CCl 4 (in mole fractions): + - 1.0; 
0- 0.9;6 - 0.8; 0 - 0.6; X - 0.3;e - 0.1. 

not exceed 10%. It follows from this that the process of 
reorientation of the molecules has an indi vidual charac­
ter to a Significant degree and can be described as the 
hydrodynamic process of the turning of the molecules 
in a viscous medium. It is interesting to note that when 
mixtures of various concentration are referred to the 
same value of T/1/, the width of the orientation contour 
does not change and the fine structure, for example in 
the case of benzene, disappears at about 0.8 mole frac­
tion of quinoline. 

3. CALCULATION OF THE PARAMETERS OF THE 
PHENOMENOLOGICAL THEORY 

As a whole phenomenological theories, in contrast to 
the molecular, describe the entire spectrum of aniso­
tropic scattering. In our specific case, this will be a 
theory with two internal relaxation processes. In this 
case, the scattering intensities of interest to us, in the 
notation of[7], which we shall investigate below, are 
equal to 

'v (1) (2) 2 2 e 
Ix, (8)=1, (8)-«A,~tz +A,~tz) ) •• cos 2+ (1) 

+<A,'X,'+A,'X,') •• sin' ~ , 

Ix/(8=,-,/2) -"1,( (A,$,+A,$,)') •• +'I,(A,'X,'+A,'X,') .k, (2) 

where {Sf), Xa = 1'2 ( !;'g) - !;~lf» and <I>a = !;\,?:) are the 
components of the anisotropy tensor ~lk)( ~ll ) = 0, the 
XI axis coincides with the direction of the wave vector 
of the scattering fluctuation wave, X21 Xl lies in the xy 
plane, and the Xa axis coincides with the z axis. The 
coefficients Aa determine the dependence of the die­
lectric constant € on !;t~): 

We have given the intensity ~y at e = 1T/2, inas­
much as the contribution of fluctuations of scalar vari-
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abIes of the type of density and temperature enter into 
it at other scattering angles. 

The spectral intensities of the fluctuations Xa, 
!;i':) and <I>a can be found with the help of the fluctua-
tion-dissipation theorem. For this purpose, it is neces­
sary to write down the entire set of hydrodynamic 
equations with imposed external forces. According 
to[5,7), this set divides into an equation for Xa 

4tj. (x.+ :. X. ) = 'I' i·; a=1,2, (3) 

a set of equations for !;\~) and U2 (U2 is the component 
of the displacement vector) 

( . (.) 1 (.) ) au, (.) 
4tj. ~12 +-~12 -2tj.-='I'", 

Ta. aXt 
a=1,2, 

(4 ) 

and, finally, a set of equations for <I>a and U 1, 

( . 1) Du, (.) 
3tj. $.+-$. -2tj.-='I' .. , 

La. aXI 
a=1,2, 

.. (K + i01Tpr' ) a'u, 2 ( 17$, + 17$, ) 
pu, - T • _ +k' -a' - /!'-a- /!'-a-Lrocv x Xi Xi Xi 

(5) 

2 a'l'~) 17'1'.;,') 
=F'-"3(-ax;-+--ax;- ). 

Here ." 1 and 1/2 are the contributions of two relaxation 
processes to the coefficient of shear viscosity at zero 
frequency (the total viscosity is 1/ = 1/1 + 1/2); IJ. 1 and 
IJ. 2 are their contributions to the instantaneous shear 
modulus, oIrX, oIr 12, \}I<I> and Fi art;.., the external forces 
conjugate with X, !;12, <I> and ui; KT is the isothermal 
elastic modulus, PT is the temperature coefficient of 
the pressure, cy is the specific heat, and K is the co­
efficient of thermal conductivity. The tilde ~ indicates 
that the thermodynamic coefficients are complex (for 
harmonic processes) and can have dispersion if there 
are scalar relaxation variables in the set. If, as is 
usually the case, the dispersion is small, then, in the 
study of anisotropic scattering, its detailed shape is 
unimportant and it suffices to consider only the exist­
ence of bulk viscosity. 

Applying the fluctuation-dissipation theorem to Eqs. 
(3) and (4), we get 

where 

<x ') = kBT tj. 12 
..k (2,,)' 2 (1-'.'+01'tj.')' a=" 

(t)' kBT 't, , " ) 
(~t2 ).k=----[(&)'t,-O,) +(01+0,0,], 

(2,-,)' 21-'t/:'1 

(')' kBT 't, [(' 0 ) '+ ( '+0 0 ) ] <~12 >cuk=---- (J) Tl- t co t 2 , 
(2,,)' 21-"tl. 

(') (') kBT O,'t, , 
(~12 ~t2 ) •• = (2,,)' 21-',tl. [01 ('t,+'t,)-(O,+O,)], 

tl.=[01'('t,+'t,) - (0,+0,) ]'+01'[01''tl't,-1-(O,'t,+O,'tl) ]', 

't.=tj./I-'., O.=k'tj./p, P - density. 

(6) 

In the range of low frequencies w < 1/ T 1 (for definite­
ness, we assume that T 2 < T 1) the intensity ~y is 
represented in the form 

A,''t, A,''t, k'tj (A,'t,+A,'t,) , , 8 
1'---+---- cos-. x, 1-', 1-" p' 01'+(0,+0,)' 2 

It follows from this formula that at 1/ T 1 » k21// P 
there is a dip at the center of the line; this dip has a 
Lorentzian contour with characteristic time p/k21/. 
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From Eq. (5), we get 

k.T 1 [ 1 
«(!l·(!l~>··=--(2 ),-.- 3( +. ) II.~ n ,Ol 11. ,Olf). 

+ 4 iOlf). iOlf)~ k' R. c.] . 
9 (11.+iOlf).) (J.I~+iOlf).) (-pOl'+k'R) 

(8 ) 

where 

R K . iOlT pT' 4. (f), f)') = T+' +-IOl --+-- . 
, iOlcv+k'x 3 1 +iOl"t. 1 +ico"t, 

As was shown previously, [7] the contribution of the 
second term in the correlators < <Pa<Pt3) wk can be sig­
nificant only in the immediate vicinity of the Mandel' 
shtam-Brillouin frequency OB, while its integrated in­
tensity is small and depends on the relation between 
l/r" 1/r2 and 0B. Thus, for example (see[17]), if l/r 1 
«OB « 1/r2, then < <Pl<P2)wk = 0, only the contour 72 
makes a contribution to < 0 ~ ) wk, and the contour of 
< <Pi>wk is determined by the sum of the contributions 
of the contours 71 and 0B. Here the integrated contri­
bution of the contour JOB = (% )[Ks(OB) + 0/3) /J.l r' is 
much less than the contribution of the contour J 71 
= (73}f.." - (%)[Ks(OB) + (%)/J.,r ' . 

As is seen from Eqs. (1) and (6), for a quantitative 
comparison of theory with experiment it is neces-
sary to know six parameters: A1, A 2, 1/1, 1/2, /J.1 and /J.2, 
which can be calculated from six experimentally meas­
ured quantities. 

A large part of the information is obtained from 
analysis of the spectra of scattered light, and a small 
amount from other experiments. As the latter, we used 
the determination of the Maxwell constant from an ex­
periment on the double refraction in flow and measure­
ment of shear viscosity with the help of an Ostwald 
viscosimeter. 

Using the obtained experimental data, we can con­
struct a set of algebraic equations for the determina­
tion of all the necessary parameters. In accord with 
Eqs. (2), (6) and (8), if we neglect the contribution of 
the Mandel'shtam-Brillouin components, the ratio of 
the integrated intensities of the narrow and wide con­
tours in the Iiy component is equal to (A~/ /J. d/ (A~/ /J.2) 
and the relative depth of the central dip in the Iiy com­
ponent at () = 1T/2 is, in accord with (7), 
(M2/1/)(2Ah,//J.d, where M = AlTl + A272 is the Max­
well constant. Then the set of equations takes the form 

M=A."t.+A,"t,=C,. (9 ) 

The complete set of experimentally measured quan­
tities C" ... , Ce was determined only for the tempera­
ture of nOc (see Table II). The sole exception is the 
Maxwell constant M, which was measured at 22°C. Its 
value was converted to nOc under the assumption that 
M ~ 1//T. Possible deviations from this dependence in 
such a small temperature range are much less than the 
errors of measurement of M( ~10%). The data obtained 
from the spectra Iiy and Ii «() = IT/2) and used in 
subsequent calculations are ~hown in Table II. The set 
(9) is easily solved relative to the unknowns A" A 2 , 

7} 1,1/2, /J.1 and /J. 2. It has two solutions, which differ by 
the sign of the ratio A,/ A 2 • The values of the parame-
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TABLE II 

t,'C 11~~'~oIse I c, I fo-~::~ I c. 

g I ~,7 I b I <m) I 
49 2.02 2.40 -

0.38 
0.35 
0.30 

TABLE III 

11 >0 3."-, 1.4" 
II <0 4.00 1.00 
22 > 0 2.35 1.35 
49 >0 1.05 1.00 

0.64 
0.71 
0.60 
0.46 

I fo'';'; ;';C I fO-~ ~c 

I 5.6 I 0.46 
3.9 
2.3 

8.15 0.30 132 
2.15 0.32 -1.0 

ters for both solutions are shown in the first two col­
umns of Table III. 

Comparison of the theoretical and experimental 
spectra is given in Figs. 7 and 8. Both equivalent sets 
of parameters give, of course, the same theoretical 
spectra; for definiteness we use the solution with 
A , /A 2 > O. For comparison with experiment, the func­
tion ~y.( w) calculated from Eqs. (1) and (6), is convo­
luted with the apparatus function of the optical system 
K(w): 

The shape of the apparatus function for the two lasers 
used is shown in Figs. 4a and 4b. Figure 7a shows the 
scattering spectra obtained at different angles with the 
narrow apparatus function, and Fig. 7b, with the broad 
one. The theoretical values are plotted as circles on 
the experimental spectrum. For comparison, the ordi­
nate scale was so chosen that the maximum values of 
both curves were the same. As seen from the figures, 
the shapes of the curves and the locations of the maxima 
are approximately identical, with the exception of the 
central points w = O. These points do not coincide 
partly because of the inaccuracy in the determination of 
the relative depth of the dip, and partly because of the 
inertia of the recording instrument. The comparifJn 
was made only up to frequencies w "" 1/71, inasmuch as 
the divergence associated with overlap of the spectra 
begins beyond that region. The values of the parameters 
are very sensitive to the accuracy of determination of 
the relative depth of the dip Ct. For illustration, we 
have marked on Fig. 7a (curve 2) several points of the 
theoretical curve (triangles) plotted for Ct = 0.25. 
Although the curve itself does not change much at the 
center, the values of all the found parameters change 
significantly (for example, 1/1 becomes equal to 1.8 
x 10-2 instead of 3.6 x 10-6 pOise, 1/1 = 0.3 x 109 

dyne/cm2 instead of 0.62 x 109 dyne/cm2, and so on). 
Thus, C4 must be measured with special care, for 
which purpose it is important to have a very narrow 
apparatus function. 

Figure 8 gives the dependence of IImax on the scat­
tering angle, found from the theoretically calculated 
spectra convoluted with the narrow and broad apparatus 
functions (curves 1 and 2). The corresponding experi­
mental values of IImax are shown by triangles and 
crosses. The significant discrepancy between theory 
and experiment in the case of a broad apparatus func­
tion is due to the difficulty of experimental estimate of 
vmax, about which we spoke earlier. 
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FIG. 7. a - angular dependence of the spectrum of the I~y com­
ponent for the narrow apparatus function: I - 90° ; 2-75°; 3-60°; 
4 - 30°; b - the same for the broad apparatus function: I - 120°; 2 -
90°; 3 - 60°; 4 - 45°. The circles indicate theoretical values. 

FIG. 8. Angular dependence of Ilmax ' I -
theoretical curve for the narrow apparatus 
function; 2 - theoretical curve for the broad 
apparatus function; experimental values are 
shown by crosses and triangles, respectively. 

We note that the location of the frequency of the 
maximum at low viscosities depends weakly on the 
re lati ve de pth of the di p. Actually, it fo llows fro m 
Eqs. (1) and (6) that when 1/T z » 1/T 1 » kZ1)/ P in the 
frequency range W « l/Tz, the result of Keyes and 
Ki ve lson is obtained :[9] 

I '(00)",,_1_, --~ (10) 
:ttl 6:,1+oot2 (i)2+ CO"Z' 

where W1 = 1/T1, Wn = kZ1)/p. The function I~y(w) has 
a maximum at w = 01/4v'W1Wrj, where D is the relative 
depth of the dip and is equal to 

D= ( :~ )./ (:", ) . 

We note that neglect of the contour JOB in the con­
tribution in the calculation of the ratio of the integrated 
intensities is justified. Inasmuch as Ks ~ 2.5 X 1010 
dyne/cmz, it follows as is seen from Table III, that this 
contribution is about 1/30th the contribution of the con-. 
tour L1. 

One could have assumed a priori that the anisotropy 
is determined by the shear stress, as in a simple Max­
well liquid. In this case, we would have had 

c58ik-(Jik=2f!'~'~) +2f!'~::). 

Comparing with the formula 1i Eik = A 1 i:1k + Az l:1k, we 

see that Ad JJ. 1 = Az/ JJ. z. The experimental values of 
these ratios differ by almost an order of magnitude; 
consequently, the anisotropiC scattering is not described 
as scattering from stress fluctuations. 
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By calculating the Maxwell constant from the found 
values of A 1 , Az, JJ. 1 and JJ. z, it can be established that 
this constant is practically entirely due to the changes 
of 1:( 11 and a more rapid process makes almost no con­
tribution to the dynamic double refraction at low fre­
quencies. The effect of 1:( 2) on the light scattering is 
significant-the integrated intensity of the broad contour 
amounts to Y3 of the intensity of the narrow one. How­
ever, at the observed ratio of the characteristic times 
T 1 and Tz the parameters of the high-frequency process 
ha ve practically no effect on the shape of the central 
part of the spectrum. To check on this statement, the 
values of Ce = Tz were varied from 0 to 1.5 X 1O-1z sec; 
the shape of the central part of the calculated spectrum 
was virtually unchanged and the parameters JJ.1, 1) 1 and 
A1 changed by not more than 5%, i.e., within the limits 
of error of the experiment. Thus, without exact meas­
urements of Tz, we can find all the parameters of the 
slow process, and also 1) z and A~/ JJ. z, but not Az and 
JJ. z· 

In addition to the detailed investigations at 11°C, we 
also studied the light scattering at 22 and 49°C. For 
these temperatures, measurements of Tz were not 
carried out, and the Maxwell constant was also not 
measured at 49°C; therefore, it was not possible to 
calculate all the parameters here. The measured quan­
tities C1, Cz, C. and Cs are shown in Table II. These 
data are sufficient for the unique determination of 1) 1, 
1)z and JJ. 1, if the inequality TZ« T 1 is preserved. It is 
seen from Table III that the modulus JJ. 1 falls off rather 
rapidly with increase in temperature; the viscosities 
1) 1 and 1) z and the re laxation time T 1 (Tab Ie II) also fall 
off, and the ratio 1)l/1)Z does not remain constant. From 
this latter fact we can draw the conclusion that two 
molecular processes responsible for the observed re­
laxational phenomena have probably essentially differ­
ent natures. 

Thus, from the results of comparison of theory with 
experiment, we can conclude that the low-frequency 
part of the anisotropic scattering spectrum is well de­
scribed by the hydrodynamic theory. 

It is interesting to compare these results with the 
results of the theory of Volterra.[18] Both theories dif­
fer only in the form of the rheological equation 

(l1a) 

(l1b) 

Comparing Eqs. (l1a) and (l1b) as well as the expres­
sions for the free energy and for 1i € = All: 1 + Azl: z 
= A",I:"" + Ar I:r, we have no difficulty in obtaining 
formulas which connect the parameters of the two 
models. Thus, the model (l1b), which corresponds to 
the Volterra theory, is expressed in terms of the 
parameters of our model in the following way:l) 

~ = f!'~'+f!'~' 
~ f!,+f!'" 

where 

Inasmuch as the two models are purely phenomeno-
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TABLE IV 

l~nOfl ~"I "" I~oo, I f',. I Aoo I t,OC AdA2 to:-2. 10:-2 10 10 109 Ar 
POise POIse dyne/em1 dyne/cm2 

11 >0 .5 2.1 3.2 l.3 L50 Ok:i 
II <.0 fi 1.3 2.2 1.15 -0.68 O.'I[) 
22 >0 3.7 2.\ - 1.5 - -. 
49 >fl 2.02 1.9 - 1.7 .- -

logical, the attempt to ascribe a definite molecular 
meaning to the parameters of one of these means the 
choice of this model as the "more basic." Thus, 
Yolterra starts out from a model in which the deforma­
tion is broken up into three independent parts: viscous 
flow, instantaneous reversible deformation, and delayed 
reversible deformation. It is assumed that these three 
parts are functions of the stress. It is assumed further 
that the delayed part of the deformation is due to the 
orientation of the molecules, and the instantaneous de­
formation is not connected with the optical anisotropy 
(Ax> = 0). We note that Keyes and Kivelson[9,1O] criticize 
the Yolterra theory because it attributes to orientations 
the broad but not the narrow contour in the spectrum. 
This is in an obvious misunderstanding: the variable 
!;r makes a contribution to both observed contours. 

One can divide the stress into two parts with equal 
success. These parts are independent of one another 
and are Maxwellian (Le., obeying an equation of the 
form u = a/ /l + a/1)) functions of the deformation 
(model (l1a) and consider one of these parts as due to 
the orientation of the molecules, and the other to their 
displacement from the instantaneous temporal equili­
brium positions. Similarly, we can compare other 
models and also ascribe a "molecular" meaning to 
them. It must be kept in mind that (l1a) and (llb) are 
only the simplest models which contain the minimum 
number of parameters. For example, the free energy 
in them contains only terms of the form !;1 but not 
!;i !;k. The natural variables of molecular theory cannot 
possess such properties. It is clear that a sound choice 
between the different possibilities can be made only on 
the basis of a quantitative theory and any attempt to 
guess the "true" model from general considerations is 
scarcely justified. 

Inasmuch as the Yolterra model is widely used, we 
have given the parameters of this model in Table IY. 
They have been computed from our data. Calculations 
for the temperatures 22 and 49° C are based on an ap­
proximation whic h is valid for T 2 « T 1 and /l 2 » Ill. 
The assumption of the non-activity of the instantaneous 
deformation[lB] is evidently not satisfied, A"", ". O. The 
modulus /lr increases with temperture as Yolterra 
assumed. 

In concluSion, we note that in the case of a large dif­
ference between /ll and /l a or T 1 and Ta, a rough iden­
tification of the parameters of the phenomenological 
and molecular theories is justified, up to a point. 
Actually, it is not difficult to verify that under this con­
dition one can separate in all models (11) two charac­
teristic times, which are close in order of magnitude 
to Tl and Ta; for the model (l1b), for example, this is 
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the time of retardation of the internal variable TJr / /l r 
and the relaxation time of the stress (at fixed !;r) 
1) 0 / /l 00' This allows us to assume that T 1 and T 2 agree 
in order of magnitude with the characteristic times of 
molecular processes. However, such subtle conclusions 
on the molecular meaning of the temperature depend­
ence of the parameters, for example, must be deduced 
with caution. Thus, the moduli /ll and /lr in the models 
(lla) and (llb) are close in magnitude, and one can 
probably associate them with the same molecular 
parameter, even though /ll falls off and /l r increases 
with temperature. 
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IlThese fonnulas were obtained by V. A. Solov'ev. 
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