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The behavior of degenerate two-dimensional systems below the phase-transition temperature T c is 
investigated by employing scale-invariance considerations and a self-consistency technique. The order 
parameter is zero in these systems, but a "transverse rigidity" exists. The effect of an external field, 
anisotropy, and weak interplane interaction, which lead to the appearance of an order parameter 
below T c' are considered. The results are compared with the experimental data of de Jongh, van 
Amstel, and Miedema. 

1. SELF-CONSISTENCY METHOD FOR THE 
CALCULATION OF Ps 

It is now firmly established that a phase transition 
at nonzero temperature exists in a planar degenerate 
system (PDS)[l-S]. By "degenerate," we mean a system 
whose order is described by an n-component order 
parameter CPa. (x) (a. = 1, 2, ... n). The Hamiltonian of 
a degenerate system is invariant with respect to rota­
tions in the n-dimensional space of the CPa., these rota­
tions being independent of the real spatial COOrdinates 
x. Examples of such systems are the Heisenberg mag­
net (n = 3), the two-component ma~net (n = 2), and 
the Bose liquid (n = 2). Hohenberg 4) and Mermin and 
Wagner[5] have shown that long-range order is absent 
in a PDS: 

(",.)=0. 

A new property appearing below the phase-transi­
tion point in a PDS is the "transverse stiffness" or 
"density of the super fluid com~nent" Ps. This quantity 
was introduced by Berezinskii 6 J, by analogy with 
superfluid helium. For a two-component PDS (n = 2), 
this quantity can be defined as follows. We shall char­
acterize the two-component vectors CPo< by their modu­
lus cP, which is assumed equal to 1 in the following, 
and by their angle of rotation w. We shall consider a 
state in which the local values of w vary slowly in 
space. Such a state is found to be metastable. Its free 
energy F differs from the equilibrium value by the 
quantity 

F-F,='j, J d'xp.v.' 

where vs = Vw. 

(2) 

Below the transition point in a three-dimensional 
system, in addition to (2) a term proportional to w2 

appears in the free energy, where the angle w is meas­
ured from the direction of the spontaneous order 
parameter < CPa.). A specific feature of a two-dimen­
sional system is the absence of such a term because of 
the fact that the spontaneous order is equal to zero 
(cf. (1». For this reason, the correlators in a planar 
system fall off in accordance with a power law rather 
than exponentially (cf. Sec. 2 for more detail). 

There exist different points of view with regard to 
the behavior near the transition point Tc. Thus, 
Berezinskii(6) assumes that Ps goes to zero smoothly 
as T tends to Tc. Stanley and Kaplan[2] consider that 
the magnetic susceptibility X becomes infinite at the 
transition point, and this, as will be shown below, is 
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equivalent to asserting that Ps is finite at the transi­
tion point. Moreover, for X to become infinite, Ps 
should be greater than a certain finite quantity. In 
order to elucidate this question and obtain a reasonable 
dependence for Ps(T), we apply an approximation ana­
logous to the Weiss self-consistent field approximation 
in the theory of magnetism. 

The Hamiltonian of the system differs essentially 
from the Hamiltonian of the long-wavelength fluctua­
tions (2) in that it is a periodic function of w(x). We 
shall consider the simplest form of this Hamiltonian 

?/&=I E",(x+a) ",(x) =1 E cos(ro (x+a)-ro(x», (3) 
x,a x,a 

where x labels the lattice sites, and x + a labels the 
site closest to x. The Hamiltonian (3) is nonlinear, but 
in the limit of longwavelength fluctuations of w(x) only 
the term proportional to (VW(X»2 is important for us. 
First of all, we shall study the separation of this term 
from the Hamiltonian (3). We shall perform this separa­
tion by a self-consistent method. Namely, we shall 
assume that, in the final analysis, the Hamiltonian re­
duces to quadratic form: 

?/&=-}p.1/1 E(ro(x+a)-ro(x»'=+p,"'J d'x(Vro(x))'. (4) 
x,a 

The new definition of Ps given by formula (4) differs 
from the old (cf. (2» by a constant factor. With this 
definition, Ps is a dimensionless quantity. 

In the apprOximation used, the quantity w(x) has a 
Gaussian distribution. Therefore, all averages of a 
product of a certain number of quantities W(xi) break 
down into products of all possible pair averages 
< w(x)w(x'» (Wick's theorem). It is useful to introduce 
the concept of a normal product 

:a,(x,)a,(x,) ... a.(x.): 

of quantities ai (Xi) that are functions of w(x). The 
normal product is associated with the usual relation: 

at ... an=:at ... an.:+<a1a2>:a3 ... an :+ ... 
.. . +(a,a,)(a,a,):a,: .. a.:+ .. . (5) 

It may be said that an ordinary product is equal to the 
sum of normal products with all possible pairings. By 
a "pairing," we mean the replacement of a pair of 
quantities by the average of their product. 

We now expand the Hamiltonian (3) in a series in 
powers of (w(x + a) - W(X»2. Carrying out m - 1 
pairings, from an arbitrary even power (w(x + a) 
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FIG. I. Graphical solution of Eq. (9). The three straight lines corre­
spond to temperatures T,<Tc, T2 = Tc, and T3>Tc' 

- w(x))2m we separate out terms containing: (w(x + a) 
- W(X)2:. Next, summing over m, we obtain 

p.=(cos (ffi (x+a) -ffi (x» )=exp [-'/2« ffi (x+a) -00 (x) )') I. (6) 

We perform the calculation of the average using the 
Hamiltonian (4): 

'/2( (00 (x+a) -00 (x) )')=TI4!J! p.. (7) 

Substituting (7) into (6), we find 

p.=exp (-61 p.) (8 ) 

where e = T/41 J I. Eq. (8) determines the dependence 
Ps( e). For e = 0, the quantity Ps = 1. We note that, 
for any nonzero e, Eq. (8) has the solution Ps = O. We 
introduce the variable y = e/ps. Eq. (8) takes the form 

eY=yI6. 

Its solution is depicted in Fig. 1. It can be seen that, 
for a certain e = e c, the straight line is tangential to 
the graph of the exponential eY. It is easy to find the 
values of e c, y c and the other variables at this point: 

(9 ) 

(10) 

For temperatures e > ec , only the solution Ps = 0 
exists. Thus, the self-consistency method leads to the 
conclusion that Ps takes a finite value at the transition 
point (cf. Fig. 2). 

This conclusion is in agreement with the estimate of 
Josephson[7], according to which the scaling dimension 
f!..ps in d-dimensional space is equal to d - 2, i.e., 
f!..ps = 0 in the two-dimensional case.1) 

2. SCALE INVARIANCE OF THE PDS 

We should like to point out that scale-invariance 
arguments in the case of a PDS are applicable not only 
at the actual transition point Tc but also at all tem­
peratures T < Tc in the region of large distances. In 
fact, below the transition point the Hamiltonian (4) can 
be assumed to be asymptotically exact in the limit of 
long-wavelength fluctuations of w(x), since the extra 
terms contain higher powers of the gradient. 

Of course, the calculation of Ps by means of Eq. (8) 
is not consistent, since the Hamiltonian (4) is used in 
the region of short distances where it is incorrect, but 
the existence of Ps and of the Hamiltonian (4) for 
T < Tc is not in doubt. From this point of view, the long­
wavelength fluctuations of w(x) are a free field with a 
Gaussian distribution. Therefore, 

(q>(x) q>(x'»=(cos (00 (x) -00 (x') »=exp {-'h« 00 (x) -.00 (x') )')}. (11) 
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The usual Gibbs averaging with the energy (4) leads 
to the following result: 

«00 (x)-oo(x'»')= III ~~)Z S~: (1-COSk(X-X'»=-I~1 Inlx-x'i. 
p. n p. (12) 

Substituting (12) into (11), we obtain the result first 
found by Berezinskil[6J: 

(q>(x) q>(x'» =! X_X'I-T;'.'JIP •• (13 ) 

The latter formula shows that, in the region of large 
distances, the correlations possess the property of 
scale invariance for all T < Tc. To the quantity cp we 
can assign the scaling dimension 

~.==~=TI4nIJlp.· (14) 

This implies that, under the scale transformation 

x ..... /x 

the quantity cp transforms according to the law 

q> (lx) =/-'q> (x). 

The scaling dimension f!.. varies continuously as a 
function of the temperature T (cf. (14)). This situation 
is exceptional in the theory of phase transitions. A 
continuous dependence of index on a parameter has 
been known before now, in the Baxter model [8J. Suppose 
that the exponent in the Gibbs distribution is changed by 
an amount 

I.S dxe(x). 

Polyakov[9] has shown that fulfilment of the following 
conditions is necessary and sufficient for a continuous 
dependence of index on the parameter ,\: 

1) the dimension f!..E of the quantity E(X) is equal to 
the number of dimensions of space (in our case, f!..E 
= 2); 

2) in the algebra of the fluctuating quantities, the 
coefficient b in the relation 

e(x)e(O)=be(O)lx' (15) 

is equal to zero. 

In our case (change of temperature), 

1.=-{jT(..!...-..!...~), e(x)=(\7oo)'. 
T p. iJT 

Since w is a free field, the dimension of E = (\1 W)2 is 
2, and the first condition is fulfilled. More precisely, 
condition 1) is fulfilled for the quantity: E(X) :. 

We turn now to condition 2). In the product 

:e{x): :e (x') :==: (\7 00 (x) )': : (\7 00 (x'» ': 

we must separate out the terms proportional to 
: E(X):. We shall make use of the fact that the field is 
free and perform all possible pairings: 

. .. '. < iJoo iJOO)' .e(x) .. e(x ).=2 ---, 
ox. ox, 

(16) 

+'4<!!::...~):~.!!!....:+: (~)'(~)': 
8xa. 8xf>' 8xa 8xf>' 8xa. ax~' 

We shall be interested only in the second term in 
(16), since the others do not contain : E:. In order to 
obtain the coefficient b, defined by formula (15), in 
this term we must put Q = f3 and x = x' inside the 
symbol for the normal product, and sum over Q: 

b=4(X-X')'<~~) =-4(x-x')'~lnlx-x'l. 
ox. ox, ox. 
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The reason for the slow (power-law) decay of the 
correlations at large distances and the consequent non­
analyticity of the correlator (cf. (13)) is the strong 
fluctuations of the order parameter in the PDS. An 
analogous phenomenon (strong trans verse fluctuations) 
also occurs in three-dimensional degenerate systems (10 J, 
where scale invariance also arises for all T < T c. 
However, in this case long-range order exists ( CPa) 
'" 0), and the free field is the transverse component CPa. 

Mathematically, the theory of long-wavelength fluc­
tuations is equivalent to the well-known so-called gauge 
model in quantum field theory (cf., e.g.,l"] (p. 40 in the 
Russian edition)). However, there is an important dif­
ference between the model under consideration and the 
gauge model: the Hamiltonian in the former model con­
tains also nonquadl'atic terms of the type (~w)\ 
(V W)6, etc. These terms do not change the scaling 
dimensions of the principal quantities, since the dimen­
sions of these corrections are greater than the dimen­
sions of space d = 2 (cf. (9]). This is true so long as Ps 
is not equal to zero. 

In the discussions in this section and the preceding 
section it has been assumed that the integration is per­
formed over each of the w(x) from -"" to +"" in the 
partition function. At the same time, the Hamiltonian 
is a periodic function of w(x) with period 211. If the 
integration is extended over m periods of each of the 
w(x), this leads to the partition function multiplied by 
the quantity mN, where N is the number of lattice 
sites, i.e., it leads to an extra quantity NTlnm in the 
free energy. This extra term does not change the dis­
tribution function of the quantities (w( x), cP (x), E(X), 
etc.) of interest. 

3. FIELD AND ANISOTROPY 

We introduce the field h conjugate to the ordering 
field cP (x) by changing the Hamiltonian (3) of the system 
by an amount 

J'6'.=-h S <:p(x)d'x. (17 ) 

In accordance with the g(!neral relations of scaling 
theory (cf., e.g., (12]), the scaling dimensions of the con­
jugate fields for d = 2 are connected by the relation 

(18) 

Using (18), we can find the dependence of (cp) on h in 
the weak-field region (far from saturation): 

(19 ) 

As at the critical point, the dependence of (cp) on h is 
nonlinear at arbitrarily small h. Our estimates show 
that t. increases monotonically with increasing tem­
perature, and at the transition point takes the value 

t:..(T,)=1/n. 

This means that, for all T < Tc , the susceptibility X 
becomes infinite at h = O. 

We shall apply the self-consistency method for an 
approximate calculation of the coefficient in formula 
(19). For this, in the full Hamiltonian 

J'6'=J L,cos(oo(x+a)-oo(x»-h L,cosoo(x) 
X,_ 

(20) 

we separate out the terms quadratic in w, performing 
the necessary number of pairings. Then the Hamiltonian 
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(20) is reduced to quadratic form: 

J'6'err=+h('I') Soo'd'x++1J1r.S (Voo)'d'x, (21) 

where 

('I')=(COS oo)=exp(-'/'(oo'». (22) 

The self-consistent calculation of (cp) by means of (21) 
and (22) gi ves 

(23) 

The field h has the meaning of an external magnetic 
field for a magnet with J < 0, which, by analogy with the 
three-dimensional case, we shall call a ferromagnet. 
For an antiferromagnet (J> 0) or a superfluid helium 
film, the field h has no simple physical meaning. 

A real magnetic field H in an antiferromagnet leads 
to an effecti ve change of the temperature 

T-->-T'=T+aH' (a>O), 

The change of the indices in the magnetic field is deter­
mined by the relation 

t:..(T, H) =t:..(T·, 0). 

We shall consider a magnet with weak anisotropy, 
which we shall describe by adding a term 

(24) 

to the Hamiltonian (3). With no loss of generality, we 
can assume that A < O. Then the axis 1 becomes the 
easy-magnetization axis, and in a planar system a non­
zero moment (cp 1) appears. We shall find the magni­
tude of the spontaneous moment for small values of A. 
For this, we shall determine the scaling dimension t.A 
of the quantity A. 

We shall make clear what we mean by this. So long 
as AI J is small, the scaling indices of the quantities 
(w, CP, E, etc.) can be assumed to coincide with their 
values for A = O. Then the correction (24) to the 
Hamiltonian (3) can be regarded as the action of one of 
the external fields leading away from the critical 
curve, and A can be regarded as this external field. 
The dimension of the fie Id A, like that of the fie ld h, 
can be found: 

t:..,+t:..(:'I'.':) =2 

(cf. formula (18 )). It remains to find the dimension 
t.(:cp~:). We shall use the fact that 

:<:Pl':=:COS' 00:='/2 cos 200. 

(25) 

(26) 

Next we can find the correlator (cos 2w(x)cos 2w(x') 
in exactly the same way as the correlator (11) was 
found, and determine the scaling dimension t.(: cP~:). 
We give the result: 

t:.. (:<:p.':) =4t:.., 

In complete analogy with the case of the field h (cf. 
(19)), we find 

Our estimates (cf. Sec. 1) show that the quantity 

(27) 

(28) 

t. < 7'2 in the whole region T < Tc. Therefore, the in­
clusion of arbitrarily weak anisotropy leads to the ap­
pearance of a spontaneous moment. In the temperature 
region in which Tc - T tends to zero with A - 0, the 
pattern of the phase transition changes sharply and it 
becomes isomorphous to an Ising phase transition. 
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A curious phenomenon arises in the case when the 
lattice possesses third-, fourth-, and sixth-order axes. 
In this case the anisotropy Hamiltonian has the form 

:J8A =" S cos(poo(x»d'x, (29) 

where p is the order of the symmetry axis. The analog 
of formula (28) is 

(30) 

The spontaneous moment I.{Js vanishes at a temperature 
T 1 < Tc determined by the condition 

!'J.(T,)=2Ip'. 

An unusual situation arises, with two phase transitions: 
at T = Tc a Ps "" 0 appears, and at T = T, a spontane­
ous moment arises. 

For an approximate calculation of the coefficient in 
formula (30), we apply the self-consistent field method. 
We reduce the Hamiltonian of the anisotropic system 

:J8=/1: cos (00 (x+a)-oo (x)) +" .L, COSpoo(X) (31) 

to quadratic form, carrying out, as usual, the necessary 
number of pairings. Denoting 

'1>= (COS pw), 

we obtain for this quantity the equation 

1jJ= (p' 1,,1 1161/1 p,) P"/(2-p'" 

(compare with formula (23)). 

The quadratic effecti ve Hamiltonian has the form 

(32 ) 

:J8 efr= ~S (III p, (V (0) '+p'I,,1 ljJoo') d'x. (33) 
2 

The calculation of < I.{J) = (cos w) using the Hamiltonian 
(33) and the expression (32) for if! gives 

<'1')= (p' 1,,1 1161/1 p.) M(2-p"'. 

In an anisotropic system the correlation length rc 
below the transition point becomes a finite quantity, 
which can be determined from dimensionality argu­
ments: 

(34) 

(35) 

In connection with this, the magnetic susceptibility 
in zero field below the transition point also becomes 
finite: 

J(= 0<'1') 001,,1 (',-"'/',.= 1"1-('-20)/,,-p,,,. 
ok 

In a finite field h, the magnitude of the moment (I.{J ) 
is determined both by the field h and by the anisotropy 
A. The general form of the formula for (I.{J >, satisfying 
the requirements of scale invariance, is: 

<<p)=hol• hf ( 1"1 Ih"I·h ). 

The dimensionless function f( z) has the following 
asymptotic forms: 

frO) =const*O, I(z)ooz"o, (z ..... oo). 

The effect of the magnetic field becomes important 
when the field exceeds a certain characteristic value 

(36) 

It is natural to call this quantity the anisotropy field. 
The anisotropy field, unlike that in a three-dimensional 
system, depends nonlinearly on A. 

In weak fields and for weak anisotropy, the mean 
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FIG. 3. Possible temperature 
dependences of the order para· 
meter. For curve I, T,>Tc; for 
curve 2, T,""Tc; for curve 3, 
T,<I'c· 

qL-----------~==~~T 

order parameter (I.{J > is small and attains values of 
order unity (saturation) only at a temperature T 2 de­
termined by the equation 

[( h )11" (p'I,,1 ) "" 
!'J. (T,) = Iln-' max 16111p. ' 161Jlp. ] I . (37) 

The dependence of < I.{J> on T is depicted schematically 
in Fig. 3. 

4. LAYER SYSTEMS 

Experimenters have recently discovered and synthe­
sized a number of three-dimensional magnets whose 
properties are close to those of a PDS. A bibliography 
referring to such magnets can be found in the review by 
de Jongh, Bloembergen and Colpa[13J, in which experi­
mental data on transition temperatures are also given. 

All such magnets consist of a number of widely­
spaced planes, such that the interaction between spins 
of magnetic ions lying in different planes is small com­
pared with the interaction of spins within one plane. 
With good accuracy, the interaction of the spins can be 
assumed to be isotropic. In some of these compounds 
(Rb 2MnF 4, K2MnF 4, etc .), the magnetic symmetry of 
the latter leads to the result that the effective interac­
tion of neighboring magnetic layers vanishes. In such 
conditions, the role of anisotropy is dominant. In other 
compounds (e.g., (CnH2n+lNHshCuCl4), the interplanar 
interaction is also important. 

Thus, the problem of a theoretical description of 
magnetic layer structures becomes a real problem. A 
fairly large number of theoretical papers, of which we 
mention the paper by Berezinskil and Blank[14J, have 
been devoted to this problem. In[l4 J, the low-tempera­
ture behavior of such systems is considered. Here we 
shall reproduce the results of the paper[14 J by the 
methods of scaling theory, find their analogs at higher 
temperatures, and also demonstrate new results, such 
as a simple relation between the magnetic susceptibility 
and the scaling dimension ~ (T). 

Let there be no anisotropy within a plane, and let 
the interplanar exchange integral J' be small compared 
with the interplanar interaction J. The form of 
Xinter, the correction to the Hamiltonian (3) due to the 
interplanar interaction, is 

:J8inter=l' 1:'1'. (x) '1'.+1 (x), (38) 

where the integer index l labels the planes. For J' 
"" 0 the system becomes three-dimensional, and there­
fore a spontaneous order parameter arises in it below 
the transition point. For small J', the transition point 
of the three-dimensional system is only slightly dis­
placed from Tc in the two-dimensional situation. We 
shall not study the calculation of this shift. 

We shall study the behavior of cp s sufficiently far 
from the transition point, when the properties of the 
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system are principally determined by the interaction 
within a plane. In the same way as in the preceding 
section, we shall determine the scaling dimension of 
the interplanar interaction constant J', regarding J' as 
an external field: 

(39) 

Hence, 

(40) 

Formula (40) shows that spontaneous order appears for 
any J';cObelow Tc . 

In the narrow region about the critical point in which 
the phase transition becomes three-dimensional, 
formula (40) is inapplicable. Here, cP s tends to zero 
according to the law (Tc - T )13, where the index 
i3 ~ Ys. 

Formula (40) was obtained by Berezinskii and 
Blank[14] in the approximation T/Tc « 1. 

As in the case of a field and anisotropy, we shall 
carry out a self-consistent procedure to determine the 
coefficient in formula (40). The full Hamiltonian of the 
layer system reduces to the effecti ve quadratic Hamil­
tonian 

J'6eff=+S[I/IP.((aa:)'+(:;)') +1J'I1]G:)']dXdy dZ (41) 

(compare with formulas (21) and (33)). In the Hamil­
tonian (41) we have introduced the notation 

1]=<cos( (il,+, (x) -(il, (x))). 

Calculation of this gi ves 

1]= (II'I el321/1 p; )'1(1-') (42) 

The spontaneous moment of the layer system, calcu­
lated by means of the self-consistent method, is equal 
to 

<p.= (1/'1 e'/321/1 p.)M('-"). (43) 

We now introduce anisotropy in the plane (cf. Sec. 
3). Then the spontaneous moment CPs is determined 
both by the anisotropy and by the inter planar interac­
tion. The general form of CPs satisfying the require­
ments of scale invariance is: 

(44) 

where g(z) is a standard dimensionless function with 
the following asymptotic forms: 

g(O)=const*O, g(z)ooz·./A. (z .... oo). (45) 

The dimension .lX was determined in Sec. 3. The ef­
fect of the interplanar coupling becomes important when 

1/'1;:;' P·I·,-I ••. 

If we also introduce a field h, the magnitude of the 
moment (cp > can be determined as before by formula 
(44), in which, however, the function g depends also on 
the dimensionless argument 

hi 11'1'''''''. 
We shall consider two possible cases. 

1) I J' l.l A ;,;, I A I.lJ'. In this case, the anisotropy is 
weak. The spontaneous moment CPs is determined by 
the magnitude of the interplanar coupling (cf. (40) and 
(43)). The anisotropy becomes unimportant when 
h ;, ha, where 
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(46) 

This is the normal three-dimensional Situation, when 
the anisotropy field is linearly related to the aniso­
tropy constant X. 

2) I J' I.lA « I A I.lJ'. Here the interplanar couplings 
are unimportant. In this case, the anisotropy field is a 
nonlinear function (cf. formula (36)). 

With the appearance of interplanar coupling, the 
temperature T2 at which saturation of the order 
parameter occurs can be changed (compare with 
formula (37)): 

( h 'I', (p'I!.1 )11" 
tJ.(T,)= I [n-'max [ 161/Ip.) , 161/1p. ' ( ~)'/''']I 321/1p. 

(47) 

Of special interest are layer antiferromagnets in 
which the intraplanar couplings are ferromagnetic 
(J < 0) and the interplanar couplings antiferromagnetic 
(J' ;, 0). Such compounds include, e.g., 
(C2HsNH s)2CuCl4, which has been thoroughly studied 
by de Jongh, van Amstel and Miedema [15 J• 

The magnetic susceptibility X of an antiferromagnet 
becomes finite below the transition point and at the 
critical point itself. A schematic arrangement of the 
spins of the magnetic ions is shown in Fig. 4. Accord­
ing to the estimates of the paper[lS], the anisotropy in 
the plane is very small (~10-4). The anisotropy main­
taining the spins in the plane is substantially greater 
(~10-S). The interplanar exchange interaction is also 
of the same order. 

We shall calculate the magnetic susceptibility of a 
two-dimensional layer antiferromagnet with a two­
component spin. We confine ourselves to the situation 
arising in the experiment of[lS], when the anisotropy is 
small compared with the interplanar interaction. 

Let cP 1 and cP 2 be the magnetizations of the different 
sublattices (planes). The free-energy density of each 
plane can be found from dimensionality arguments: 

Fi=C I <Pi 1'1'. 

The free energy per unit volume of an antiferromagnet 
in an external field, r::.th the interplanar coupling taken 
into account, has the form 

(48) 

The moments of the sublaUices can be found by mini­
mizing the free energy (48): 

2c 
J'q>'+T<P,Iq>,I('-2&)/'- H=O, 

2c 
(49 ) 

J''P,+ y'P2 1q>,1 (2_2&)1'_ H=O. 

Solving the system (49) by a perturbation-theory 
method, we find the magnetic susceptibility in zero 
field: 

"X11=M2I', "X.L =1/2/'. 

For a comparison with the experiment Of[15], Xl. 
must refer to the b axis. Figure 5 shows the experi­
mental graphs of the susceptibility, taken from the 
paper[lS]. Our arguments refer to curves a and b. In 
agreement with the theory, the transverse suscepti­
bility is practically constant and the longitudinal 
susceptibility tends to zero like ~.l. 
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We call attention to the fact that 

(50) 

Figure 6 juxtaposes the experimental values of the ratio 
XII/Xl and the theoretical curve calculated from formu­
las (8) and (14). 

The theory describes the experiment well at low 
temperatures. The discrepancy for T close to Tc can 
clearly be explained principally by the effects of the 
three-dimensional phase transition and by the inaccu­
racy of the self-consistent method of calculating Ps. 

The susceptibility in zero field along the c axis can 
be calculated by an analogous method. We give the re­
sult: 

Xb/X'=1 +')..'ffJ.'I2I', (51) 

where AI is the anisotropy in the direction of the c 
axis. The quantities J /, A and AI have been determined 
by a method independent of susceptibility measurements. 
Substitution of the values obtained in the experiment 
of[lS] into formula (51) gives 

xb/x'=O,62. 

The experimental value is 0.66. 

If the magnetic field is applied along the easy­
magnetization axis, then when it reaches a certain 
critical value Hl the well-known first-order phase 
transition occurs in which the sub lattice moments are 
flipped perpendicularly to the field. The value of Hl in 
our apprOximation is given by 

The dependence of 'Ps on temperature is given by 
formula (43). Hence, we can find the temperature de­
pendence of Hf: 

HI'(T)/HI'(O)=ffJ.'(T). 

(52 ) 

(53) 

Unfortunately, the experimental data at our disposal 
on Hl[lS] are insufficient to check formula (53). 

At a higher value H = Hz(T) of the magnetic field a 
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further phase tranSition, this time second-order, occurs: 
the antiferromagnet becomes a paramagnet. In this case, 
the antiferromagnetic couplings between the planes are 
effecti vely broken and the substance can be treated as a 
set of nOninteracting planes placed in a magnetic field. 
The magnetic moment of such a system is determined by 
formula (19). The quantity Hz(T) can itself be found by 
minimizing the free energy (48) with an additional condi­
tion: at the point of the minimum, the directions of 'P 1 

and cp z coincide. A simple calculation leads to the 
following result: 

H,(T)=21IffJ,(T). 

Comparing the formulas (52) and (54), we find 

HI (T)/H,(T) =(')../2//) 'I,. 

(54) 

(55) 

We note that the ratio (55) does not depend on the temper­
ature. From the experimental data given in[lS], we have 
been able to establish that the ratio Hl/Hz is constant in 
the temperature range 0.1 ~ T/Tc ~ 0.95. 

Formula (54) shows that measuring Hz(T) is equiva­
lent to measuring the spontaneous order 'Ps(T). In 
Fig. 7, the ratio Hz(T)/Hz(O) found from the experi­
mental curves of the paper[lS] are juxtaposed with the 
theoretical curve for the ratio 'P s (T)/ 'P s (0) calculated 
by means of formula (43). 

5. CONCLUSION 

Throughout, we have considered two-component 
classical spins. However, the principal results of the 
paper do not depend on this assumption. For any n, a 
planar system is scale-invariant at large distances. 
Considerations of scale invariance have enabled us to 
progress from the region of low temperatures T « Tc 
into the region T ~ Tc and obtain a fairly complete 
description of the magnetic phenomena in the whole 
temperature range. 

The theory of magnetic phenomena in layer magnets, 
based on scale-invariance conSiderations, leads to good 
agreement with experiment. 

The region of temperatures close to the phase-transi­
tion point of a planar system, where the correlation 
length increases and the temperature becomes a dimen­
sional quantity, has not been studied. 

I)The authors are grateful to A. M. Polyakov, who directed their attention 
to this. 
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