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The detection of gravitational waves with the aid of electromagnetic resonators and waveguides is 
considered. The changes produced in the electromagnetic field of a resonator by passage of a 
gravitational wave are calculated, optimal methods of gravitational-wave detection are indicated, and 
the minimal observable gravitational-wave fluxes are estimated. 

1. INTRODUCTION 

The detection of gravitational waves (GW) is con­
nected with conversion of their energy into other forms 
or with their action on other types of motion. 

In the laboratory generation and detection problems 
it is possible to generate GW with a rigorously deter­
mined frequency and with a known phase. This advan­
tage is fully utilized in resonant reception of GW. It 
is therefore natural to use as the receiver a system 
having a known frequency (or set of frequencies) and to 
consider the resonant oscillations excluSively. To re­
ceive high-frequency waves it is natural to attempt to 
employ electromagnetic (EM) oscillations in the reso­
nator or in the waveguide. For low frequencies, on the 
contrary, mechanical systems are more convenient[1-3l. 

Thus, we consider a resonator in which a set of 
weakly damped electromagnetic oscillations can exist: 

En(x, t}-e'""En(x}, 

Bn (x, t) -e'""Bn (x), 
( 1) 

where En and Bn are the intensities of the electric and 
magnetic fields. An arbitrary electromagnetic field can 
be represented in the form 

A=~an(t}An(x}, (2) 

where A stands for E (or B). 

For an(t) in the absence of GW, the following equa­
tions hold in an ideal resonator: 

d'anldt'+wn'an=O. (3) 

The action of GW, as will be shown later on, intermixes 
different oscillations: 

(4) 

where h=hoeU2t (dimensionless correction to the metric), 
ho is the GW amplitude, and n is its frequency. The 
coefficients Cnm depend significantly on the form of 
the resonator and in certain cases (from symmetry 
considerations, etc.) we have Cmn=O, but the maximum 
value is Cnm :::: r 2/>..2 ,where r is the dimension of the 
resonator and >.. is the length of the GWl) . 

Obviously, for purposes of resonant reception of 
gravitational waves it suffices to consider a pair of 
oscillations with indices m and n such that 

and the right-hand side of the equation is resonant: 

d'lan + r ... 2a =r.-\ 2b e iwnt b h dt' ~n n ~n n, n - ,am. 

Then the additional amplitude a~) due to the action of 
the GW increases linearly with time (gravitational­
electromagnetic resonance): 
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(5) 

(6) 

(7) 

This formula is the basis of the entire subsequent analy­
sis, and includes the following different cases: 

1. The initial amplitude of the n-th oscillation is 
equal to zero, 

(8) 

the n-th oscillation is generated, and the energy of the 
n-th oscillation (and the number of quanta of this oscil­
lation) are proportional to e. Since the energy of the 
GW passing through the resonator is proportional to t, 
the coefficient a for the conversion of the GW energy 
into the energy of an electromagnetic wave (EMW) in 
the resonator is proportional to t and its order of 
magnitude is 

(9) 

where E2 + B2 is the energy density of the m-th oscilla­
tion or of the constant field. 

2. The initial amplitude ~) is not equal to zero; by 
virtue of the linearity of the problem, the amplitudes 
are additive 

an (t) =a~" +a~t) . (10) 

Depending on the phase relations, we obtain here 
either (a) a change in the oscillation energy under the 
influence of the GW and 

(11) 

where Em and En are the energies of the oscillations 
with frequencies Wm and Wn, or (b) a change in the 
phase (with the phase of a~l) shifted relative to a~) by 
7T/2) and 

( 12) 

Obviously, all the formulas are valid only at t oS T, 

where T is the characteristic damping time of the oscil­
lations in the resonator as a result of the losses. It is 
precisely T which limits the growth of the conversion 
coefficient a. Allowance for the finite Q of the resona­
tor leads to a replacement of t at t» T by Q/ w. 

When comparing the variants 1 and 2, it must be 
borne in mind that although in the former case the ef­
fect is quadratic and in the latter it is linear in the 
s mall amplitude h of the GW, the advantage of the 
second variant is illusory: in the first variant a small 
El is obtained without a background, and in the second 
a large ~En is obtained against a background of large 
E~) and large fluctuations of E~). Specific estimates of 
the value of the noise are given below. In practice, the 
first variant is preferable, and if it results in unaccep-
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table characteristics (required dimensions, number of 
tests, etc.), then the second variant will likewise not do. 

Different cases are also classified in accordance 
with the character of the field that is transformed under 
the influence of the GW into electromagnetic oscilla­
tions. We note two interesting cases: 

1. The case m = 0: transformation of a static time­
independent electric or magnetic field into oscillations. 
Then 

The advantages of this method are the absence of an 
alternating background and the absence of heating of 
the resonator by the m-th oscillation. 

(13) 

The maximal magnetic field that can be produced in 
a resonator is larger than the maximal electric field 
(105 G, which is equivalent to 3X 107 V/cm) , but the mag­
netic field nevertheless increases the high-frequency 
losses and decreases T even in those cases when the 
superconductivity is not destroyed. 

2. The case m = n, Wn = 20 - parametric resonance; 
the formulas become Simpler and we are dealing with 
only one type of OSCillation, in which the energy or the 
phase changes under the influence of the GW. Formulas 
(11)-( 12) take the form 

change of the frequency of the waves making up the 
packet is proportional to the change of the length of 
the packet itself. On the other hand, the relative change 
~E: IE: of the energy of the electromagnetic wave packet 
is equal to the relative change of the wave frequency. 
Consequently, the relative change of the packet energy is 

/1e!e=/1l!Z, 

where 1 is the length of the packet. 

(15) 

We begin with conSideration of a packet in a ring 
resonator, as proposed in [5]. Let the GW propagate 
along the z axis and let it be Circularly polarized. Then 
the metric in cylindrical coordinates takes the form 

ds'=c'dt'- (1 +h)dr-r' (1-h) dq>'-dz'+2rh'drdq>, (16) 

h=ho cos(Q (t-z) +2q», h'=ho sin(Q(t-z)+2q», 

where 0 is the frequency of the wave. 

Let a thin ring waveguide lie in the plane z = 0 and 
have a radius r = roo The waveguide dimension is chosen 
such that the light packet travels through the ring in the 
absence of a GW with a frequency 0 = 2c/ro. The equa­
tion of motion of any point of the packet in the waveguide 
is determined by the equality ds=O (dr=dz=O): 

dq> C[ 1 ] -=- 1+-hocos(2q>-Qt) • 
dt ro 2 

(17) 

de./ dt=e.11i I sin q>, dq>n/dt= llil cos q>. (14) In the zeroth approximation <P=<Po+ct/ro. The solution 
of (17) accurate to first-order terms is What remains in force, however, is everything said 

above concerning the difficulty of detecting the change of 
the energy or of the phase against the background of 
powerful initial oscillations, which introduce fluctuations, 
in comparison with detection of the production of 
quanta of an oscillation that is not excited in the initial 
state. 

The most important experiment is one in which the 
gravitational waves are also generated in the labora­
tory (and not in outer space). Estimates of the possi­
bility of laboratory generation of gravitational waves 
are given in [4] 

2. DETECTION OF GRAVITATIONAL WAVES WITH 
THE AID OF WAVE PACKETS 

Braginskil and Menskil[5] have proposed a method 
of detecting gravitational waves with the aid of a packet 
of electromagnetic waves moving in a circular resonator. 

We shall first discuss the detection of GW with the 
aid of wave packets, inasmuch as in this case the geo­
metrical-optics approximation is valid, the entire analy­
sis becomes lUCid, and there is no need to solve the 
wave equations. 

We shall then discuss the general case of arbitrary 
electromagnetic waves in resonators. 

When dealing with a gravitational-electromagnetic 
resonator, it is necessary to bear in mind that the 
speed of sound in the resonator material is much 
smaller than the speed of light, so that the reso­
nator walls move in the passing gravitational wave 
like free particles. This makes it particularly con­
venient to use a synchronous reference frame[6] in 
which the resonator walls are at rest. 

We consider an electromagnetic wave packet mov­
ing in a waveguide in the field of a gravitational wave. 
We consider a compact wave packet and therefore as­
sume the geometrical-optics approximation. The 
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q>=q>o+t/,Qt(1 +t/,ho cos 2q>o) , 

where <Po is the coordinate of the point at t = O. 

With the aid of (18) we obtain the relative change 
of the length of the packet along the <P coordinate: 

I) (/1q» / /1q>=t/ ,hom sin 2q>o. 

(18) 

(19) 

We emphasize that the change of the length of the packet 
is connected with the constant difference between the 
coordinate velocities of the motion along <P between the 
leading and trailing boundaries of the electromagnetic 
packet. 

With the aid of (18) we obtain for the change in the 
packet energy (we use the connection between ho and 
the energy flux density F in a gravitational wave): 

/1e/e=t/,hoQt sin 2q>o=t sin 2q>o Y64nGF/c'. (20) 

We consider now a packet in a straight waveguide with 
ideal mirrors at its ends. Assume that a plane gravita­
tional wave is incident on such a detector, and let the 
waveguide be located in a plane perpendicular to the 
wave vector of the GW. In this case the metric along 
the straight waveguide is a function of the time only 
(and is furthermore periodic), and does not depend on 
the coordinate along the waveguide. There is no dif­
ference between the coordinate velocities of motion of 
the leading and trailing boundaries of the electromag­
netic packet, as was the case in the circular waveguide, 
so that there is no systematic change in the length of 
the packet even in the case of synchronism, i.e., when 
the packet moves at double the frequency of the gravi­
tational wave. There are only periodic increases and 
decreases of the packet length at the frequency of the 
gravitational wave 2). If, however, the mirrors are not 
strictly perpendicular to the wave vector, but at a cer­
tain angle to it (but not parallel), then again a difference 
appears between the coordinate velocities of the lead­
ing and trailing ends of the electromagnetic packet. If 
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we now choose the waveguide length such that the packet 
returns to the ends of the waveguide in one and the same 
phase of the gravitational wave, then the length of the 
packet will vary systematically with time. The change 
of the length has numerically the same order of magni­
tude as in formula (19): 

6 (M)/AZ"'h,QtI2. (21) 

The numerical factor is here smaller than (but of the 
order of) unity. 

3. ELECTROMAGNETIC RESONATORS IN THE FIELD 
OF GRAVITATIONAL WAVES 

We turn now to registration of gravitational waves 
with the aid of electromagnetic resonators in cases when 
the geometrical-optics approximation no longer holds 3) . 

Let us examine the possibility of registering the 
gravitational wave with the aid of a ring coaxial wave­
guide, in which a monochromatic electromagnetic wave 
propagates. The Simplest problem is that of a circularly­
polarized gravitational wave propagating along the z 
axis, and a fundamental electromagnetic wave propagat­
ing through a thin ring waveguide of radius ro located 
in the plane z = 0 (similar results can also be obtained 
for a different polarization of the GW, and also for a 
standing EMW). The waveguide is coaxial and the out­
side and inside radii of its cross section are R2 and Rl . 
It is convenient to solve the problem in a "toroidal" 
coordinate system connected with the cylindrical co­
ordinate system by the equation 

r=r,+R cos e, z=R sin e, 
(22) 

The third coordinate is the azimuthal angle cP (O::S cp::s 21T). 
The condition that the waveguide be "thin" reduces to 
the requirement ro» ~. It is convenient to choose as 
the unperturbed EMW a fundamental wave in which the 
electric field is aligned with the radius of the torus (the 
component El = ER), while the magnetic field is directed 
along the concentric circles (the component H3 = Ho). In 
this case the resonant part of the perturbed field has 
only the same components. The unperturbed field of 
the n-th harmoniC can be described by one component 
of the four-vector-potential Ai: 

A,=A,=A,=O, 
2E, R, 

A, =-hQ R sin (n",+<p,), 

aA, R, 
E,=FOI=Tt=E'Rcos(n1jl+<p,), 

H,=F,,=oA,fo(r.<p) =E" 

where l/I=CP -nt/2. 

We seek the perturbations of the electromagnetic 
field by solving Maxwell's equations in curved space: 

a _ 
ax; l' -g F;"=O, 

(23) 

(24) 

where g is the determinant of the metric tensor and 
Fik is the electromagnetic tensor. The solutions should 
satisfy the usual boundary conditions on the walls of 
the resonator. Substitution in (24) of the metric of the 
gravitational wave (16) and of expressions (23) for the 
unperturbed electromagnetic wave leads to the follow­
ing conclusions: 

1. The resonant part of the perturbation can also 
be described only by the component Al of the four­
potential in the form 1iAl = (RjR)f(CP, t). 
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The form of the function f( cP, t) is determined by the 
growing solution of the equation 

1 a'f 1 o2f 
'-a' --, -a ,=O.5E,h,{(n+2)sin[(n+2)",+<p,] 
c t r, <p 

+(n-2)sin[ (n-2)1jl+<p,j), 
(25) 

where CP2 is the difference and CPI is the sum of the 
constant terms of the phase in (16) and (23), whence 

J=O.25E,th,{cos[ (n+2)1jl+<p,]+cos[ (n-2)1jl+<p,j). (26) 

Expression {26) shows that interaction of a gravita­
tional wave with a monochromatic electromagnetic wave 
of frequency nO/2 produces new quanta, of frequency 
(n ± 2)0/2, which were not present in the initial electro­
magnetic wave. This circumstance is of particular im­
portance for the detection of GW. 

Let us determine the energy content at in the pro­
duced new quanta of frequency (n + 2)0/2. 

Using (26), we obtain the intensity of the electric 
field and the energy density at the new frequency: 

R 
E=O,125E,h,tQ R' {(n+2)sin[ (n+2) 1jl+<p.] + (n-2) sin [ (n-2) "'+<p.j}, 

Ae (2±n)' (27) 
-10' =~(Qth')'=4(2±n)'nGt'Fc-'-(hQ)'. 

It is seen from the last formula that the effect is quad­
ratic in hQ. 

The quantity at can be linear in hQ only if the pro­
duced quanta have the same frequency as the initial 
quanta (in the unperturbed solution). This takes place 
for the fundamental harmoniC, when n = 1 (case of 
parametriC resonance). 

In this case we obtain for the perturbed component 
of the electric field 

E,=E, ~i[cOS(Ijl+<P,)+O.125th,Q sin (1jl+<p,) ] (28) 

and an analogous expreSSion for the intensity of the mag­
netic field (only the resonant terms are preserved!). 
Depending on the choice of the phase CP2 (in comparison 
with CPo), two different treatments of formula (28) are 
possible. 

1. By choosing CP2 = CPo + 1T/2, we obtain 

E,=(E,R,fR) (HO.125h,tQ) cos (Ijl+<p,), (29) 

which corresponds to an electromagnetic wave energy 
increment proportional to the time: 

Aele =O.125th,Q=t[ 16nGFlc'] "'-hQ. (30) 

2. By chOOSing CP2 = CPo, we are able to write (28) in 
the form 

E,=(E,R,IR)cos[ 1jl+(<p,+O.125th,Q) 1. (31) 

meaning that the phase shift of the electromagnetic wave 
is proportional to the time. 

The choice of the particular condition for registra­
tion of GW is determined by the experimental technique. 

Another variant, which makes At linear in he, is the 
case when electromagnetic waves of two frequencies, 
WI and W2=WI±0, are present in the waveguide, and the 
intenSity of one of the waves (for example WI) is large in 
comparison with the intensity of the other. In this situa­
tion, the interaction of the GW with the EMW of fre­
quency WI leads to the appearance of quanta of frequency 
W2, which can be registered when summed with the 
additional EMW of frequency W2. 
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In this case we obtain in place of (28) 

E,=Eo' ~' {cos (1jl,+q>o) +0.25 :,: koOl,tsin(1jl,+q>,) }, (32) 

where l/J2 = cP - W2t, the constants Eo and E~ determine 
the amplitudes of the electromagnetic waves of fre­
quency WI and W2, and the phases of the two unperturbed 
waves are chosen to be equal. For the energy yerturba­
tion at the frequency W2 we obtain (CP2 = CPo + 1T/2): 

~8 1 Eo Eo 
-=-koOl,t-. ---kQ 

8 2 Eo' Eo' ' 
(33) 

which differs from (30) by the factors W2 (in place of 0) 
and Eo/Eri' »l. 

The choice n = 0 leads to the problem of generation 
of EMW in the case of interaction of a gravitational 
wave with constant electric and magnetic fields. The 
electric field is directed along the radius of the torus 
and the magnetic field along concentric circles in the 
torus. As follows from (26), in this case there is pro­
duced an electromagnetic wave that coincides in fre­
quency with the gravitational wave and has an amplitude 
that increases with time: 

j=0.5E,tko cos (21jl+q>,). (34) 

The energy density of the electromagnetic wave in this 
problem is 

(35) 

and for the total energy of the electromagnetic wave in 
the resonator we obtain 

8,= (8nroR,Ft) (nGEo'R"R,-,tc-' In ;~), (36) 

where the first factor is equal to the total energy flux 
of the gravitational wave through the resonator, and the 
second is equal to the coefficient of conversion of GW 
energy into energy of the electromagnetic oscillations. 

Similar results can be obtained for rectangular reso­
nators. The numerical results for rectangular resona­
tors of finite dimensions are close to those given above 
(formulas (26)-(36». Thus, for a rectangular resonator 
with dimensions h, l2' and l3, in which a homogeneous 
magnetic field is produced along the x axis (the GW prop­
agates in the direction of the z axis), the perturbed 
vector potential can be expressed in the form 

( n 1,') n • 2npx . nnz A,=Hoz+Hohote --- [cosQt-(-1) cos (Qt-Ql,) ]sm--sm-· 
n'p' I,' I, 1, 

. (37) 
under the resonant condition n2=41T2p2Il~+n21T2Il~ (n and 
p are integers). For the total energy in the resonator 
(we take into account only terms that increase with 
time) we obtain 

Q 'n 1,' , n Ql, 
8=0.251,1,1, (2Hohot) (n'p' Z;Z) [ 1-(-1) cos-e-] 

n I' '[ Ql = (FSt) (8nGtHo'c-') (-~) 1-(-1)ncos-'1, 
rr,2p3 l/' c 

(38) 

(S = hl2 is the area of the resonator); formula (38) 
differs from (36) only in the structure factors contained 
in the brackets. 

4. DISCUSSION OF RESULTS 

We present numerical estimates of the minimal 
possible fluxes that we can hope to register with the 
aid of electromagnetic resonators at the present time 
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and in the nearest future. From the experimental point 
of view, as stated in the Introduction, the detection of 
GW by exciting electromagnetic oscillation modes in a 
resonator that were not present in the unperturbed elec­
tromagnetic field is probably most promising. The 
initial unperturbed field can be either alternating or 
constant. 

In the former case, we use formula (30) for the es­
timates. We rewrite this formula in the form 

~£ =eT (16nGF le')"'. (39) 

Here T is the maximum possible signal-accumulation 
time, equal to the damping time of the electromagnetic 
oscillation of given frequency in the resonator. 

From signal-observation theory (see, e.g., [ll]) , it is 
known that to observe the signal we must have 

(40) 

where k is Boltzmann's constant and T is the tempera­
ture. Formula (40) is valid at kT~tiw. From (39) and 
(40) we obtain 

F min~kTe' 14nGeT'. (41) 

According to the experimental data [12] and the relations 
given there between the resonator Q and the frequency 
or the temperature, we can expect to be able in the 
nearest future, in principle, to obtain values T:::: 3X 104 

sec and € '" 109 erg at a frequency w '" 108 sec-I. In this 
case, at kT '" tiw '" 10- 19 erg we obtain from (41) 

Fmin",,3 erg/sec. cm2 • (42) 

To estimate Fmin in the case of a constant unperturbed 
electric field in a ring resonator, we use formula (36). 
We put 0", 108 sec-I, and then the resonator radius is 
ro'" 3X 102 cm. We assume the outside and inside cross­
section radii of the waveguide to be R2 = 20 cm and RI 
'" 1 cm, respectively. We then put T= 3X 104 sec and 
Eo"" 3 X 107 vi cm, and obtain under the condition 
€~ =tiw 

(43) 

It appears that the foregoing estimates are optimal for 
the prospects of detecting gravitational waves with the 
aid of the Simplest electromagnetic resonators described 
in this article. 

A review of the present status of the problem of de­
tection of gravitational 'waves is also contained in a 
paper by Press and Thorne [3] 

Note added in proof (27 September 1973). We present 
estimates pertaining to the joint operation of an emitter 
(see [4]) and a detector, which was discussed in the 
present article. The wavelength is 100 cm, the radia­
tor measures 103 X 103 x 103 cm, the oscillation-energy 
density in the emitter is 1010 erg/ cm3 , corresponding 
to H = 3 X 105 G and E = 108 vi cm, producing a flux 
q = 1O-1l erg/ cm2 sec on an area 100 x 100 cm2. In a 
detector measuring 100x 100X 100 cm with a field 
Ho = 106 G, at Q = 1014 , so that T= 106 sec, the produc­
tion of one photon has a probability on the order of O.Ol. 
The thermal noise is equal to the Signal at T - 2 X 1O-3~. 

')The calculation of Cnm calls for the use of Maxwell's equations and the 
equations of wall motion; these calculations will be given later on. 

2)We emphasize that in vacuum without mirrors, the packet cannot ac­
quire energy systematically from a plane gravitational wave, since the 
velocities of both the electromagnetic wave and the gravitational wave 
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are identical and in the case of motion at an angle there is no synchro­
nism and there is no systematic change of 1. In vacuum, a gravitational 
wave is not transformed into an electromagnetic wave, for when the 
directions do not coincide it is impossible to satisfy the energy and mo­
mentum conservation laws, and if the waves travel in the same direction 
the matrix element of the transformation is equal to zero, owing to the 
difference between the tensor dimensionalities of the gravitational and 
electromagnetic waves. 

3)The conversion of a gravitational wave into an electromagnetic wave 
when the former passes through a constant magnetic (or electric field) 
is considered in [1-10]. 
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