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A theory of the properties of the superconductors with /3-W structure is proposed on the basis of 
the assumption that in linear chains the Fenni level passes through the reciprocal-lattice point X, 
where the conduction bands are twofold degenerate and possess a linear dispersion law. It is shown 

,that in this case the electronic corrections to the energy induce a structural transition that precedes 
,the transition to the superconducting state. The two transitions should, however, occur at close 
temperatures. This solves the problem of the connection between instability and superconductivity in 
these compounds as two aspects of the same phenomenon, namely, instability of the electron 
spectrum. The theory predicts logarithmic temperature dependences for all the quantities above the 
transition point. For the elastic moduli in the high-temperature region, in particular, these 
dependences are linear, as borne out by experiment. 

1. INTRODUCTION AND FORMULATION OF THE 
PROBLEM 

Superconductors of the type Nb3Sn have now been 
quite thoroughly studied. Numerous exgerimental data 
are given in Testardi's review article 1). The prinCipal 
difference between the properties of this "high-temper­
ature" group of compounds and those of the normal 
superconductors is the dependence on temperature of 
the various characteristics above the transition point 
Tc. As noted by Testardi, the most distinctive feature 

upper critical fields[7] and of interpreting the above­
indicated temperature dependences in the magnetic 
properties in the language of fluctuation phenomena. (8) 

Although it is possible in the Labbe-Friedel theory(4) 
to account for the structural transition by an appropriate 
choice of the constants, this is achieved by locating the 
Fermi level very close to the bottom of the d band 
(10-3_10-2 eV). The proximity of the transition temper­
atures Tm and Tc is not a basic feature of the model. 

If the electrons in the chains are indeed localized, 
is the correlation with the structural transition. For then from the point of view of the Luttinger theorem(9) 
good samples, the latter transition occurs at tempera- on the filling up of bands, the condition for the total 
tures Tm which are higher than Tc. If the structural population of the d band of an individual chain will be 
transition does not occur, then a tendency toward it is the location of the chemical potential at the extreme observed which is manifested in the softening of the 
elastic moduli. In all the known cases Tm differs from point, since there are two transition-element atoms 

per lattice period along a chain in the A-15 structure. 
T c by not more than a factor of two, whereas the Consequently, it is natural to locate the Fermi level at 
temperature dependences presaging 'the transition ex- th . t X f th c' allatt· B I a s e pom 0 ere lproc Ice. e ow we s ume 
tend to temperatures of 300-400 K. The behavior of just this situation. It turns out that all the properties of 
the magnetic susceptibility, as well as of the Knight th d t ·th th (3 W t t b e supercon uc ors Wl e - s ruc ure can e ex-
shift, varies from compound to compound. plained as the result of the instability of the electron 

Weger(2) was apparently the first to point out that, on spectrum at the pOint X against the electron-lattice and 
account of a small overlap of the d shells, the three sys- electron-electron interactions. The nature of this in-
terns of linear arrays of transition-element atoms could stability is connected with the twofold degeneracy of the 
play an important role in the properties of the (3-W levels at the point X and with the linear dispersion law 
structure. This agrees qualitatively with the more critical in its vicinity. Therefore, the instability of such a spec­
behavior of all the properties when transition-element trum is related to the instability of the spectrum of the 
atoms are introduced into the TaX structure.[ll The tight- one-dimensional metal discovered by Bychkov, Dzyalo­
binding approximation for the d electrons in a chain has shinski'i, and this author in (10), where it is shown that 
figured in all the theoretical papers[3-S1, where an un- the characteristic feature of the one-dimensionality is 
usually large and narrow peak is postulated in one form the connection between the Cooper pairing and the 
or another to exist in the density of states in the vicinity Peierls doubling of the lattice period.1) 

of the Fermi energy. This is most conSistently done 
in Labbe and Friedel's papers[41, where the indicated 
peak in the density of states v( €) arises as a result of 
the assumption that the Fermi level lies close to the 
empty d band at k = 0 (the point r), since in the one­
dimensional band v(€) a: C 1 / 2 as € -0. 

Weger(6) has discussed the possibility of the appear­
ance of a similar peculiarity at the point X of the re­
ciprocal lattice after the structural transition as a mech­
anism by which the density of states and, consequently, 
Tc, could rise. Finally, let 'us recall that the three or­
thogonal systems of chains have been investigated by 
Barisic and DeGennes(7) and weger[81- alt-hough as 
macroscopically one-dimensional objects-for the pur­
pose of explaining the nature of the anisotropy in the 
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The circumstance suggesting the application of the 
ideas put forward in [10) is the logarithmic dependence 
of the elastic moduli in the region of fairly high tem­
peratures [11: 

Cij=A+B In T. 

The doubling of the period in the individual chains of 
Nb atoms has indeed been observed to occur in the struc­
tural transition in Nb3Sn by Shirane and Axe (12). Since 
there are two transition-element atoms per (3 -W lattice 
period in a chain, the logarithmic corrections to the 
phonon frequencies which were found in [10) pertain to 
phonons with the wave vector q = O. It will be shown be­
low that the Cooper pairing is also connected with the 
tetragonal deformation in the {3-W structure, the struc-
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tural transition in a pure sample preceding the super­
conducting transition. 

In the one-dimensional case, in contrast to the BCS 
model of the theory of superconductivity, it is not pos­
sible even in the limit of weak interactions to obtain 
closed formulas describing the vicinity of the transition 
point. The result of the theory expounded in [10,11] con­
sists in the assertion that 

(1) 

where w is a characteristic cutoff energy, which is, 
generally speaking, of the order of the Debye frequency, 
and gl is the effective dimensionless constant of the 
interelectron attraction. In consequence, Tm and Tc 
are determined only up to a constant factor. 

It is known from experiment [1] that for 
eo' OK I'm. OK T e, OK 

V.Si: 500 18 ..... 25 !7 
;.Ib,Sn: 300 43 18.2 

According to (1), Ig11-In-1(eD/T) and, consequently, the 
electron-electron interactions are not too weak. The 
situation for V 3Si is apparently more favorable. 

In Sec. 2 we shall find the temperature dependences 
of the physical quantities in the region of fairly high 
temperatures. The contribution from the electron inter­
actions to, for example, the structure quantities turns 
out to be significant in the vicinity of the transition pOint, 
and is investigated in Sec. 3. The comparison of the con­
clusions of the theory with the experimental situation is 
carried out in the course of the exposition. Finally, in 
Sec. 4 we demonstrate the overall self-consistency of 
the conclusions of the theory. We also discuss in this 
section the specific connection between structural in­
stability and superconductivity in quasi-unidimensional 
systems, thereby demonstrating that from the point of 
view of the proposed theory quasi-unidimensional sys­
tems which become structurally unstable at sufficiently 
high temperatures are potential objects on the basis of 
which higher superconducting-transition temperatures 
can be realized. 

2. THE CHARACTERISTICS OF THE ELECTRON 
SPECTRUM. THE BEHAVIOR OF THE PHYSICAL 
QUANTITIES IN THE HIGH-TEMPERATURE REGION 

Compounds of the type Nb3Sn have the 0& space group. 
The reciprocal lattice is a primitive cubic lattice. The 
groups of the wave vectors at the points of symmetry 
and the matrices of the generating elements of the little 
groups have been constructed by Gorzkowski [13]. The 
characters of the representations at the points r and X 
have been found by Weger [6]. For the reasons indicated 
above, we shall be interested in the electron spectrum in 
the vicinity of the point X and in the dependence of this 
spectrum on strain and magnetic field. 

Figure 1 shows the symmetry possessed by the indi­
vidual linear chains of transition-element atoms along the 
z axis in the crystalline surroundings. Supposing that 
in the first approximation the d electrons are localized 
on one chain, we shall assume that all the quasi-momen­
tum-component dependences in the {px, Py} plane which 
characterize the electron spectrum at the point X are 
extra small, owing to the weakness of the interchain 
transition. Therefore, in the first approximation, the 
spectrum is planar. 

The little co-group (the direction group) of the 
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FIG. 1 

point X is the point group D4h, but the group of the k 
vector contains a rotation through 11/2 followed by a 
nontrivial translation bf;; a/2, where a is the period of 
the chain. As noted in 6], this circumstance leads to 
an inevitable twofold degeneracy of the levels at the 
point X. As we shall see presently, among the four 
representations Xi (i = 1, ... ,4) two, X2 and X4 , allow, 
without allowance for spin, a finite value for the elec­
tron velocity at the point pz = 0.2) In Table I, we list the 
elements of the finite grou¥ of the point X in standard 
notation (see for example, 14,15]), as well as the charac­
ters of the representations. It is not difficult to verify 
that this group differs from the group of the k vector of 
the point X of the reciprocal diamond lattice only in 
the orientation of the nontrivial elements with respect to 
the principal axes of the crystal: the congruence is at­
tained by rotating the x and y axes through 45° about 
the z axis. 

To find the electron spectrum in the vicinity of the 
point X, the representation product xi· Xi should be ex­
panded in terms of the representations of the point 
group D4h. Since D4h = D4 (Ill Ci, it is convenient to spec­
ify the latter by the representations of the group D4, 
which are even or odd under inversion. The products 
xt· Xi, as is easy to verify, contain the following rep­
resentations: 

X,'·X" X,'· X,: B,-, A,++A,-+B,+; 
(2) 

X,'·X" X;·X,: A,-. A,++B,++B,-. 

Here B~ and Ai change sign under time inversion (anti­
symmetrized products). The remaining representations 
can enter into the electronic Hamiltonian only together 
with quantities that are invariant under time reversal. 

TABLE I 

["] I x, x. x. x. 

E 
I'mv 
C, 
Tmz 
C,' 
Tmx 
C," 
Tl 
1 
TC J " 

mx 
TC'l.' 
Tn z 
TC. 

TV 

f_ t 
change 

sign 

; 

e 2 2 2 2 
(Tie,) 0 0 0 II 
(Ole,') -2 2 -2 2 
(Tic.') 0 0 0 0 
(Olu,) 2 0 -2 0 
(T!rtll:!) 0 0 0 0 

IT''U') -2 0 2 0 
(t' C.,SU2) 0 0 0 0 
(0 i) 0 0 0 0 
(Tlie,) 0 0 0 0 
(01 ie,') 0 0 0 0 
(t'iC43 ) 0 0 0 0 
(0\iU2) 

I 
0 2 0 -2 

('l' iC4U2) 0 0 0 0 
(01 ie,',..) 0 2 0 -2 
(Tlie,'u,) 0 0 0 0 

TABLE II 

in:::~t I Quantities entering into the products xr . X; 

AA1,~ p2:c + p21l~p2z; 8zz ; Exx + 81111 ; PXP1l8xV; O'H; axHX. + 0'1IH1I 
Gzpz; pzHz 

Blot p'X-p2'11; 8 xx -81111 ; ($xHx-0'1IH1I; Uz 
Be p"H II + PouR x; O'zpz8:C1,1; (PxO'x + PtP-lI) 8x1/: 0'1. (PXBtlZ + P1l8xz) 

pz; Px8xz + P.I/Bllt 
pz8 x1l 
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In Table II we list the various quantities for the rep­
resentations that enter into the products xi· Xi. Using 
the method of invariants [15], and introducing the Pauli 
matrices TX, Ty, and TZ, we can write the Hamiltonian 
for the electrons in the vicinity of the point X as 
follows: 

~(p)~';-A,++~,A,-+-~,B,++~"B,- (x" X,), (3) 

where At, Ai, Bt, and B2" contain, generally speaking, 
all the combinations that can be formed from the quasi­
momentum components and the external influences trans­
forming according to the corresponding representation. 
Above we considered the single-valued representations; 
therefore, the combinations in Table II that contain the 
spin matrices (with the exception of the term aH) owe 
their origin to the spin-orbit interaction, i.e., they are 
of relativistic smallness. In the compounds under con­
Sideration, the spin-orbit interaction is not too small. 
As to those terms containing the quasi-momentum com­
ponents Px and Py, we shall assume they are smaller 
than the rest, since the interchain coupling is considered 
to be weak. 

Thus, according to (2) and Table II, the electron en­
ergy has the form 

( 4) 

In the presence of a strain Eik, the correction to the 
electron energy in the representation of second quanti­
zation has the form A<t/(AE )</J. For the correction to 
the thermodynamic potential n, we have 

o~l 
M~<Ijl+(Ae)~». 

This expression can be rewritten in terms of the quan­
tities of field theory: the Green functions G(p) and the 
vertex part "(Pl' P2, P3, P4). The quadratic-in the 
strain-correction to the elastic energy due to the elec­
trons and including the electron-electron interaction 
can be written as follows U6]: 

1 . S (jF~ 2"(Ae).,'(Ae),.hi G'i) (p)G") (p)dp 
( 5) 

++(Ae).;' IS G")(p)G'''(p)''~;~,G,n(p')G'''')(p') (Ae)"lmdpdp'. 

The expression (5) is diagrammatically represented 
in Fig. 2. Here the Greek indices indicate summation 
over the spin variables, while the Latin indices number 
the bands: 

S dp~T(211tz)-' .E f dp,. 

In the vicinity of the Fermi surface, the Green func­
tions take the form 

G'kl (p) ~a'h) (i(i),,-e,,(p» -I, (6) 

where ak:s 1. 

Only the temperature-dependent terms in (5) have 
any physical meaning. We shall see in the next section 
that the contribution from the second term in (6) is of 
the order of gl In(w/T) at high temperatures; therefore, 
this term is, as was asserted at the beginning of the 
paper, assumed to be small. 

Thus, at high temperatures, we shall consider the 
contribution from the simple loop in Fig. 2. The de­
pendence on temperature arises only if by change the 
indices i and k in the first term in (5) belong to dif­
ferent bands: El,2=±VPZ' In fact, 
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S S up, dp, 1 (jj 
G(I)G'2)dp"" th--""·-ln~. 

2T up, v T 

According to Table II, the off-diagonal elements in the 
Hamiltonian are of the form 

;x[D, (e xx-8yy ) +D2u,j, 

where Uz is the "sublattice" displacement, e.g., the 
relative displacement of every other transition-element 
atom in the chain. 

The strain contribution to the first term.of (5) made 
by the system of chains along the [001] direction per 
unit volume will be 

D' (jj 
I5F'=--2,' (e=-eVII)21n~ 

a nu T 
(7) 

(a is the lattice constant and w is the cutoff energy). 

Summing over all the orthogonal chains, we obtain 

2D,' (jj 
I5CI1=---ln~, 

a'nv T 
(8) 

Allowance for the interaction terms becomes essential 
when gl In(w/T)-1. Jumping ahead, we note that these 
terms always increase the magnitude (8) of the effect 
without changing the relative sign for 6C ll and 6C 12 . 
Since Uz and Exx- Eyy belong to the same representa­
tion, there also occurs, according to (5), a logarithmic 
shift in the optical frequency corresponding to the vi­
brations of the atoms of the chain relative to each other. 

In the above-considered approximation, the modulus 
C44 is temperature independent.3) The experimental 
data [1] indicate that the modulus C44 also decreases 
with decreasing temperature, although the magnitude of 
the effect is markedly smaller than, for example, for 
Cll • Thus, the change in C44 from 300 to 100 Kin V3Si 
is roughly ten times smaller than for Cll ; in Nb3Sn, the 
change in C44 is smaller than the change in Cll by a 
factor of four to five. It can be seen from Table II that 
the off-diagonal components of the strain tensor, which 
lead to the logarithmic temperature dependences in the 
simple loop in Fig. 2, are due, in the self-consistent 
field approximation, only to the terms containing the 
interchain electron transitions (besides the extra small­
ness owing to the spin-orbit coupling). 

The experimental data indicate that the logarithmic 
behavior of all the quantities is valid up to a tempera-
ture of the order of the transition temperature Tm - 102 K. 
If the interchain electron transitions are attributed to 
some interaction V12,4) then the distortion of the initial 
plane spectrum is characterized by the energy Vi2/EF' 
The condition that this distortion be inSignificant right up 
to temperatures of order 102 K yields the estimate 

V"jEp<' (T mjEp) '1'-10-'. 

Such an estimate does not seem to be too optimistic, and 
is obtained even in the strong-coupling models (see [6]) 

without allowance for the inhibitory effects of the crystal­
line surroundings. 

,~, 
L~L 

FIG. 2 
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According to (8), the slope of the In T dependence of 
C 11 is twice as large as for C 12' U. is too early to speak 
of any quantitative agreement of the experimental data 
with this symmetry effect, although the qualitative pic­
ture is correct [ll • 

The majority of the data on the elastic moduli were 
taken from velocity-of-sound measurements ell. The 
static measurements of the elastic moduli have a large 
scatter and, in our opinion, are in poor agreement with 
the ultrasound data. In this connection, let us point out 
that the proposed theory predicts the dispersion of the 
elastic moduli at wave vectors q - T /v. This dispersion 
leads to a situation in which for the acoustic vibrations 
with 

11 T 10-' 
-~q~q'=----
a v a 

the temperature variations in the elastic moduli com­
puted from the velocity of sound can turn out to be con­
siderably smaller than the corresponding quantities ob­
tained in the static measurements. The dispersion law 
for the acoustic vibrations is not linear and contains 
logarithmic q dependences. 

Let us, for example, consider sound propagating along 
the z axis. To it corresponds a z dependence of Eyy and 
EXX of the form exp(iq,zz). Therefore, we must find the 
contribution to the elastic vibrational energy (5) made by 
the system of chains along the [001] direction in the 
form: 

We find after the calculations that the expression (5), 
with allowance for the finite magnitude of the component 
qz «7T/a, can be written in the form 

D' {(j) 
IlF.(q,)=- 2a'~v (e,,-e=)' Inr+U(q.)}, 

( 1) 1 [ (1 iVq,) ( 1 iUq,)] U(q.)=ljl- -- 1jl -+- +1jl ---
2 2 2 411T ·2 411T ' 

(9) 

where 1/J is the derivative of the logarithm of the gamma 
function. The asymptotic expressions for U(x) have 
the form 

U(x)= {-7/2~(3)X" x<1 (9') 
-In x, x~1' 

Let q be arbitrarily oriented: q = {qx, qy, qz}. Each 
component qi figures only in the expression for of 
connected with the contribution from the chains that 
are parallel to it. Summing over all the chains, we 
obtain 

D,' { ( (ij • ) IlF(q)=- 2a'~" ex.' 2InT +U(q,)+U(q,) 

+8",,' (21n ~ +U(qx)+U(q,) )+e.;(2In: +U(qx)+U(q,)) 

-28=8", (In ~ +U(q,) ) -28"e" (In ~ +U (qx) ) -28=8" (In ~ +U(q,) )}. 

(10) 
For the transverse sound, qll[110] (vibrations in the 

same plane), the ultrasound measurements yield the 
modulus Cs=%(C ll-C12). We have 

IlC.(q)=-~{3In~+-.iu ( ~qlv )}. 
2a'lIv T 2 "l'2411T 

(11) 

For vq/7TT »1, we find, according to (9'), that 

1 D,' { (ij 1 ( qv )} -1l(C .. -C,,)=--- 3In---In -_-- . 
2 2a'nv T 2 "l'24nT 

(11') 
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The neutron- scattering measurements of the phonon 
spectra (see [ll) indicate a distortion of the acoustic 
dispersion law, but these data are at present insufficient 
for comparison with (10) and (11'). This dispersion 
apparently explains the above-indicated noncoincidence 
of the slopes of %C ll and --{:12' 

Let us proceed to discuss the magnetic susceptibility 
and the Knight shift. If the Knight shift is due to the d 
electrons, then the Sign of the effect is not uniquely con­
nected with the sign of the magnetic susceptibility. We 
can only state from Fig. 3 that the dependence of both 
quantities, for example in V sSi, on In T is linear at high 
temperatures. 

The quadratic - in the magnetic field - correction to 
the free energy can easily be obtained from (5) by re­
plaCing in this formula A.E by the corresponding matrix 
elements from Table IT that are proportional to the field 
H. The term uH does not contain transitions from 1 to 2 
and gives the paramagnetic contribution from the d elec­
trons. The corrections to Xpar due to the interaction 
were computed for the one-dimensional chain in [l1l; 
this result remains valid for the structure under con­
sideration if the interaction with the s electrons is 
neglected. The corresponding contribution in the high­
temperature region is 

IlXpar 1, (ij 
-----g,ln-. 

Xpu 2 T 

In an expression of the type (5), the logarithmic con­
tribution in the simple loop for the free energy is given 
by the representations B~(axHx-ayHy) and B2'(PxHy + PyHx). 
Both terms lead to a paramaramagnetic contribution to 
the susceptibility that increases with decreasing temper­
ature as In T. As to the second combination, it is re­
sponsible for the Van Vleck paramagnetism, but the con­
tribution from it should be considered to be small. The 
smallness, which is connected with the representation 
B~, is due to the spin-orbit interaction. 

Thus, contained in the In T dependence of the mag­
netic susceptibility at high temperatures are two com­
peting paramagnetic contributions: increasing and de­
creasing. It can be seen from Fig. 3, however, that the 
change in the susceptibility for V 3Si is by no means 
small and most likely cannot be due to the contribution 
from a term that is quadratic in the spin-orbit interac­
tion. Furthermore, it seems that the experimental 
curves for both the susceptibility and the temperature 
dependence of the elastic modull exhibit a certain 
tendency toward saturation in ab')ut the 300-400-K 
range.[ll This circumstance makes it necessary to 
discuss the possibilities connected with another choice 
of terms at the point X. 

The representations X 2 and X 4 are a natural gen­
eralization of the terms of the linear one-dimensional 

x f o} X K ., SOD x V. ,. 

~jQ.50 

:-~j:: 
SO 7J 100 ISO ZOO ZJO JOO • S 

r,°K 

FIG. 3. The .dependence of the magnetic susceptibility X and the 
Knight shift Ky on tnT in Y,Si. For X, the results of [17] were used (the 
points. and X correspond to different samples), and the data on the 
Knight shift were taken from [1]. 
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chain, which has been considered earlier [1O,l1J, and go 
over into the latter when the crystalline surroundings 
are neglected. The representations XI and Xs have 
zero slope when spin is neglected and go over, as we 
move away from the point X, into the twofold degenerate 
representation d 5 • Therefore, these bands are either 
completely filled or completely empty, which excludes 
the concept of d-electron conduction. Still another 
possibility, which is compatible with Luttinger's theo­
rem [9J, is to assume that this band is one-quarter or 
half filled. However, in this case all the distinctive 
features which were the subject of the discussion above 
will pertain to transitions with a doubling or a quad­
rupling of the period of the A-15 structure. 

Allowance for spin leads to the splitting of the X2 
and X4 terms. We can write in accordance with (2) 
and Table II: 

~ (p) =iJ~.cr.p.+T.Bl++T.Bl-. 

Thus, the functions {~1I' ~21} form the twofold degenerate 
term €I(P) = Vpz, while the functions {~I~ , ~2d produce 
the term €2{P) = -Vpz. Therefore, if the Fermi level 
passes through the point X, then the spin-orbit inter­
action can lead to the appearance of a small number of 
electrons or holes. The volume of these "pockets" 
corresponds to 

The representation Bt, which contains €xx- €yy, leads 
again to expressions of the form (8) and (10), with the 
difference that the velocity v is of relativistic smallness, 
while the cutoff energy is of the order of V sO. It is 
reasonable to assume for the magnitude DI of the de­
formation potential of the d electrons the values DI-1 
-3 eV; 6Cll-6CI2-1012 erg/cms• From this we obtain 
the extimate v -107 cm/ sec, i.e., V sO/EF - 10-1. 

In contrast to the first case for these terms, the 
same objections which were discussed in connection with 
the Labbe-Friedel model can be advanced against the 
location of the chemical potential at the point of de­
generacy. The requirement that a detached small por­
tion of the carriers should cross over to the s band is 
artificial and can be discussed only if there are experi­
mental indications to this. We consider it necessary to 
note this possibility in connection with the results of [171 

for the susceptibility X in VsSi (Fig. 3). The large mag­
nitude of the susceptibility itself and its variation in the 
300-50-K interval could be attributed to the X2 or X4 
term. In fact, the standard term f.J.BuH in the Hamil­
tonian has off-diagonal transitions over the bands 
101,2 = ±Vpz if the field H is perpendicular to the chain 
in question. Summing over the two possible systems 
of chains, we obtain the temperature-dependent term 
in (5): 

{JF 
e'It'/P In V .. 

8nm'c'a'iJ T 

Another possible explanation of 6Xpar is connected with 
the electron interaction (see the following section). 

To conclude this section, let us discuss briefly the 
temperature dependence of the resistance and of the co­
efficient of thermal expansion. In Figs. 4 and 5 we have 
plotted the resistance for different A-15 compounds as 
a function of In T (the data were taken from Testardi's 
review article [IJ). There is practically no evidence of 
the standard law p - T. This in itself is not surprising, 

834 Soy. Phys.-JETP, Vol. 38, No.4, April 1974 

D,S 

SO 7S IUU IZO 150 lOU Z5U J/JO 

FIG. 4. The resistance ratio p(T)/p(300 OK) for different compounds 
as a function of/nT (data taken from [1]): O-V3Ge, D-V3Si, e-V3Ga, 
and d-V3Sn. 

IU 

SO 75!/JO ISO tIKI JIKI ~/JO 5/JO tIKI 

FIG. 5. Resistance in Nb3Sn as a function of lnT (constructed from 
curves in [1 ]). 

since the conductivity along the linear chain in the 
presence of impurities has a special character owing 
to the quasi-localization of the electrons. Even the 
best samples of the A-15 compounds are fairly contam­
inated on account of internal strains, inhomogeneities, 
etc. The effective mean free path I can be estimated 
from the observation that different samples of VsSi or 
NbsSn prepared by the same method can either exhibit 
or not exhibit a structural transformation. As can be 
seen from the results of the following section, this de­
pends on the relation between I and the correlation 
length ~o, for which we take the expression from the 
BC S theory (see (11)): 

so=ltvl2nT .;;. 

Setting v -107 cm/ sec and Tm = 40 K, we obtain 1- 10- 6 

cm. As to the linear dependence of p on In T in Figs. 4 
and 5 in the region T» T m, not having the theoretical 
formulas, we can only state the fact that the electron­
phonon and electron-electron scattering amplitudes con­
tain, according to the results of the following section, 
logarithmic terms. 

Let us finally touch upon the question of the coeffi­
cient of thermal expansion. The dependence of the elec­
tron terms on strain, together with the quadratic strain 
dependences, leads to the appearance in the free energy 
of terms linear in €ii, with temperature-dependent parts 
in the form 

8ii~ a.n.(T)=AT'8H, 

where nk ex: T2 is the number of carriers in the k-th 
band. Minimizing the free energy with respect to €ii, we 
find for the lattice-parameter temperature dependence 
due to the electronic contribution the expression 

AT' 
( 12) 

C .. +2C" 
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In Testardi's work [181, the coefficient of thermal expan­
sion a in V 3Si and V 3Ge is interpolated as a ex: In T . 
Analysis of these data [I81 shows that a can equally well 
be described by a linear dependence on T. 

3. ALLOWANCE FOR THE ELECTRON·ELECTRON 
INTERACTION. INSTABILITY AND SUPERCONDUC· 
TIVITY 

The nature of the electronic corrections to the free 
energy leads to a structural transition to the tetragonal 
phase. The electron-electron interactions considered 
in [10,111 give rise to other distinctive features, in par­
ticular, of the Cooper-pairing type. We obtain the cor­
relation between these transitions by taking into account 
in (5) the second term containing the effects of the elec­
tron interaction. We stipulate at once that we restrict 
ourselves to the parquet approximation, Le., we assume 
the interactions to be weak. In general, the temperature 
range where the dependence of the various quantities 
on InT is linear is fairly wide. We shall assume that 
the three-dimensionality effects (the interchain inter­
action) are characterized by the smallest constants. 

The definition of the vertex part f'T a/3y6(P1, P2, P3, P4) 
as the Fourier component of (T(1JIa(I)1JI/3(2)1JI/(3)1JI6+(4))) 
is well known: 

(T(Ijl. (1 )~" (2) Ijl,+ (3).p, + (4))) 
*-G.,(p.)G,,(p,) +G.,(p.) G,,(p,) (13) 

+G.t (PI) G" (p,) fTt". (Ph p" p" p,) G,,(p,) G., (p.). 

(We have not written out the conservation laws.) Let us 
briefly explain the changes introduced by the crystal 
symmetry. In the absence of external fields and inter­
actions (except those which are assumed to be included 
in the self-consistent field), the vicinity of the point X 
corresponds to two bands: €1,2 = ±Vpz. The interactions 
themselves are short-range, but the invariance of (13) 
imposes definite limitations on the interband transitions. 
If we choose the representation DX for the wave func­
tions, then, say, the pair 1JI(l)1JI(3) corresponds to the de­
composition of DX* ® Dx into the four irreducible rep­
resentations of the point group of the point X: 

Dz'®Dx=Ao+A,+Ax+A" 

where the representations AJ and Az are diagonal in 
some basis corresponding to the levels €1,2(P) near X. 
In the preceding section we associated in the matrix 
Hamiltonian the 2X2 matrices e, Tx, 7'y, and TZ with 
all the representations. Therefore, to any diagram in 
which the electron line from 1 terminates at 3, and the 
one from 2 terminates at 4, will correspond the con­
tribution to f'T given by 

(goe. e + gztz· Tz + gxTx' tx + g.Tu· T.) 6.,6"0' (14) 

We choose the expression (14) as the bare interaction. 
It is easy to see that only interband transitions of the 
type (11; 22), (12; 21), (12; 12) are different from zero. 
The diagonal transitions (11; 11) make no contribution 
to the parquet equations. If the systems studied in [10,111 
are considered in a doubled lattice, then a correspond­
ence can be established between the vertices figuring in 
both cases. Thus, it turns out, in particular, that the 
transition (11; 22) corresponds to the momentum-trans­
ferring vertex f'T ++ __ introduced in [111. The corre­
spondence between the bare constants of [IIl and (14) 
is as follows: 

~=~+~~=~+~;~=~-& (1~ 
Generally speaking, there are no grounds for neg­

lecting in (14) and (15) the dependence on the angles be-

835 Sov. Phys.·JETP, Vol. 38, No.4, April 1974 

tween the momenta. For a plane spectrum, only the 
orientation of pz remains. The notation 

Y-:~~~=116av6~o-'Y 26"o6jlvi 

f'T :::: =1' (/).,/),,-/).,6.,) 

allows us to directly use the results obtained by Dzyalo­
shinskfi and Larkin in [111, since the parquet equations 
for both cases have the same solutions. The difference 
in the physical interpretation consists, as has already 
been indicated, in the fact that in the one-dimensional 
model of [10,Hl a structural transition corresponds to a 
doubling of the period, whereas the distinctive features 
in the /3-W structure pertain to the wave vector q = O. 

It is convenient to compute the complete expression 
(5) by Sudakov's method. Figure 2b shows a diagram­
matic representation of the corresponding procedure, 
which was used earlier in [111. The dashed line indi­
cates the cross section where the logarithmic variable 
has its maximum value, Le., where the running inte­
gration momentum is nearest to the Fermi point. For 
the hatched triangles, which we denoted by L and which 
depend on the nature of the quantities being averaged, 
we obtain the equationsS) 

1 ~ 
L.," (s) =L;;)2I_ 2'" S 13ds (L .. I2/),.-L,,") 

o 

~ 

--}S (,,(IL .. 2I/),'-l,L,:')ds, 
o 

1 ' 1 ' L,.t2(s)=L'~O)"-2'" S l,ds (L .. 21 /),,-L,,2I)-?, S (,(,L .. 12/),'-l,L,.")dl;. 
o , 

In order to compute the loop shown in Fig. 2b, we must 
evaluate the integral 

I 

S (L,," (tj) L,;2I (tj)+L,p"(tj)Lp~" (tj))dti· 
o 

For the elastic moduli, L~~ 12:: L5°p21 = 6p6, and we obtain 

{ '( 1 1 3 } 
L=exp' - f 21'+41'+'411) dtj . 

Thus, when the electron-electron interactions are taken 
into account the expressions (8) acquire the extra factor 
q,(ln T) > 0, where , 

<D(s)= S L'(tj)dtj. 
o 

The signs of the corrections and the relation ~6C11 
=-6C 12 remain unchanged. 

(16) 

Thus, we can state that in a reasonably good sample 
the structural transition always precedes the transition 
to the super conducting state. If the electronic interaction 
constant is small, then the terms studied in Sec. 2 are 
themselves capable of making the elastic modulus 
Cll-C12 vanish. If, however, the vertex part becomes 
infinite at some temperature T*, then, according to (16), 
the vanishing of the modulus C 11-C 12 occurs at tem­
peratures close to, but higher than, T*. In fact, near 
the pole [111 

This result is very important for the understanding of 
the connection between the high-temperature super­
conductivity and the instability in the /3-W structures. 

It was noted above that the optical frequencies also 
soften.S) Since, for example, the "sublattice" displace-
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ment in a chain transforms according to the same rep­
resentation as EXX - Eyy, the vibrational energy includes 
terms of the type (7) containing combinations of ui and 
uz( EXX- Eyy). Therefore, when the three-dimensionality 
of the phonons is taken into account, the question as to 
which frequencies-optical or acoustic-vanish first de­
pends on the magnitudes of the deformation potentials 
and on the relation between the elastic moduli and the 
optical frequencies at high temperatures. In compounds 
of the type NbaSn or VaSi, this question is experimentally 
resolved in favor of the acoustic vibrations. Because of 
the cross terms (EXX - Eyy)UZ, the sublattice displace­
ment, generally speaking, develops simultaneously with 
the tetragonal deformation [12J 

Let us now touch upon the question of the effect of 
stresses and impurities, or structural defects, on the 
transition. According to Table II, the strains for an 
individual chain have both "diagonal" and "nondiagonal" 
representations. As for the former, their role con-
sists in changing the chemical potential, i.e., in the dop­
ing of the d bands with s-band electrons. It is not dif­
ficult to verify that the matrix elements for the Cooper­
type diagrams do not change, whereas in the "zero­
sound" channel of the vertex part, i.e., in (8) or (16), 
the logarithmic integrals are cut off at the strain­
energy value, as a result of which the structural transi­
tion is suppressed at a sufficiently large value of the 
energy. 

As to the vertex part itself, it depends on two log­
arithmic parameters: 

00' 
1')= In­

Aeji' 
00 

s=ln­
T 

and was found earlier in UOJ. The spinor combination 
1'1 + 1'2, responsible for the Cooper pairing, is 'Ya in the 
notation of [10J (11 < ~): 

(17) 

It was shown in [1OJ that the equation for the super­
conducting gap coincides with the homogeneous parquet 
equation for the function 'Ya and has a solution if the 
latter has a pole. If the magnitude of the strain is such 
that AEii is higher than the cutoff energy W, then the 
parquet equation degenerates into the standard ladder 
of the Cooper diagrams of the BCS theory.7) 

Let the strain belong to the "nondiagonal" represen­
tation of EXX- Eyy. In this case the spectrum of the 
electrons of a chain becomes dielectric, and all the 
logarithmic integrations are cut off at energies of the 
order of D1(EXX-Eyy). Thus, an arbitrary large strain, 
generally speaking, destroys both the structural in­
stability and the Cooper pairing. 

Let us discuss on the basis of this qualitative picture 
the experimental data on the nature and magnitude of 
the anharmonic effects. Such data (see the references 
in [1]) are for the present not many, and they pertain 
primarily to the vicinity of the transition temperature. 
From the general standpOint the appearance of strong 
anharmonicities and the dependence of all the parameters 
on the strain are well understood from the foregoing. The 
parquet approximation, however, cannot describe the 
phase transition itself, especially since a second-
order phase transition cannot in general be realized 
in the purely one-dimensional model, and the question 
remains: How does the interchain interaction make 
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such a transition possible? Let us note at once in this 
connection that from the point of view of the full cubic 
group, a purely tetragonal strain U9J, or a deformation 
accompanied by a displacement of the transition­
element atoms in the chain, a displacement which has 
been observed in NbaSn [12J, can be realized only through 
a first-order phase transition. The so-called marten­
sitic transition is probably a second-order transition. 
For a single chain, a second-order phase transition is 
not forbidden. In fact, after the imposition on the chain 
of tetragonal strain and the displacement of the sublat­
tices, the remaining point group has half the initial num­
ber of symmetry elements and possesses only one­
dimensional representations. Therefore, in the Landau 
expansion of the theory of second-order phase transi­
tions, there are no third-order terms for the individual 
chains: they arise only as a result of a weak interaction 
between the chains. 

From the condition D1(EXX-Eyy)-Tm, we obtain the 
correct order of magnitude for the strain: E-uz-Tm/D1 
- lO-a. For T > Tm the values of the strain at which the 
anharmonic effects are important are determined by the . 
estimate 

(18) 

The data on the dependence of Tc and the elastic 
moduli on uniaxial strain (Eyy = EZZ, EXX) easily fit into 
the expounded scheme. Indeed, the logarithmic contribu­
tion to the elastic free energy (5) from the two systems 
of chains (along the [010] and [001] directions) is cut off 
at DIE, which implies an increase in the stiffness of the 
lattice in comparison with the case when there is no 
strain (it is assumed that T <DIE). The order of the 
change in the elastic moduli, t.C/C -1 for E _lO- a 
T/Tm , turns out to be correct [1]. The superconducting 
transition should then be attributed to the family of 
chains along the [100] direction. The latter circum­
stance apparently allows a direct experimental verifi­
cation in, for example, the measurements of the con­
ductivity anisotropy function in the presence of strain. 
No quantitative data exist on the logarithmic dependence 
at high temperatures of the elastic moduli on strain in 
the region (18). At low temperatures, this dependence, 
like (9) and (9'), is quadratic [1]. 

Hydrostatic pressure leads to a homogeneous com­
pression. As was indicated above, this effect would con­
sist in the redistribution of the electrons between the s 
and d bands, and, in the parquet approximation, the 
superconducting transition point would, according to (17), 
not be affected. If we assume that the entire pressure 
dependence of the elastic moduli is connected with the 
contribution (7) from the d electrons, then the expres­
sions (8) should be replaced by the following ones: 

W,' { 00 (AS" )1 
bC,,=- a'nv Inr+rp T ;-, (19) 

ip(z)= r~: {th(x++ )+th (x-+) -2thx}. (20) 

According to (8) and (20), Cll and Cs = ~(Cll-CI2) 
increase, while C12 decreases, with increasing pressure. 
Further, if the temperature-dependent term in C44 , 

which is usually less than OCll, is also due to a contribu­
tion of the type of Fig. 6a, then, as we shall show be­
low, it is proportional to 6C 11, differing from it in the 
magnitude of the coefficient in front of the logarithm. 
Therefore, C44 also increases when Eii;" O. Further-
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FIG. 6 

more, from (19) follows the assertion that in the high­
temperature region the pressure derivatives ac/ap 
relate to each other in the same way as their tempera­
ture-dependent terms, i.e., 

C,/ Cij(T,) -C,,(T,) 

Clm'~ C,m(T,)-C'm(T,) . 
(21) 

Experiments on the effect of pressure have been per­
formed by Carcia et al.(20] for V3Si and V3Ge right up to 
pressures of 10 kbars. Their result for V3Si is that C44 
and Cll increase, while Cs=%(C ll -C12) decreases, 
with increasing pressure. 

It is Significant, however, that all the derivatives 
have the same order of magnitude, ac/ap-1, as those 
for normal metals. Meanwhile, at these pressures 
Eii _10- 3 , and, according to (19), large anharmonic ef­
fects might have been expected. Notice, incidentally, 
that the elastic moduli in the formulas (19) would then 
vary at low pressures according to a quadratic law. 
The fact that hydrostatic compression does not reveal 
strong anharmonicities indicates, in our opinion, that 
the d and s bands are not in communication. 

There arise in the structural transition strains which 
make the electron spectrum in the two chain systems 
dielectric. (As far as we know, no measurements have 
been made of the anisotropy in the conductivity.) It is 
also known how Tc and Tm get separated in the non­
parquet approximation. They are, however, of the same 
magnitude, and therefore a change in Tm by a value 
of the same order as itself implies (for a pure sample!) 
the same change in Tc, although the relative sign of the 
effect is theoretically unknown. The application of pres­
sure changes the elastic moduli by values typical for 
all solids. Therefore, the quantity aTc/ap=0.036 
K/kbar found by Smith (2ll for V3Si seems to be correct 
and agrees with the data obtained by Carcia et al.(20]: 

1 aT,. 1 ac 
T::ap--cap' 

if we assume that the pressure P* that changes the lat­
tice constant significantly is equal to P* -106 bar. 

Uniaxial strains, as has already been indicated, 
strongly influence the electron spectrum and, conse­
quently, Tm. We obtain the estimate for the quadratic 
effect of the variation of Tm at not too large values of 
the tetragonal strains in the same manner as we de­
rived the expression (20): 

AT moo IAT,I __ D.'e' --1O'e' 
Tm T, 4Tm' • 

The estimate obtained by Testardi Cl] gives .:lTc/Tc 
__ 104€2. 

The role of impurities and defects is less well under­
stood, since in a one-dimensional chain the defects, 
generally speaking, localize the conduction electrons. 
If, however, the impurity atom is a sufficiently close 
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neighbor of the nontransition-element atom in the peri­
odic table, as, for example, Al and P for Si, or In and 
Sb for Sn, then it may be inferred that at low concen­
trations their role is primarily one of doping the com­
pound, i.e., of shifting the chemical potential. As was 
noted above, such an effect should enhance the stability 
of the system. The effect of doping has been studied for 
the systems Nb3Snl-xSbx and Nb3Snl-xAlx (see (ll). The 
structural-transition point is clearly depressed at low 
concentrations. Recomputing the concentration x for the 
equivalent change in the chemical potential, we find that 
a change in Tm of the order of unity occurs at 

where I'd and Vs are the densities of states for the d 
and s bands respectively. For the Nb3Snl-xAlx systems 
the limit of existence of the tetragonal phase is indicated 
in (22]: x < 0.07. Taking into account the ambiguity about 
such experiments in connection with the ambiguity about 
the preparation of even pure samples, we should con­
sider the agreement to be a good one if vct/vs - 10. In 
this connection, we should like to point out that the role 
of impurities in any case does not amount to changing 
only the lattice constant, i.e., it is not comparable to 
the action of pressure, although we can, in relation to 
the dependence of the elastic moduli on doping, repeat 
everything that has been said apropos of (19). 

Let us now turn to the question of the temperature 
dependence of the modulus C44 . Figure 6a shows the 
contribution to C44 that arises as a result of the electron 
interaction. The wavy line corresponds to the off-di­
agonal component of the strain tensor. The portions of 
the diagram denoted by A and A* can be of twofold 
character. First, they could be nondiagonal transitions 
for the states in the d band, transitions which are 
connected with the fact that the interaction (14) has a 
component corresponding to the requisite representation. 
For example, according to the Table II, this will be 
B2-(uzPzExy) for the functions X2 and X4, and Bl-(ExyPZ) 
for the functions Xl and X3. The expressions for A and 
A* do not themselves contain logarithmic contributions, 
since because of the additional Pz, the integration do­
main lies far from the Fermi point at X. The internal 
cross section yields a contribution to C44 of the form 

IAI' fij 
6C .. =---In~. 

2"va' T 
(22) 

Notice that the contribution of the diagram of Fig. 6b is 
unimportant, since the logarithmic singularity of the 
parquet insert is integrated over the variables in A 
and A *. If a set of functions of the type X2 and X4 are 
realized at the point X, then besides the assumed 
weakness of the interaction, IA 12 contains in addi-
tion the square of the spin-orbit interaction constant. 
In the case of the representations Xl and X3, the choice 
of Bl-(ExyPZ) implies only the assumption of the small­
ness of the interaction constants in the parquet equations. 
In this case the order of magnitude of this contribution 
to C44 could be regarded as reasonable. 

Let us consider the other possibility when the por­
tions A and A* of Fig. 6a pertain to s electrons. The 
diagram of Fig. 6b is again unimportant. As to the in­
teraction vertex ysdsd corresponding to the scattering 
of s electrons by d electrons, there are no grounds 
for supposing that it is very small. Notice that it is pre­
cisely this interaction that partiCipates in the production 
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of the self-consistent field for the individual chains. 
Thus, this mechanism also leads to the expression (22).8) 

Finally, if ysdsd has an exchange part, then we ob­
tain for the correction to the susceptibility a paramag­
netic contribution that increases with decreasing temper­
ature. A weak point of this susceptibility-growth mech­
anism is that the weakness connected with the exchange 
interaction figures in it. According to Fig. 3, the change 
t.x/x for the 300-100-K range is roughly 30% in V3Si, 
whereas for C 44 this change is about 4%[1]. Of course, 
the latter circumstance can easily be related to the 
numerical smallness of the components of the deforma­
tion potential, since the distribution of the s electrons 
is near-isotropic. In fact, the Young modulus for V3Si 
is observed to be isotropic at high temperatures. This 
is not so in Nb3Sn, and the corresponding change in C 44 

is also markedly larger. 

4. CONCLUDING REMARKS 

The contents of the preceding two sections demon­
strate, to our mind, that the expressed ideas about the 
predominant role of the linear chains consistently de­
scribe the numerous peculiar properties of the high­
temperature superconductors with the A-15 structure. 
At high temperatures, this description is of quantitative 
nature. The elastic properties are completely adequately 
accounted for by the theory. For the magnetic suscepti­
bility and the Knight shift the presence of temperature­
dependent terms of both signs and diverse natures allows 
us to understand why, generally speaking, the magnetic 
properties quite significantly vary from compound to 
compound. 

From the proposed standpoint, the importance of fur­
ther experimental study of these compounds lies in the 
fact that, first, the experimental situation indicates the 
existence in nature of one-dimensional structures with a 
sufficiently weak interchain interaction, and, secondly, it 
positively answers the theoretically unclear question of 
the possibility of the earlier investigated [lO,l1J phase 
transitions in quasi-unidimensional chains if the latter 
are placed in a three-dimensional medium. 

If the structural transition is, as was discussed in 
Sec. 3, due to the electron interactions, then the super­
conducting transition temperature Tc should be expected 
to differ from Tm by only a small factor. The question 
of the role of the anharmonicities in the elevation of T c 
reduces to the question as to whether the dielectric split­
ting of the electron spectrum has time to develop to 
such an extent that the electronic vertex part may no 
longer become infinite. It was shown above that, in 
principle, impurities and the effect of doping are capable 
of decreasing the magnitudes of the dielectric splitting, 
thereby raising Tc. 

Thus, in a system possessing a well-defined one­
dimensional structure, and about which it is known that 
either its symmetry permits the degeneracy of the elec­
tronic levels with a€/ ap ;cO, or the electrons do not fill 
the entire one-dimensional band, the detection of a struc­
tural instability is an indication of the possibility of a 
superconducting transition at a nearby temperature. 

Let us explain further the difference in the relation 
between superconductivity and structural instability in 
the three-dimensional and one-dimensional cases. In 
the first case there is practically no connection between 
them. According to the BCS theory, the larger the ef-
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fettive interaction constant, the higher Tc. The former 
is determined on the average by the interaction with the 
various phonon modes and the Coulomb interaction. The 
numerical computations of [23J, however, show that if 
this constant is sufficiently large, then the structure is 
unstable. In contrast to the exponential BCS formula, 
the transition temperature of the corresponding phase 
transformation is determined by the anharmonic inter­
actions and is therefore, generally speaking, high com­
pared to Tc. Therefore, after the structural transition, 
we again have to deal with a BCS constant that does not 
exceed the permissible stability limit, from which the 
maximum possible value of Tc can be estimated. In the 
region very close to, for example, a shear-type struc­
tural transformation temperature, the frequency of the 
selected vibration branch tends to zero, but as has been 
noted, the effective interaction constant determining Tc 
if averaged over the entire phonon spectrum. Because 
of this, no significant enhancement of the interaction oc­
curs even in the vicinity of the structural transition. 

In the one-dimensional case, a large interaction con­
stant also implies an instability of the system. The dif­
ference, however, is that any attempt to decrease the 
energy of the system through deformation leads to the 
appearance of a dielectric gap in the spectrum, and 
this competes with the possibility of achieving Cooper 
pairing. through the same means. This is a peculiar 
property of an electron spectrum that coincides with 
the hole spectrum; in metals, a small deformation does 
not qualitatively change the spectrum near the Fermi 
surface. Thus, in this conception, instability and super­
conductivity are two aspects of one and the same phe­
nomenon: the instability of the electron spectrum 
against interactions involving attraction. 

The author is grateful to A. A. Abrikosov, I. E. 
Dzyaloshinskil, A. I. Lardin, and E. I. Rashba for a dis­
cussion of the results of the paper, and to N. E. Alek­
seevskil, E. P. Krasnoperov, I. F. Shchegolev, and A. G. 
Rabin'kin for fruitful discussions on the experimental 
situation. 

I)The possibility of an antiferromagnetic ordering has also been demon­
strated by DzyaloshinskiI and Larkin [11 J. 

2)Hcre and below all the quasi-momenta are reckoned from the point 
X{O, 0, 1T/a}. 

3)The contribution from the simple loop in Fig. 2 contains, generally 
speaking, a power-law dependence on T, of smallness V /Ep2. We neg­
lect such small terms. 

4)This interaction should be thought of as due both to direct d-electron 
transitions between the orthogonal chains and to exchanges via the s 
electrons. 

S)Here our results differ from those of [11 J. 
6)In the present case only those modes which transform according to the 

requisite representations in Table II can be involved. The rest are, in 
general, not linked to electrons in the basic approximation. 

7)No change occurs in the integrals in the "zero-sound" channel when the 
crystal is doped if we consider a transition with the formation of a super­
lattice. The author is grateful to I. E. DzyaloshinskiI for this remark. 
However, the nature of the transition cannot be elucidated in our approx­
imation. 

8)In other words, an interaction that leaves the spectrum plane can lead 
in the representation B;- of Table II to large terms that are proportional 
to the field or the strains. 

lL. R. Testardi, in: Physical Acoustics, Vol. 10, Aca­
demic Press, New York, 1973. 

2M. Weger, Rev. Mod. Phys. 36, 175 (1964). 
3A. M. Clogston and V. Jacarino, Phys. Rev. 121, 1357 
(1961). 

L. P. Gor'kov 838 



.,------------------

4J . Labbe and J. Friedel, J. Phys. Radium 27, 153, 303, 
708 (1966). 

5R. W. Cohen, G. D. Cody, and J. J. Haloran, Phys. Rev. 
Lett. 19, 840 (1967). 

8M. Weger, Phys. Chem. Sol. 31, 1621 (1970). 
7S. Barisic and P. G. DeGennes, Sol. State Comm. 6, 
281 (1968). 

8M. Weger, Phys. Rev. Lett. 29, 584 (1972). 
9J. M. Luttinger, Phys. Rev. 119,1153 (1960). 

lOyU. A. Bychkov, L. P. Gor'kov, and I. E. Dzyaloshin­
ski!, ZhETF Pis. Red. 2, 146 (1965) [JETP Lett. 2, 92 
(1965)]; Zh. Eksp. Teor. Fiz. 50,738 (1966) [SOY. 
Phys.-JETP 23, 489 (1966)]. 

111. E. Dzyaloshinskil and A. I. Larkin, Zh. Eksp. Teor. 
Fiz. 61, 791 (1971) [SOY. Phys.-JETP 34,422 (1972)]. 

l2G. Shirane and J. D. Axe, Phys. Rev. B4, 2957 (1971). 
l3W. Gorzkowski, Phys. Status Solidi 3, 910 (1963). 
l~. Jones, The Theory of Brillouin Zones and the Elec­

tronic States in Crystals, North-Holland, Amsterdam, 
1960 (Russ. Transl., Mir, 1968). 

l5G. L. Bir and G. E. Pikus, Simmetriya i deformat-

839 Soy. Phys.·JETP, Vol. 38, No.4, April 1974 

sionnye effekty v poluprovodnikakh (Symmetry and De­
formation Effects in Semiconductors), Nauka, 1972. 

l8A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshin­
skil, Metody kvantovol teorii polya v statisticheskol 
fizike (Methods of Quantum Field Theory in Statistical 
Physics), Fizmatgiz, 1962 (Eng. Transl., Prentice­
Hall, Englewood Cliffs, New Jersey, 1963). 

l7J. P. Maita and E. Bucher, Phys. Rev. Lett. 29, 931 
(1972) . 

l8L . R. Testardi, Phys. Rev. B5, 4342 (1972). 
19p. W. Anderson and E. I. Blount, Phys. Rev. Lett. 14, 

217 (1965). 
20p. F. Carcia, G. R. Barsch, and L. R. Testardi, Phys. 

Rev. Lett. 27,944 (1971). 
2lT. F. Smith, Phys. Rev. Lett. 25, 1483 (1970). 
22L. J. Vieland and A. W. Wicklund, Phys. Lett. A34, 43 

(1971). 
23W. L. McMillan, Phys. Rev. 167, 331 (1968). 

Translated by A. K. Agyei 
173 

L. P. Gor'kov 839 


