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A broad range of electric and magnetic fields, in which the current is a universal function of the 
ratio of the electric field strength to the critical current, exists in type-II superconductors possessing 
weak inhomogeneities of the effective interaction between electrons, of the mean free path, and of the 
film thickness. The dependence of the critical current on magnetic fields strength and temperature in 
this region is determined. 

1. INTRODUCTION 

A periodic vortex structure arises in type- II super­
conductors in sufficiently strong magnetic fields. [i] In 
homogeneous superconductors, such a structure pos­
sesses a finite resistance which, in weak electric fields, 
does not depend on the value of the electric field. 
Inhomogeneities retard the motion of the vortex lattice, 
and this leads to a significant change in the volt-ampere 
characteristic. 

Inhomogeneities in a superconductor are considered 
below in a fashion similar to what was done previously 
by us:[2 ,3J the inter-electron interaction constant and 
the path length of the electrons are assumed to be ran­
dom functions of the coordinates. In a strong electric 
field, the effect of the inhomogeneities on the volt­
ampere characteristics is small and is expressed in 
terms of the pair correlation of these random functions. 
In magnetic fields that are small in comparison with 
Hc2' the lattice is a set of individual vortex filaments. 
The inhomogeneities in this case lead to random forces 
acting on the vortices.[3J The volt-ampere character­
istic in this case was found in the paper of Schmid and 
Hauger.[4J 

An interesting phenomenon was observed by Fiory, [5J 
who passed a high-frequency current through the super­
conducting film in addition to the constant current. 
Steps were observed in the volt-ampere characteristic 
in this case at electric field intensities related to the 
frequency by 27TEm = Bwna, where a is the constant of 
the vortex lattice and m and n are integers. At fields 
close to Hc2 these steps disappeared. The magnitude 
and shape of these steps in the case of weak magnetic 
fields were found by Schmid and Hauger. [4J The magni­
tude of these steps in an arbitrary magnetic field is 
found below. 

2. EQUATION OF MOTION OF THE 
VORTEX LATTICE 

We first consider the case in which the effective 
interaction between the electrons, g, is inhomogeneous. 
We write this relation in the form 

(1) 

The random quantity gl(r) is determined by the correla-
tion function . 

(2) 

The distance at which <p(r) falls off is determined by the 
size of the inhomogeneities and is assumed to be large 
in comparison with the interatomic distance (for exam­
pIe, the size of the crystallites or the dimensions of in­
clusions of another phase). 
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The equations which express the order parameter and 
the vector potential in terms of Green's functions have 
the form[6J 

g-'Ll,(r, t) '=F(r, t; r, t), g-'Ll2(r, t) ~F+(r, t; r, t), 
(3) 

ie ( f) a) , (4n)-'rotrotA~j~- -a' --a . G(r,t; r ,t). 
m r r r ..... r 

In a homogeneous superconductor without an electric 
field, the order parameter!!:. 1 = !!:.t = !!:. o(r) and the vector 
potential A o(r) do not depend on the time. Here I!!:. o(r)1 
and curl A o(r) are periodic functions of the coordinates, 
forming a lattice. In a weak electric field E and for 
weak inhomogeneities, the lattice moves as a whole, in 
zeroth approximation, with the velocity V = (E X B)B-2, 

which is a slowly changing function of the time and of 
the coordinates. We shall use adiabatic perturbation 
theory in order to derive equations for the averaged 
quantities which change slowly over the lattice constant. 

In the first approximation, the order parameter !!:. 
and the vector potential A have the form 

Ll'.2 (r, t) ~Ll':2 (r+u) e±2i·x, 

~ ~ h ~) 
A~A'(r+u)+_, -~--a A'(r+u), ar at t 

where u is a slowly changing function of the coordinates 
and of the time, and !!:. 0 and A 0 depend on the local value 
of the magnetic induction B as a parameter. If the mean 
current is small, then the magnetic induction depends 
slowly on the coordinates. We shall assume that the 
distances at which the magnetic induction changes sig­
nificantly are large in comparison not only with the 
dimensions of the cell, but also with the Significant dis­
tances at which the effect of the inhomogeneities is im­
portant. We can therefore find the mean induction B by 
averaging the local value of the magnetic field over the 
dimensions of the cell and over the inhomogeneities: 

B~«H», H~rotA,(r+u), 

rot H~4n (j, (r+u)+«j»), 
(5) 

where jo depends on B and is found from the static equa­
tions. Our problem is to find the dependence of «j» on 
the electric field. 

We substitute Eqs. (4) in the set of equations (3) and 
multiply this set on the left by 

(eii+Llo'(r+u), eii_Ll,(r+u), [H,(r+u)e])e-iq" 

where e is a unit vector in one of the two directions 
perpendicular to the direction of the induction Band 
0+ = a/or ± 2ieA. After this, the set (3) tran~orms into 
tile equation for the quantity Uq =. ju(r, t)e-lq' rd3r, 

iiu • L.,u/+ K •• -if-

=-\1 r d'rg.(r) (~ILl,(r+u) I') e-!q'-(2n)'Il.[«j»Bl., 
~ ar 

(6) 
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where II '" mpo/21T2 is the density of states on the Fermi 
surface. The last term in Eq. (6) arises from the fact 
that the mean transport current is taken into account in 
Eqs. (5) for the mean field. With this notation, no in­
creasing terms appear in the quantity u(r, t). 

. The coefficients LaW Kaf3 are found from the rela­
tlOns 

e.i>.~u~ = ~ d3r e-lq , (: :: ~:.)+ iJ (: :: ~:.); 
[He) [Hu) 

(7)* 

D '" 1" K. The operators 1" K can be found by lineariza­
tion of the set of equations of Gor' kov. and Maxwell with 
respect to small, slowly varying increment to the order 
parameter ~ and the vector potential A: 

(L + K :t )G;:)=o. (8) 

In the static case, the equations of Gor' kov and 
Maxwell can be obtained by minimizing the free energy 
F with respect to the order parameter ~ and the vector 
potential A. Therefore, the operator £ is equal to the 
second variational derivative of F with respect to ~ and 
A. On the other hand, for a slowly varying deformation 
u(r), the free energy is equal to 

6F.=+ J d'r{ (C I1-C .. ) ( :: )' +C .. (:;:)' +C" (00:·) '}. (9) 

where Cll , Cu, CGG are the elastic moduli. Near the 
transition temperature (Tc - T « Tc )' the expressions 
for the elastic moduli were found by Labusch[7] for an 
arbitrary magnetic field. Comparing expressions (7) and 
(9), we get for q that are small in comparison with the 
reciprocal lattice dimension 

L.o= (C I1 -C .. )g.q,+o., (C"q,'+C .. q.') . (10) 

The operator K has the form 

( 

"t.-'t .. ~ii~· 't.'~ii~, 
," ~·~·itA' '~'M~ K=- "" Ll, 't.-T. , 

2 0 ' 0 ' 
2ieD't. a; M ~', - 2ieD't'""7k" M~, 

2ieD't.~Molor ) 

-2ieD't.~'Molor ' 

4e'D[ HD (olfJr) Molor ] 

(11) 

in the case of a superconductor with a large concentra­
tion of magnetic impurities. Here D '" vltr/3 is the 
diffusion coefficient, T s the electron path time with spin 
flip. In the arbitrary case, the coefficient Kaf3 which 
enters into Eq. (6) can be expressed in terms of the 
conductivity of a superconductor without inhomogenei­
ties, in the mixed state. Without inhomogeneities, the 
quantity u does not depend on the coordinates, -au/at is 
equal to the velocity of motion of the lattice V, and Eq. 
(6) takes the form 

K •• V.=[«j})B] •. (12) 

Assuming the Hall angle to be small, we get 

(13) 

where (J is the conductivity of the superconductor in the­
mixed state . 

Returning to the coordinate representation in (6), we 
obtain, with account of Eqs. (10) and (13), 

- [(C..-C .. }~(~) +(c .. ~+c,,~)u] +aB'~ 
Of' Of' of" OZ' at 

=-,,(g.(r) 0: 1~.(r+u}I'>-[«j»B], (14) 
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where p is a two-dimensional vector in the plane per­
pendicular to the magnetic field and ( ... > denotes aver­
aging over the cell. 

We note that the partial derivative with respect to 
time au/at appears in Eq. (14), while the term of the 
form (au/at· a/ar)u is lacking. This is connected with the 
absence of Galilean invariance in the vortex lattice and 
will be important in the study of the step widths that de­
velop in the volt-ampere characteristics in a high­
frequency field. 

3. CONDUCTIVITY IN A CONSTANT FIELD 

It is convenient to separate the motion of the lattice 
as a whole (with mean velocity V '" -« au /at») in Eq. 
(14) and make the substitution 

u-u- JVdt. 

Averaging Eq. (14), we obtain an expression for the 
mean current 

The equation which expresses the deformation u in 
terms of gl, follows from Eqs. (14), (15): 

u(r,t}=-" S dt' S d'r'G(r-r',t-t'} 

.' 
x{(g.(r'}o: 1~.(r'+u-SVdt.)I') (16) 

-« g,(r.} 0:' 1 ~.(r,+u~ f V dt, ) I')} , 
where the Green's function G satisfies the equation 

- [(CI1-C")~ (!.!!..) + (c .. ~+c,,~) G] 
Of' Of' Of' OZ' . 

+oB' :~ =1\(t-t'}6(r-r'}. 
(17) 

Expanding the right side of Eq. (16) in a series in u 
and solving this equation by interaction, we get an ex­
pression for u in terms of gl' Substituting this expansion 
in Eq. (15), we obtain a representation in the form of a 
series of diagrams for the mean current: 

Here the straight line denotes the Green's function G, 
which is determined by Eq. (17); the wavy line denotes 
the correlation function qJ, which is determined by Eq. 
(2). To each vertex there corresponds a factor 

where n is the number of continuous lines emerging on 
the right from the vertex. A single continuous line en­
ters each vertex from the left except at the extreme 
left. 

We first consider the case in which the electric field 
and, consequently, the vector V, do not depend on the 
time. In this case, the correction to the current (to first 
order in qJ), which is shown by the first diagram, is 
equal to 

[j(t)B]= i;' ~J (:~~3 'P.I (1~1.2) I'K.K.' {[C"q,'+C"q.' 

+'oB'(K. V} ]-'+[Cl1q,'+C"q,'+ioB'(K. V~]-'}, 

where Kn are the vectors of the reciprocal lattice, 
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ltio(r) I' = 1: (Itil.')exp(iKnr), 

cpn= S d'rcp(r)exp(-iKnr), 

At small velocities V, the small q are imJ;X>rtant in 
the integral, 

C"q'-oB'Vla, (18) 

where O! is the linear dimension of the cell. Completing 
the integration, we get the following expressions: 

In the bulk sample: 

---------------------------

For the component of the current directed along the 
electric field, the important region of integration over q 
and q1 in the integral (22) is determined by the condition 
(18), so that this component of the current is equal in 
order of magnitude to j(2) ~ j~l/jo, where j(l) is deter­
mined by Eqs. (19), (20); jo = aE = uB x V. Thus, the ex­
pansion of the expression for the current density in a 
series in the inhomogeneity cp is an expansion in a 
parameter proportional to cplE for the film and cpE- li'2 

for the bulk sample. 

4. THE CRITICAL CURRENT 

x (Itil.') I'KnK.' (oB'1 (K.Y) I "') sign (Kn V), 

In accord with experiment, we shall assume that as 
(19) the electric field approaches zero, the current density 

tends to some fixed value jc. Then 

analytic calculations for a film of thickness d give 

[j"'B]= 16~~66 .EcpnK"Kn'l (Itil.') l'sign(KnV), (20) 
K" 

The sum over Kn in Eqs. (19), (20) can be found in 
the limiting cases of strong and weak fields. Near the 
critical field Hc2' the quantities I~ I~ falloff very rapidly 
with increase in IKn I and we may retain in the sums of 
(19), (20) only the terms with the smallest (nonzero) 
value 

1 Kn 1 =K=2 (2neB),"3-"', 

As a result we obtain for the film: 
'II' ( 2n) [j,1'B]= --cpkK' exp --:= < ltil ')2 (Cv cos(a-n/6) +etVHl sin (a-n/6) }, 

4dC.. )'3 

(21) 
and for the bulk sample: 

[j"'B]= 'II' (C,,_1+Cu_1)CPkK'(OB'VK)"'<ltil')'exp(- 2~) 
4nY2C.. )'3 

x{ev [sin'/'a+cos'lo(a-n/6) +cos'/'(a+n/6)] 

+etVHl [sin(a-n/6) (cos'" (a-n/6) +1/,(sin'" a+cos"'(a+n/6)) 
+1/,)'3 cos (a-n/6) (cos'" (a+n/6) -sin'" a) ]}, 

where O! is the angle between the directions of the veloc­
ity and the vector of the unit cell (0 ~ O! ~ 1T/3); 
ey, evx H are unit vectors along V and V x H, respec­
tively. 

In the other limiting case H « Hc2' the lattice repre­
sents a set of individual vortices. In this case, the ex­
pressions (19), (20) undergo transition into the formulas 
obtained in the work of Schmid and Hauger[4J if we 
represent the random force acting on the vortex in terms 
of the inhomogeneity of the effective interaction. r 3J 

It follows from Eqs. (19), (20), and (21) that the con­
ductivity depends on the direction of the electric field 
relative to the vectors of the elementary cell. The Hall 
conductivity vanishes at the extremal J;X>ints of the or­
dinary conductivity (O! = 0, O! = 1T/6). In the film, the Hall 
conductivity has a discontinuity at the point O! = o. 

All the diagrams given in the figure (except the first) 
give a correction to the current of second order in cp. 
Expanding the expressions (15), (16) to fourth order in 
gl, we obtain 

d' d' 
[j"lB] = i'll' .E S (:n);1 cpncpml (Itil.') 1'1 (ILil m') I'Kn 

11,IlI 

+IG:':, 12(G=~:'.-G=';)}, (22) 

G.:'t= (KnG.,.Km) , G".= S dt S d'rG(r,t)exp[-iqr-iK.vt], (23) 
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ii(E) =icr/(oE/i",), (24) 

where f(x) is some universal function, which is generally 
different for fields close to Hc2 and small in comparison 
with Hc2. The expressions (19), (20), (22) represent the 
first terms in the expansion of this function for large 
values of x. Comparison of j (1) with j 0 and j (2) with j (1) 

allow us to obtain an estimate for the value of the criti­
cal current and to make clear its dependence on the 
magnetic field and the temperature: 

, _ .. n (25) ! 20d~' B .E,p"Kn31<Itiln2)12 for the film 

Icr' 2 2 . 

B-1 { 'II -V ~ cp"K~'21 <I til,,') I'} for the bulk sample 
25G" C •• ~ 

We consider various limiting cases. If the size of the 
inhomogeneity rc is small in comparison with the size 
of the pair ~, then CPn depends weakly on Kn and the in­
homogeneities are characterized by a single parameter 
cpo ~ gir~. Estimating the sums over the vectors of the 
reciprocal lattice Kn in formulas (25), we obtain the 
following expressions for the critical current density: 

! e'll'cpo <I til'>' for the fl'lm 
60C"d1; . 

j",- B [ ev'cpo <I til'>' ]' (26) 
70C'6 -V c •• ~3/' for the bulk sample 

The elastic moduli C44, C66 in (26) have been found 
for various limiting cases in the papers of Labusch: [7J 

C .. =HBI4n, 

1 6~~' (4-t' exp (- i-), 
C,' - B [64neA2]-1, 

He' ,,'(2,,2 -1) ( B )' 
41t [1 + (2'" _ 1) ~l' 0,48 1 - He' ' 

where the induction B for the triangular lattice is con­
nected with the distance a between the vortices by the 
relation 

(28) 

In fields that are not close to Hc l' one can obtain an 
interpolation formula from Eqs. (26), (27) that gives the 
dependence of the critical current on the magnetic field 
and the temperature: . ! 10-1 ( He' (T)) CPoTe ~ for the film (29) 

jcr B vl"d Te - T 

-y-;;- He,ll.' cp2(~)3_T_e_ for the bulk sample' 
B3 0 vi" Te - T 

where jco is the temperature-dependent critical pair­
breaking current in zero magnetic field: 

j,0=[121'3neA'(TH(T)]-1, (3{) 
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If the dimensions of the inhomogeneities are larger than 
the dimension of the vortex ~, but much smaller than the 
linear dimension of the cell a then an additional factor 
In4(rc/~)(~/rc)1l appears in Eqs. (26), (29) for the bulk 
sample and ln2(rc/~)(~/rc)5 for the film. If the dimension 
of the inhomogeneities exceeds the linear dimension of 
the cell, then the critical current depends on the form 
of the inhomogeneity in a significant way. For smooth 
inhomogeneities, when the correlation function depends 
analytically on r2, the critical current falls off ex­
ponentially with increase in the parameter (rc/a). For 
inhomogeneities with a sharp edge, the fall of the crit­
ical current is power -law. 

Account of the inhomogeneity of the free path length 
leads to replacement of the correlation function cp by 

Cjl (r) -+Cjl (r) +b (1-TIT,)' [ <Z(r) Z (0) »1 <Z»'-1j. (31) 

The coefficient in Eq. (31) depends smoothly on the tem­
perature and the value of the magnetic field. For T close 
to Tc and H near Hc2' the coefficient b = 41T2/3. The in­
homogeneities in the film thickness lead to the addition 
of one more term to the correlation function: 

(1-TIT,)'[ <d(r) d(O) »1<d»'-11. 

Thus, the inhomogeneities of the effective interaction 
turn out to be very important for temperatures near 
critical. 

5. REGION OF APPLICABILITY 

Derivation of general formulas for the critical cur­
rent and the volt-ampere characteristic that do not de­
pend on the detailed form of the inhomogeneities is pos­
sible only for weak inhomogeneities. In this case, the 
lattice distortions are small and depend slowly on the 
coordinates even for small inhomogeneities. Equations 
(10), (14) are applicable if the important values of the 
momentum q, determined by the condition (18), are 
small in comparison with the reciprocal linear dimen­
sion of the cell. For currents of the order of the critical 
current, we get from (18) 

(32) 

Substituting expression (27) for C66 in the inequality 
(32) and expression (30) for the pair breaking current jco 
in fields that are not close to Hc 1> we obtain 

(33) 

If the correlation radius of the inhomogeneities rc is 
greater than the pair dimension ~, then the right side of 
(33) must be multiplied by 

~_t min{r" a}. 

It follows from (33) that, in fields of the order of the 
critical field Hc2' but not close to Hc2' expression (25) 
for the critical field is valid up to its maximum value, 
of the order of the critical pair-breaking field. In fields 
that are small in comparison with Hc2' condition (33) 
cannot be satisfied for sufficiently large inhomogenei­
ties. Here the interaction of the vortices with the in­
homogeneities is stronger than their interaction with one 
another. In this case, as was shown earlier, [3J the criti­
cal current of thin films depends weakly on the magnetic 
field. At the boundary of the region, which is determined 
by the inequality (33), the two expressions for the criti­
cal current of thin films are identical. 

The significant distances at which the inhomogenei­
ties deform the lattice are determined from the condi-
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tion (18). It was assumed above that the induction B 
changes little at these distances. For a current density 
of the order of the critical value, this condition leads to 
the additional restriction 

(34) 

At large values of the parameter K, the condition (34) is 
weaker than the condition (33) for fields not very close 
to Hc2' If the condition (34) is not satisfied, then the 
connection of the current with the induction turns out to 
be nonlocal. 

It was assumed above that the electric field is suffi­
ciently small so that effects which are nonlinear in the 
field do not need to be taken into account in a homogene­
ous superconductor. Estimation of these nonlinear 
effects, which are connected with heating of the super­
conductor and with the change in the electron distribution 
function, requires separate treatment. 

6. THE SUPERCONDUCTOR IN AN 
ALTERNATING FIELD 

Formulas (15), (16) permit us to find the current in a 
superconductor located in an alternating electric field. 
We shall consider the case in which there is, in addition 
to the constant field, also an alternating field with fre­
quency w: 

E(t) =[BV (t) j =[BVoj+[BV,lcos wt. (35) 

We substitute the expreSSion for V(t) from Eq. (35) in 
Eq. (16). Then, in first order in the inhomogeneities, we 
get, after expansion of lD.o(r -Va:. -V1 sinwt/wI 2 in a 
Fourier series in the time, 

u(q,t)= -iv .Egt(-K,+q) (1 11 1")Jn ( K~V' ) 
',n 

(36) 

xG_ L , _.K, exp[ -i(K,Vo+nw) t], 

where the Green's function GL q is determined by Eq. 
(23), and the index L = (Kl ' Vo)' + nw. Substituting this 
expression for u(q, t) in Eq. (15), we get 

[j")Bj=iv' .E J (~:~t. Cjlm I (1I1Im') I' Km 
n,nl,m 

( K..V,) ( KmVt) m,m 
xln -w- I., --w- GL ,. exp[-iw(n+n,)t], (37) 

L,=KmVo-n,w. 

It follows from (37) that the singularity in the Green's 
function G has been displaced from the pOint K' V 0 = 0 to 
the point 

Singularities appear in the average current at these 
same pOints. 

(38) 

Averaging expression (37) over the time and carrying 
out integration over the momenta q, we obtain the fol­
lowing expression for the current denSity in the film: 

[j't)Bj= 16~~" .ECjlmK..K..'I.' (~V, ) I (jl1[m') l'sign[K..Vo-nwj. 
m,n (39) 

Steps appear in the volt-ampere characteristic at volt­
ages satisfying the Josephson relation (38). The magni­
tude of these steps is proportional to the critical cur­
rent. In fields Hc 1 « H « Hc2, it falls off with the field 
as B-1• In fields Hc2 - H « Hc2' the step amplitude is 
slowly dependent on the value of the magnet.ic field as 
long as the condition (33) is satisfied. 

Such steps have been observed experimentally by 
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Fiory. [5J An explanation of this phenomenon that is 
physically equivalent to ours was given in the work of 
Schmid and Hauger.[4J Their results are applicable in 
the range of fields H «Hc2' Even in this region, there 
is a small difference between our results and the re­
sults of Schmid and Hauger[4J that is connected with the 
determination of the width of the steps of the volt­
ampere characteristic. Formula (39), which was ob­
tained in first order in the inhomogeneities, gives a zero 
width of the steps: 

aB'n6!iJn -20;;" ~CjJmKm'l <I "'1m') I'ln 1 (K-;:mm)V I. (40) 

From Eq. (40) we obtain the result that the. width of the 
steps is connected, in order of magnitude, with the criti­
cal current by the relation 

(41) 

Schmid and Hauger[4J have shown that the steps have 
finite width even in zeroth order in the inhomogeneities. 
This difference is connected with the fact that in the 
derivation of the equation for the shift in u from the 
phenomenological equations[4J an additional term (uV')u 
appears in them in comparison with Eq. (14), leading to 
a finite width of the steps in zeroth order in the inhomo­
geneities. This term is lacking in the microscopic 
derivation given above. The question of the width of the 
steps is still further complicated by the fact that, at 
least for low velocities, a "melting" of the lattice takes 
place. [2J Therefore the quantity Kn' V has different 
values at different places in the sample. 

7. CONCLUSION 

The value of the critical current in type-IT supercon­
ductors is expressed in terms of the correlation func­
tions that characterize the inhomogeneities. If the 
amplitude of the inhomogeneities is small or their size 
is small in comparison with the pair dimension ~, then 
the critical current is small in comparison with the pair 
breaking current. In this case, a wide range of magnetic 
fields exists, not too near Hc2 and not too small in com­
parison with Hc2' in which the interaction between the 
vortices is stronger than their interaction with the in­
homogeneities, and the results obtained above are valid. 
In this region, the critical current falls off with increase 
in the magnetic field in proportion to B-1 for a film and 
B-3 for a bulk sample if B is much smaller than Hc2' In 
the region of B of the order of Hc2' the critical current 
depends weakly on the magnetic field. In the narrow 
range near Hc2' when condition (33) or (34) is violated, 
the critical current falls off with approach of the field to 
Hc2' Condition (33) is also violated in fields that are 
small compared to Hc2' On a further decrease in the 
magnetic field, the critical current again ceases to de­
pend on the field. [3J The character of the important 
inhomogeneities can be deduced from the temperature 
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dependence of the critical current for a fixed ratio 
H/Hc2(T). 

If the critical current is determined by the inhomo­
geneities of the effective interaction, the current falls 
off according to the law (Tc - T)1i2 more slowly than the 
pair-breaking current as the temperature approaches 
the critical temperature. At fields of the order of Hc2' 
the critical current in films can become of the order of 
the pair-breaking current for Tc - T ~ ~rpo(vltrdf1. In 
this temperature region, the inhomogeneities of the 
effective interaction lead to a smearing out of the phase 
transition. If the critical current is determined by the 
inhomogeneities of the path length or the thickness of the 
film, then it falls off upon approach to Tc more rapidly 
than the pair-breaking current, according to the law 
(Tc - T)5i2 for a film and (Tc - T)912 for a bulk sample. 

In the region considered, the volt-ampere character­
istic is a universal function of the ratio aEhcr. The 
first terms of the asymptotic expansion of this function 
for aE» jcr were found above. In order to find the numer­
ical coefficient in (26) for the critical current, and not 
only the dependence on magnetic field and temperature, 
it is necessary to find this function as E - O. For this 
purpose, it is necessary to sum the whole series of per­
turbation theory for the expansion of the current in 
powers of the inhomogeneities. 

The results obtained above give the local connection 
of the current with the field intensity and the magnetic 
induction. In order to find the field and current distri­
butions in real samples, it is necessary to solve the 
Maxwell equations by using the connection of the current 
with the magnetic and electric fields that was found 
above. 

*[Hul =H X u. 
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