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We derive the three-photon vertex function (the polarization tensor of rank three) describing the 
interaction of three real or virtual photons in an intense electromagnetic field of the form E 1 H, 
E = H. The limiting cases of low energies and virtualities and of large energies are considered. In 
the latter case the vertex function exhibits scale invariance, the role of the mass scale being played 
by the variable L1I3, related to the photon momentum and the field by: Lp.-= eFp.plp. It is shown 
that the probability for the splitting of the photon y~y' +y' is sensitive to the real and imaginary 
parts of the photon masses in the field owing to the nearness of the boundary of the spectrum of 
final-state photons to its maximum. 

1. INTRODUCTION 

It is well known that in an intense field three photons 
can interact, leading to the splitting of one photon into 
two others, with a change of the energy and the polariza­
tion (cf. [1-4], where further references to earlier works, 
which have turned out to be incorrect, can be found. 

In an earlier paper [4] (which will be quoted below as 
I) we have considered the general structure of the polar­
ization operator of three photons (or the three-photon 
vertex function) in a constant crossed field (E 1 H, E = H) 
of arbitrary intensity, we have obtained its exact ex­
pression for real photons, and we have found the proba­
bility for the splitting y - y' + y", including the limiting 
cases of small and large energies or fields. For large 
energies the result turns out to be scale-invariant, i.e., 
independent of the electron mass. 

In the present paper we obtain the three-photon polar­
ization operator off the mass shell, i.e., for virtual pho­
tons_ The purpose of considering such a vertex is dicta­
ted first of all by the uniqueness of the three-photon 
interaction in vacuum. Moreover, this vertex function: 
1) can be part of diagrams describing higher-order 
radiative effects, 2) describes with certain simplifica­
tion such processes as the scattering of photons by a 
Coulomb center in an intense field, etc., 3) allows one 
to take into account in the splitting amplitude the mass 
acquired by the photon as a result of its motion through 
an external field. 

The three-photon vertex off the mass shell retains 
the property of scale invariance and in the limit m = 0 
depends nontrivially on five dimensionless variables, of 
which only one survives on the mass shell, cf. I. 

The interaction of the photon with an external field 
becomes important when in the frame where the photon 
has an energy of the order of mc2 the field strength at­
tains the value characteristic of quantum electrodynam­
ics1) 

F,=m'c'/e1i=4.4 ·10" Oe. (1) 

Since all known fields are much weaker than Fa, 
noticeable effects appear only for photons with energies 
much larger than m. For such photons any external field, 
in a reference frame where the photons have energies of 
the order of m, becomes very close to a plane-wave 
field. If, in addition, the characteristic wavelengths and 
the period of the field are large compared with m/eF 
(the length and time interval of formation of the process 
in a field of intensity F), then such a field can be consid-
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ered as a constant crossed field. For example, the field 
of a ruby laser of field-strength F ~ 4 X 108 Oe can be 
considered constant, since the buildup (formation) time 
of the process in it is m/eF ~ 1.3 x 10-16 s, which is 
one-third the field period 1/w ~ 3.7 X 10-16 s. 

Thus, a process caused by a high-energy photon in an 
external field is determined essentially by a single in­
variant parameter 

x=l' (eFl)'/m3, 

since the pure field invariants 

(2) 

(3) 

are, under the given conditions, very small compared 
with unity and with the variable K. Neglecting these in­
variants is equivalent to a passage to the crossed field, 
for which iT = ,~ = 0 rigorously. 

The main contents of this paper are concentrated in 
Secs. 2-5. In Sec. 2 we discuss briefly the kinematic 
structure of the three-photon polarization operator, 
which is characterized by ten invariant functions; we 
discuss methods for calculating them and in the Appen­
dix we list explicit expressions for all ten functions. 

In Sec. 3 the polarization operator is considered in 
the region of small energies K « 1 and small virtualities 
of the photons. In this case all proper time integrals 
can be calculated and the simple formulas obtained for 
the scalar functions show clearly the dynamical struc­
ture of the polarization operator. In addition, selection 
rules are given for Delbriick scattering with different 
special directions of the photon momenta with respect to 
electric and magnetic field vectors. 

In the limit of large energies K ~ 1, considered in 
Sec. 4, the three-photon vertex function becomes scale­
invariant, i.e., does not d7rend on the electron mass. 
The mass scale is now L 1 3, where L = ,; (eFl)2. The 
property of scale invariance distinguishes the three­
photon vertex from the two- and four-photon vertices, 
which are not scale-invariant owing to vacuum contribu-
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tions (Le., parts which do not vanish in the limit F = 0). 

Finally, in Sec. 5, we show that in the region K < 1 
the splitting probability is quite sensitive to the real and 
imaginary parts of the masses of the photon in the field, 
since the boundary of the spectrum of the final-state 
photons is within the limits of the natural width of the 
spectral line. 

2. THE STRUCTURE OF THE POLARIZATION 
OPERATOR. EXACT RESULTS 

We consider the interaction of three photons to lowest 
order in the radiation field and exactly in the external 
field. Such an interaction is described by two diagrams, 
one of which is represented in the figure, the other dif­
fering from it by transposition of two of the photons 
l' /I ~ 1"1... In vacuum these two diagrams cancel each 
other (Furry's theorem). In an external field, the inter­
action with which is represented in the diagram by the 
boldface electron loop, the sum of such diagrams does 
not vanish and gives rise (cf. I) to a diagonal tensor of 
rank three 

(2n) 'Il(l+l'+l") II.,,(Il'I") , (4) 

The momenta 1, 1', l" belong in general to virtual photons 
(i.e., their squares are not zero), and the polarization 
operator defined in this manner may be considered as 
part of more complicated diagrams. 

The polarization vector of a photon of momentum 1 IJ. 
can be decomposed in terms of three independent vectors 
(this is a consequence of the transversality of the 
photon): 

these three vectors are orthogonal to 1 IJ. and for FF* = 0 
they are mutually orthogonal. 

In I, starting from the transversality, charge and 
space parity and the Bose statistics of the photons we 
have obtained a representation of IT IJ. /II.. (U'l") in a 
crossed electromagnetic field in terms of ten invariant 
functions cn C n cn (nl' n2, n3 are respectively the 

1 -"2 3 

photon numbers in the polarization states L, L*, G; 
nl + n2 + n3 = 3): 

where 

II." (Il'l") = L IPno ... , (lJ.t, l'v, I"'},), 

1/J300=C,:: (1l'1")L.L,'L."/LL'L", 

IP2IO= LC~; (1l'1")L.L,'L,'''/LL'L''', 

'ym 

(6) 

(7.1) 

(7.2) 

IP003=C;;r (U'l") G.G:G," /GG' G", (7.10) 

The plus or minus signs of the cnln2n3 denote their spa­

tial and charge parities. The symbol E denotes 
sym 

symmetrization with respect to all possible permuta­
tions of the photons of different types, and the functions 
cnl~n3 with any index ni ~ 2 are already symmetric with 

respect to permutations of the photon of type i. In Eqs. 
(7) the vectors (5) for the momenta l~, l~ are marked by 
one, respectively two dashes, and the invariants L, L*, 
G are defined by the relations2) 

L=L'=m'x=LeF, G=1-1', 

Le., the signs of K, L, and L* are determined by the 
sign of 1. 

(8) 

From the tensor of the crossed constant field F IJ. /I 

and the momenta of the three photons one can form, in 
addition to the three squared momenta, five other invar­
iants: three charge-symmetric scalars K, K', K" (or L, 
L', L"), one charge-antisymmetric scalar p = eFa.rI-~l{3 
and one charge-antisymmetric pseudo scalar T = eF 
T = eFilfi~l{3' related by the conservation laws 

x+x'+x"=O, 

p'+t'+I'L'L"+l"L"L+l"'LL'=O, 

(9) 

(10) 

The invariants p and Tare antisymmetric with respect 
to permutations of any two photons and their product PT 
forms the unique charge-symmetric pseudoscalar which 
is symmetric under permutations of the photons. There­
fore, from parity considerations C;~I' ct;l' c'&n are 
proportional to p, the function clu is proportional to T, 

and c;~O' c~;o, c;;-12 are proportional to pr or to odd func­
tions of the appropriate variables3). The expressions 
(21) obtained below by a direct calculation for the invar­
iant functions cnl112n3 have just such a general structure, 
and the role of the odd function is played either by the 
sine or by an odd power of p or T. 

In order to compute the polarization operator we use 
the Green's function of the electron in a constant homo­
geneous field in the proper time representation 

G(x,,-x,)=exp (ie j dx' A (x') )S(x,-x,), (11) 

" 
The diagonal part, which depends only on the coordinate 
difference, has the following form in crossed fields: 

S(X)=~ J~ ds exp[i~-is(m'+ (eFX)')] (m+i1V+iaT+1,1A) , 
(4n)' S2 4s 12 

° (12) 

IPlOI= LC;;; (1l'1")L.L,'G/'/LL'G", (7,3) where 

880 

'ym 

IP",= LC'~: (1l'1")L.L:'L,'''/L{-''L''', 
,ym 

IPIII= .Ec;;~ (1l'1")L.L:'G,"/LL"G", 
sym 

IPIO'= .Ec~; (ll'l")L.G,'G,"/LG'G", 
,ym 

IP030=C~;- (1l'1")L;L:'L,''' IL'L" L''', 

IP",= LC';;; (1l'1")L;L,"G,"IL'L"G", 
'ym 

IP",= L c~; (ll'l")L;G,'G,"IL'G'G", 
,ym 

Sov. Phys,-JETP, Vol. 38, No, 5, May 1974 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

V.=-'/,x./s+'/,se'F.~~,x .. Ta~='/.mseF.~, A.='/2eF.~'x •. (13) 

Further, following I, we write out the matrix element 
of the diagram (cf, the figure) and go over to momentum 
space, by integrating over the coordinates of one of the 
photons (this integral yields the delta-function express­
ing 4-momentum conservation) and over the differences 
of the coordinates x' and x". The result is the matrix 
element IIJ./IA in the form of a triple integral over the 
proper times of the photons s, s', s": 

'. - d d 'd" ( '''F)--,_e_JJJ s s S _'''Q 
I." III - (2n)' (s+s'+s") , e.", 

o 
(14) 

where the phase of the integrand is 
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I' 1" 1''' ~ 
«ll=m'(s+s'+s") +~ (- + ----,- +.,,) +2~p+ -(L'''(+L''''('+L'12''('') , 

s S s 3 (15) 

with (3 = ss's"/(s + s' + S"), y = s' + S"- S + S'S"/S, and 
y' and y" are obtained from y and y', respectively, by 
the cyclic permutation s - s' - s" - s. The tensor 
QfJ. v'>' can be represented as the result of applying the 
differential operator QfJ. v '>' to the exponential e-iol>: 

QfJ.v.>.e-iol> = e-iol>QfJ. VA ' This operator is determined by 

the trace 

Q",='/,Sp[ (m+i,,( V'+iaT'+"(,"(A'I) "(.( m+i{V+iaT+"(,"(A) 
X"(,(m+i1V"+icrT"+"(,"(A") 1,1, (16) 

where V and A are given by the equations (13) with the 
substitution of the differential operators X, x', x" for 

, " x, x, x : 
x."=if)liJI.', x'.=-if)liJI .. ", x'+,i'+,i"=O, 

V.=v.(x, s), V,,'=v.(x", s') 
(17) 

etc. The explicit expression for QfJ. VA is given in the 
appendix to I and contains terms which are linear and 
cubic in x. Replacing these terms by their "eigenvalues" 
(given by Eqs. (16), (17) in I), one can obtain the numer­
ical tensor QfJ. V A . 

The polarization tensor II fJ.v A is a sum of matrix 
elements from two diagrams, which on account of charge 
symmetry differ by a sign and the substitution F fJ.V 
--FfJ. V' i.e., 

II"dU'I" F) =1", (U' I" F) -I .. , (U' I" -F) 

ie' 00 ds ds' ds" 
= SSS [e-;<>(F)Q (F) e-;<O(-F)Q ( F) I 

(2n)' (s+s'+s")' .,' - .,' - . , 

(18) 

It follows from this expression that when the external 
field is switched off the three-photon polarization opera­
tor vanishes. 

However, the matrix element of the separate three­
photon diagrams do not vanish when the field is switched 
off: 

I", (F=O)= L {a (ll'I") B.,I,'+b (U'I") ('I,I,'I,"-B"I'I") I, 
antisym (19) 

+c (U' I") [/. (l,I,' +1.1,' -B.,Il') -' 1,1' (B.,I,' -B"I.' +B,.z.') )}. 

It is antisymmetric with respect to the permutation of 
any pair of photons (Le., of the variables ZfJ., Z'v, l"A) 
and is determined by three invariant functions of the 
momenta: 

a (U'l") = ~S' du S'dV u'(A-'-1-1n A), 
4n' 

o 

b/\Il'IIl)=~S' dUS' dvu'v(1-u) (1-v)A-', 
2 2. 2 

Jt m (J 1I 

C(ll'III)=~S' dUS' dvu'v(i-v)'A-'; 
2n2.m2 o 0 

f 1" r 
A=1+ -:;- u'v(1-v)+ - u(l-u) (i-v)+ ,uv(1-u). 

m- m2 m 

(19') 

Of these b is symmetric with respect to any permutation 
of the arguments, and a is symmetric with respect to a 
permutation of the last two arguments. In Eq. (19') we 
have used the variables (22) and have carried out a 
regularization of the logarithmic divergence. 

Since the explicit expression of the tensor QfJ. VA is 
rather complicated it is more convenient to construct 
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the polarization operator directly in the representation 
(7) of the invariant functions cn1n2n3' For this purpose 
we write llfJ.VA = OfJ.O/ 0V{}AyllO/{3y and expand the 
Kronecker symbols in terms of the vectors (5): 

(20) 

o v{3 and O.>.y are expanded in terms of the same system 
of vectors, but constructed respectively out of the mo­
menta Z' and Z". Transversality implies 

and in the product of three 0 -symbols there remain 27 
terms which make up the sum (6). The coefficients 
cn1n2n3 appear then as contractions of the tensor lla{3y 
with the vectors La' L~, Ga , e,g., 

c",(ll'l") =II."L.L,·'L,··/LL"L··. 

As a result we obtain the following representation of the 
coefficients cn1n2n3 

±P I ' ,,_ ie3 SSRS ds ds' ds" _i¢l(I<') _i<l>(_Fl_ 
Cn,n,n, (.1 I )- (ZIT)' (8+S'+S,,),[e qnon,n,(F)±e qnon,n, ( F)], 

, (21) 

where qn1n2n3(F) denotes the contraction of the tensor 
QfJ.vA(F) with the vectors (5) for the state n1~n3, and 
the upper and lower signs correspond to positive and 
negative charge-conjugation parity of the functions 
cn n n' In the expressions oI>(F) and qn n n (F), which 

123 123 
are functions of the parameters L, L', L", Z2, 1'2, [112, 
p, T, a change of the sign of the field, F fJ.V - - F fJ. V sig­
nifies a change of sign only of p and T, cf. (8). 

Explicit expressions for the ten contractions qn n n ' 
which together with the phase oI>(F), cf. (21), determibe3 

the invariant functions cn n n ' are listed in the Appen-
dix. 1 2 3 

Going onto the mass shellZ2 = l'2 = ["2 = 0, it follows 
from the conservation law of four-momentum that the 
four-momenta of the photons become parallel. This 
means that p and T vanish (cf. also the identity (10». 
Then it can be seen from the equations of the Appendix 
that all qn1n2na vanish, with the exception of q120, where 
the second and last bracket survive, and q300, which re­
duces to the second terms in the first square bracket 
and in the last square bracket. Going over to dimension­
less integration variables 

8'+S" 
1]=m'(s+s'+s") , U= S+S'+s" , 

s' 
v= S'+8" , 

we obtain exactly the results (19)-(24) of I. 

(22) 

It should be remarked that as one of the L, L' or L" 
tends to zero, some terms in qn qn qn (usually the first 

1 2 3 

ones written in the curly brackets of the equations listed 
in the Appendix), and together with these also cn1n2n3' 
tend to infinity. However the tensor II fJ.v.>. remains fin­
ite' since the increasing terms in the different polariza­
tion states cn1n2n3 compensate one another. Such a 
phenomenon arises also in the decompOSition of the 
Kronecker delta with respect to the vectors, where the 
separate terms tend to infinity for L - 0, whereas 0 fJ.a 
remains, of course, finite. Thus, for L - 0 both the 
coefficient-functions c n n n and their integrands qn n n 123 123 
are related among themselves. For example, 
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[l,q".( ll'I") -I,q".( 1"1'/) - -y-I'q,OI (l"I'/) ]L_.=O. (23) 

For L - 0 there appear six such relations; they are 
useful for a control of the calculations. 

1 SMALL VALUES OF THE PARAMETERS 
The structure of the expressions given in the Appen­

dix simplifies considerably and becomes more transpar­
ent in the lowest approximation in K and in the virtuality 
of the photons, in other words, when all " are small 
compared to one and when the squares of the photon 
four-momenta are small compared to m2 • This approxi­
mation is also interesting from the experimental point 
of view. In this limit one can integrate the expressions 
(21) for the coefficient-functions by making the substitu­
tion (22) in the triple integral. We then obtain up to 
terms of the order K and (l2/m2)2 (according to (10) the 
quantities p2 and ~ are also small, of the order l2K2): 

. e3m { /'x+I"x'+I'''x'' 2p' I 1 1 1 ) c".=-- - + __ +_+_ 
9n' 20m' 5m' x x' x" 

- +---- I' -----p' p2 [( x' x"+x''') 
70m16xx'x" 56m 1oxx'x" 5 2 

+1" - ---- +1'" _ - ---( x" x'''+x' ) ( x'" x'+x")]} 
.~? 5 2 ' 

c",=!2!!..p1-1'" (X-X' _p'(x-x') 
45n2 m!J x" 28m4 xx'x" 

_ 51'''(x-x')-I'(11x+14x')+I''(11x'+14x) ) 

112m'x" 

c",=- --+--_ e3m [ 7p' .'x "t'P' __ P'_(_12 +l":t-l"') 
:In' 45m'x <lUm'x'x" ::I15m'·xx'x" 84m'·x::l lU 

/'x 1"(3X-16x")+I'''(3X-16X')] 
- ',Um- + 30Um- ' 

e3m ,1-1""( 7x+4x' p2(X-X'») 
CU1= 180n:l~ --:;;:;--- 7m8xx'x" , 

e'm '1'/"1'" ( P'(3x"+3X"'-2X') 
c1oz= 45112 ----;;;;- x+ 28m8",,,,' x" ' 

e3m ,p { 7 ( 1 1 1) "t' c",=-.-.- - -+-+_ 
tBrt'! mt; 5 x x' x" 35ml:lxx'x" 

+ 1 ----- +1 -----1 [ , (X' x"+x''') " (x" x'''+x') 
28m'xx'x" 5 2 , 5 2 

( x'" x'+x" )]} +1''' 5---2- , 

e3 m p1-1'" (X-X' ,;'(x-x') C,,,= ----- 7 --+ -::--:-...,.....;;-
180n:2 m5 x" 7m8xx'x" 

_ 51'''(''-''')-I'(11''+14''')+I''(11x'+14X») 
28m',," 

e3m ,;pYI"I''' 3,,"+3,,'''-2,,' 
C012= 1260n2 mlo xx'x" 

e'm p1~ (x-x') (x '-x") (x"-x) 
C003= 420n2 m' xx'x" 

(24) 

A distinguishing feature of the expressions obtained here 
is their linearity with respect to the weak external field 
F. This property is exhibited by the real part of the off­
mass-shell polarization operator for F - O. On the 
mass shell the terms which are linear in the external 
field will be absent and the expansion of the real part of 
the polarization operator for K - 1 starts with cubic 
terms [1-4] , since the quadratic ones are absent owing 
to charge-conjugation selection rules. The physical 
meaning of this property of the one-shell polarization 
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operator is discussed at the end of I, where it is also 
pOinted out that the imaginary parts of the functions 
cn n n behave for K - 0 like exp(-l/K), and thus cannot· 
be1eipanded in a perturbation theory series. In general, 
the point" = 0 is an essential singularity for the polar­
ization operator, so that the expansion of the real part 
with respect to the field is an asymptotic expansion. 

As we already recalled, the polarization operator off 
the mass shell describes the scattering of a photon on a 
Coulomb center in an intense field. In this case two pho­
tons are realla = l'2 = 0, and one is virtual, with l"2 > O. 
If the three-momenta 1 and I' of the incident and scat­
tered photon are coplanar with Hand Ex H the polariza­
tion states 1/!201, 1/1021, I/!OO3, 1/1210, 1/1030, 1/!012 are absent. If, 
however, the momenta I and I' are coplanar with E and 
E x H, then the states 1/1111, l/J210, 1/1030, 1/1012 are absent. 
These selection rules follow directly from the vanish­
ing of the invariants p or T, which in a special co­
ordinate system have the form 

p=~F(I,'L-L'I,), ,;=-eF(l,'L-L'I,). (25) 

We stress that these selection rules have a general 
character, not related to the approximation made in this 
section, and follow from considerations of charge- and 
space-parity (cf. Sec. 2) and the expressions (24) are 
only an intuitive illustration thereof. 

4. SCALE INVARIANCE 
Let us consider the polarization operator in the limit 

of high energies or strong fieldS K ~ 1, which is equiva­
lent to going to the limit of an infinitesimal electron 
mass m2 - O. For this purpose it is conveni~nt to re­
place the proper times by the dimensionless integration 
variables 

s' +s" s' I '" 26) U=--- V=-- z=L"(s+s +s ), ( s+s,. +s" 1 $' +s" , . 

which differ from (22) by the use of L213 instead of m2 

for making time dimensionless. Then, the polarization 
operator (more precisely, its invariant functions cnlll2n3) 
is naturally expressed in terms of six independent 
dimensionless invariant parameters4 ) 

L L' I' I" I'" p,; (27) 
X= m3' 6=-£, L';,' Lila' L'h' L'I, 'L./s' 

where the electron mass enters only into K. 

The dependence of the polarization operator on K is 
such that the limit m - 0 exists and is different from 
zero. This can be seen from the concrete representa­
tion 

ie3L-2/, i t 00 

II .. 1 = -(-)-, S udu S dv S dz[e-'<O'P)Q.vl(F)-e-'<O'-P'Q"l(_F)], (28) 
21to 00 

where the phase has the form 

tll= (,,-'/,+).,) z+oz'+ooz'/3, 
r l'l l"1 

).,=y.i;u'v(1-v)+ L'/' u(1-u) (1-v)+:u;;-u(1-u)v, 
(29) 

0=2u'(1-u)v(1-v) :." ' 

oo=u'{[v (1-uv) -8 (1-u) 1'+48u(1-u) v(1-v) '}, 

and the tensor QjJ.IIA is defined by Eqs. (18) and (21). 
The phase q, depends on m only through the additive 
parameter K-213 , which vanishes in the limit m = 0, 
whereas q, remains different from zero and finite. This 
is also valid on the mass shell, when A = a = 0 and the 
phase retains only the terms cubic in z. Similarly the 
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tensor QIlIl>' depends on m only through the additive 
parameter K-2/3 which vanishes in the limit m = 0 (cf. 
the Appendix). As a result of this, in the limit m = 0 the 
functions cn1nZn3 depend nontrivially only on the five in­
variant parameters: 

Cn,n,,,,! m_o=L't.cn,,,, ... (e, .p, I'lL''', l"IL'\ 1"'IL'I,), (30) 

and the dimensional parameter L1/3 fixes the scale of 
these functions (C is a dimensionless function). On the 
mass shell only the functions C300 and C120 are different 
from zero; these functions depend here only on one 
variable (J and have a constant ratio between their im­
aginary and real parts: 

.r(3L),'· (1) .-
Cn,n.n'=1'2n"'r 3" (H,1'3)gn",.n,(O). (31) 

The real functions g300 and guo are given in I and their 
graphs are represented there in Fig. 2. If the squares 
of the photon momenta are nonzero, but satisfy the con­
ditions 11zl, Il'zl, Il"zi « L z/3 then for K »1 the polar­
ization operator is again determined by two functions 
only, namely C300 and C120, cf. ~q. (31), since the other 
terms will be of the order IZ211 z/L1h compared with 
these. The corrections to Eq. (31) will be of the same 
order. 

One may call the disappearance of the dependence on 
the electron mass for K »1 scale invariance, since the 
mass of the electron is no longer the scale of the energy 
variables, but one of the energy variables itself, in our 
case L113. As was made clear In[6,7J, scale invariance 
is a property of the simplest vertex, describing the pho­
ton-electron interaction in an intense field at large 
energies, and is physically related to the fact that for 
K ~ 1 the interaction happens over a length ~m/eF de­
pending on the electron mass, whereas for K » 1 it hap­
pens over a length (m/eF)K 113 = L1131eF which does not 
depend on m. Whereas over the first length the work 
done by the field is of the order of m, over the second 
length it is of the order of L 113. In the proper coordinate 
frame this latter length is small compared to the 
Compton wavelength. Thus, the process builds up over 
a length determined by the field in the proper reference 
frame, and not by the characteristic dimensions of the 
electron. 

This paper shows that similar properties are exhibi­
ted by the more complicated interaction of three photons 
among themselves. 

The dimensions of the region where the three-photon 
interaction is formed follow directly from an estimate 
of the proper times which give the main contribution to 
the integral (28). It is obvious that all three proper times 
play the same role and therefore the effective values of 
u and v are ~ 1. We obtain the effective values of the 
variable z by an estimate for the case when 

I'lL';" l"IL''', l'''IL'I,~1. (32) 
Then OZ S;; >. S;; 1 and the effective values of z are de­
termined by the quantity K. If K « 1, the integral with 
respect to z can be estimated by means of the method of 
steepest descent. The saddle point Zo is in the complex 
plane, far from the real axis at a distance 

1m z,= ['" (X-'I,+,,) -cr'PI "'~X-'I,» (, 

which is much larger than the size of the saddle 

[21 Ill" (zo) 1-' l"'=[", (x-';'+,,) -cr21-"'~x"'« 1. 

Therefore, along the real axis the effective values of z 
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are near Re Zo in the interval AZ ~ 1m z~. This means 
that the effective proper times AS ~ L -2 3K-1I3 = miL. 
Since a change in the proper time is related to a change 
of the coordinate and the momentum by the relation 
dxllids = 2'TT1l (cf.[5J ), the spatial region of formation of 
the process is AX ~ Un/ L = m/eF. 

For K » 1 and the condition (32) values AZ - 1 will 
be important in the integral with respect to z, i.e., 
AS ~ L "'l.13 and the spatial region of formation is AX 
~ LL "'l.13 = L 113/eF. 

It should be noted that the usual polarization operator 
of second rank does not exhibit scale invariance in an 
intense field. This operator has the structure 

II (I F) L.L. + L;L; ( Ii, ) 
.' " =n,---u n'-V-+n,\ 6 •• --l,- (33) 

and is characterized by three invariant functions 'TT 1,2,3, 
depending on K and l2/m2• utilizing for these functions 
the representation given in [8J it is easy to see that for 
K » 1 or m - 0 the first two functions become scale 
invariant5) : 

2aL'I. S- 2v+1 =F3 I' 
n'.2=~. dv v'''[v(v-4) p/(!;V-"'), 6=L'I, ' (34) 

whereas the third one does not have this property: 

4al'- dv [ I'] 
n,= ----;-S v'[v(v-4) ]". I, (!;V-'I,) -In m'v ' , (35) 

but vanishes on the mass shell. The logarithmic diver­
gence of 'TT3 for mZ - 0 is due to the vacuum part of the 
polarization operator. The field part (which vanishes 
when the field is switched off) is scale invariant. In this 
sense the properties of the polarization operators of the 
second and third ranks are Similar, since the operator 
IT Ill) A does not have a vacuum part on account of the 
Furry theorem, but its individual constituents are scale 
invariant. 

5. ON THE INFLUENCE OF THE PHOTON MASS ON 
THE PROBABILITY OF PHOTON SPLITTING 

In the papers of Adler et al. [Z ,3J polarization selec­
tion rules have been derived for the splitting of photons 
which propagate through a magnetic field and have ener­
gies below the pair production threshold, W < 2m. We 
would like to pOint out that for photons in a crossed field 
(as well as in a magnetic field but at energies larger 
than the pair production threshold) these rules are, in 
general, not valid, but the mass which the photons ac­
quire influences the splitting probability. We recall that 
the polarization selection rules appear when one con­
siders the four-dimensional delta function 0 ([' + I" - [) 
contained in the amplitude for the splitting of the photon 
of momentum [ into two photons of momenta [' and [". 
For massless photons the argument of this delta function 
vanishes only for collinear photons, i.e., just on the 
boundary of the physical region of variation of the varia­
bles. Therefore in the integration over the final states 
there appears an indeterminacy as to whether the delta 
function has "fired" or not. In order to remove this in­
determinacy the authors of[Z ,3J have taken into account 
the fact that photons in an external field acquire a small 
"mass," depending on the polarization of the photon. For 
some polarization channels the argument in the delta 
function does not vanish at all in the physical region of 
variation of the variables, and these channels are for­
bidden. 

V. O. Papanyan and V. I. Ritus 883 



In the crossed field the photon mass has always a 
negative imaginary part, which for K ~ 1 is of the order 
of the real part. The damped photon :wave is (approxi­
mately6» described by the function e1lx where in a spec­
ial coordinate system the four-vector 1 is characterized 
by three independent real components h, 12, L and its 
complex square l2 = -lli(K), which depends only on K 
(i.e., in the special reference frame, depends only on L 
and the field F) and, in addition, on the polarization of 
the photons relative to the field (the subscript i, which 
will be understood in the sequel), cf.[8,9]. Using the co­
ordinates 7) x_ = Xo - X3, x+ = (xo + x3)/2, one can repre­
sent the photon wave in the form 

eil'=exp {i (I,x, +I,x,-Lx+ -I+x_) }, 

where the complex Il 2 enters only in the component 

1+= (1,+1,)/2= (~'+I,'+I,')/2L, 

(36) 

(37) 

so that the damping goes in the direction of increasing 
x_. 

Owing to the complex character of the l+-components 
the splitting amplitude will no longer contain 
(21ll6 (1' + 1" -l) but (for sufficiently large size of the 
field) 

(2,,;)'6(1 '+1 "-I )6(1 '+1 "-I )6(L'+L"-q , (38) 
1 t t 2 2 2 Z_. '-+l'.;--[+ 

The splitting probability per unit volume and unit time, 
after integration over the final states8), takes the form 

w- n_ S dl.'dl,'dL' lei' 
- 16LL_ (2,,;)'1-'L" ~'+l'/4' (39) 

where in the right hand side we have used the notation 

~=ne (1:'+1:"-1+), 1/2=Im (1:'+1:"-1+) 

and have assumed the conservation law 1:,2,_ 

= (l-l')1,2 ,_. In addition, for the 4-volume in which the 
process occurs, we have used the relation VT = L1L2L 
= L1L2L+L.., denoting by L+ and L_ the intervals of 
variation of the coordinates x+ and x_. 

The probability of splitting and the functions c, ~, y 
in (39) refer to a specific polarization channel, which is 
uniquely characterized by the index n1n2n3 and the order­
ing of the momenta l, l', and l" according to Eq. (7). 
Thus to the channel L - L*'L*" corresponds c12o(-ll'l"), 
and to the channel L* - L'L*" corresponds c12o(l' -U"). 

We note that 

...:L ... Im (I "+1'" -I ) =_ ( 1m ~2 + Im~" + 1m ~". ) > 
2 + + + 2L 2L' 2L" 0 (40) 

is always positive, since it is the sum of the half-widths 
for the damping of photons. The quantity {3 can be repre­
sented in the form (compare with the left-hand side of 
(10» 

(LI.'-L'I,) ,+ (LI,'-I-'I,) , Re~" Re~'" Ref.L' 
p=1 2LL'L" +~m'., ~m'n=2L'"+ 21-" -u:::-' 

(41) 

from where it can be seen that for fixed L and l~ and 
other variables changing, {3 varies in the interval {3min 
::s {3 < co, attaining a maximum value {3 = {3min at the 
collinearity point 

1,'/I,=I,'!I,=L'/L. (42) 

ThuS, the function ({32 + y21 4fl describes the natural 
form of the spectral distribution with respect to l;',2 and 
has an absolute maximum for {3 = 0, situated either 
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within the physical region or outside it, depending on 
the sign of the shift i3m in S O. In the latter situation the 
physical distribution attains a maximum at the boundary 
{3 = {3min; for K ;?: 1 this value is of the order of the ab­
solute maximum, since {3min ~ y. 

For the fundamental polarization channels L - L'L", 
L - L*'L*", L* - L'L*", L* - L*'L" the polarization 
operator in (39) can be taken on the mass shelll2 = l,2 
= l,,2 = O. The integration over l~ and l~ can be carried 
out explicitly and choosing L_ = 11 y (the damping length 
in x) for the correct definition of the differential proba­
bility per unit volume and unit time, we obtain: 

w= ~S'de t 2~mln lei' (43) 
161-, arcc g -,,(-2n" 

The distribution in e = l~/L depends on radiative effects, 
owing to the factor arc cot(2 (3min/y), i.e., depends on 
the real and imaginary parts of the photon masses, 
which can thus be measured. Although for some polar­
ization channels we have {3min > 0, i.e., the distribution 
with respect to 1 ~ ,2 is displaced into the unphysical reg­
ion, there is no selection rule forbidding these channels, 
since for K ~ 1 the shift is of the order of the width of 
the distribution, i3min ~ y. For a shift deep into the un­
physical region ({3min < 0, I {3minl »y), Eq. (43) goes 
over into the expression (30) of L The ratio 2 {3min Iy for 
different polarization channels can be found from the 
graphs oi[9]. 

If in distinction from the case considered here the 
size of the region occupied by the field is small com­
pared to the damping length L..y « 1 (but is, of course, 
large compared to the formation length), then the natural 
lineshape ({32 + y21 4fl in (39) is replaced by the function 
2{3-2(1- cos (3L..), which behaves like 21fL_6({3), but with 
a width ~ L~l much larger than the natural line width y • 
If this width is large compared to the shift L_ (3min « 1 
only half of this delta function operates in the integration 
with respect to 1~ 2 and there arises Eq. (43), with 
coC1(2{3minly) replaced by 1f/2. Again there are no 
interdictions on the polarization channels. 

APPENDIX 

Here we list the expliCit expressions for the ten con­
tractions qn n n3 which together with the phase 4>(F), cf. 
(21), determlie the invariant functions cnln2n3: 

p'(HiTj-ip1.) L' L" L'" 
q",= LL'L"ss's" [p( ~+7t'+ s"t" ) 

+LL'L,,(LW +L'W'+L"W")]+ ill' 
t I' t" LL' L" ss' s" 

X {!!J!.....+P2(L·L"C+L"LC·+LL'c") + ~ [ ~ (~+ I"L" +I"'L''') 
SS· s" 3 P S s' s" 

a d,' a" ]} -L"L'''T -L"'L' I: -L'L"-,:;- -2LL'L" (Lb+L'b' +L"b") 

.~' L' L" L" L 
+_1_{12 [s(1-W) (-+-) -4£] +1'- [s'(1-W') (-+ -) -4L'] 
~ 2s$' $" t" t' t til 

+1"- [s" (1-w") (~+ L' ) -4L"] +~[L"L"a s"_s' 
I' t :1 t 

s-s" s' -s ]} +L'''La'--+L'L'a''--+LL'L''(k+k'+k'') 
t' t" , 

q21O(U'I")=- -rp(1+iTj) (HL) + i-rp' [~ 
L" ss' S" ss' LLf L" ss' s" SS'S" 

A l'll 
+LL' C~:T+V) -p(LL'c"+L·L"d,,· .. +L"Ld .... ,,)-

_ LL' (LL' ~+L'L"h .+L"Lh. )] :1 (' 1/1 .& $ , 
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'G"~' L L' L" L 
q'Ol(1l'l',)=_I __ {(i-'n+~t.+2~p) (-, ---)+1'(---) 

L" 8S'S" 'J l" s't' st s" s 

+1,,(L' _£) +~L(L" s'-s +L-L') -~[L(£-~) 
s' s' LL' 5S' S". s" LL' s" s 

( s" +s-s' (s' -s") (3s-s' -S"») L' (L' L") 
x 2L~-+L' ss's" + 7--;;:-

X(2L' s'+s"-s +L (s-s") (3s'-s"-s) )] +LL'L" s'-s (2+5w") 
Sf s" ss'sft 3 

~ L L' L'L" ss' s" 
--(-- -) [LL'a"+--(4s-2s'-7S" -8-+5-) 

3 s Sf t . S" s" 
L"L ,. 2 

+-1'-( 4s'-2s-7s" -8 s;" +5~;;)]} , 
(1l'1")=- p~(Hi1]) (H-P ) +L.[L' (~+~) 

q120 Lss's" s's", 8S'S". t" ss' 

+L" (~+_S_' ) _. (L' ~+L" ~)] +~r 1" [L~(1-W') 
t' 8" S '11 til t' 28S'S"\ tN2 

+L" (4+ s-s"-sw' + sw, " )] +1"'[L~(1-W") 
s' t" t" 

+L' (4+ s-s'-sw" +~ )]-t. [L' (~+s" -s'+sw') 
s" t' t" 

+L" (~+ ,_ ;,+sw" )]}+~{_1_, _[ 4p't' +p'L'L"r 
t' S S ,88'S"! LL'L" ss's" 

t. I" L'L" LL' 
+'t'L(L'd,,,,,-+L" d ... ,,) +pL'L" (<< +~ -----:3t P-3r- g.-." 

_ L~:' g.". )]+LL'L" [(2+W)'+ s'~" C'-;" )']++(~: -~~) 
2+w"2+w' 

x [L'L" (S" -s')p+LL'ss"s" --+L" LSS'S"'--]}. t fl;J t'3' 

iG" 'tP' {2P ( " s' -S ) [' , qu,(tI't")= , ,,' --" L -,-, -+L-L' +L -LL d." .. -
LL L ss s SS S S 

+L'L" (~+~+~-~) +2£" LS"~S--:s']}, 
s - '5 tt tss S st 

ll'l" - 2iG'G"p' (..!!...-_£) (L S'-S" -L'+L") 
q",( )- LL'L"ss's" s' s" s 

X[+::-+L(~-£-~)] , 
. 58 S ~ S 

't~2 (1 +i1]-i~t.) L' L" L '" ) i'tp' { 4,;' 
q = (-+--+-- +---- --

OJ' LL'L"ss's" st s't' s"t" LL'L"8S'S" ss's" 

+ ~ (l'U + I"L" + 1"'L"') +p(LL'r" +L' L"r+L" Lr') 
p s s' s" 

2 3 3 ' 3W") 
- ;) LL'L"[i(b+-f-)+L'(b'+7-)+L"(b"+7 ] 

-~(L'L"~+L"L'''~+L'''UL)\ 
3 t" t t' J 

, " G" p'(Hi1]-ipt.} L' L) iG" p' { 2't' 
q'21 (II I ) = L" ss' s " (-;t - --.;;tT + L" S8' s" LL' ss' s " 

X(L" 8'-8 +L-L')+!- (£_~)+.:.:.(~_£) 
, S" P s" s P s' S" 

+p[~ (~+ S"-S+S') _ L' (~+ S-S'+S")] +~ (~_!!,) 
t' S' P t s ~ 3 S s 

. (L'L" ,w+2 + L"L ,w' +2 _ LL' If) + LL'L" s-s' (w" -'-2) } 
\ ss t' ss t" p 3p , 

(U'l")= 2iG'G"'tp' '(~-£)(L s'-cs" -L'+L") 
qrH2 LL'L 1/ ss' s fI S' s" s ' 
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4iGG'G"p' L L' L' L" L" L 
q003=- LL'L" Ss's" (~--;;) (-;;-7 )(-;;:-- -;-). 

Here we have used the notations: 
l2 l'2 11f2 8S'S" 

t.=-+-+-
S Sf S'" p= S+5+S" , 1]=m'(S+S'+8"), 

~=~+~ 8'+SII 8 2 

W=-s -, a= s's,,(3w'-4w+4)' t S' S'" 

3 28 (s'-s")' 2 '(S-S'-8")' 
b= - - --+ --- c= --+ -'------;---::--'--

S s's" 5 2t' SiS" 8S'S N t 

d _ ,,= (S'+S")'(8" -$'-28)+S'(8" -s') 
". s(s's")' ' 

5$" +6$ $'+$"+$'" 
g,-,"=7+w+--$,-+2 S58" 

h ,=- 1-0",+7", +---+2 ---1 (' ,,58-65" S'+8"+8"') 12$ 
U t s' ss's " s's /I ! 

S s' . S2 s'':. SS' S""}. 

k=3-12 -;;--2~ -3 7' -4 ~ +4~ -2-;;;-, 

$' 

p= s,s,,<3w'+8w+4) , 
2 (s+ .. ' + .. ")' 

r= s s" + 5S'S" t 

J)In the sequel we use units with h = c = I, '" = e2/41T = 1/137, and the 
notationsiM = (I, iio), il' =i-I -ioio', F* = (i/2)&l1vAOFAO is the tensor 
dual to F I1V' 

2)The noncovariant notation always refers to a special coordinate system 
with the axes 1, 2, and 3 along E, H, and EX H, respectively;t =10 -i3 , 

F = E = H is the magnitude of the field in this system, 
3)In I the absence of the states 1/1201, 1/1021, and 1/1003 was asserted 

erroneously; this did not influence the results obtained there, since 
that paper was dedicated to obtaining the polarization operator on the 
mass shell where only 1/1 300 and 1/1 120 are nonzero, 

4)Eq. (10) relates the latter two parameters to the four preceding ones 
and are therefore equivalent to one independent parameter, e. g., the 
angle 1/1, according to the equations p = (p2 + r2 )1/2 cos 1/1, r = (p2 + 
r2)1/2 sin 1/1. 

5)The definition and properties of the special function fez) can be found 
inls ] ; they are not essential here. 
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