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The time required for a vortex to surmount the surface barrier in type-II surperconductors is 
calculated. The dependence of the activation energy needed for formation of a vortex nucleus on 
the magnetic field strength is determined. The pre-exponential factor in the transition probability near 
He 1 is found from the Fokker-Planck equation. 

1. THE ACTIVATION ENERGY 

In type n superconductors, the mixed state, first con­
sidered by Abrikosov [1J , becomes energywise favored at 
magnetic fields above Hc 1' The magnetic flux penetrates 
into the sample from the surface in the form of vortex 
filaments. The interaction of the vortex with the surface 
leads to the presence of an energy barrier, which has 
been calculated for an ideally smooth surface in [2 ,3J • 

The energy of a rectilinear vortex V(Y) parallel to the 
surface is shown as a function of the distance from the 
surface in Fig. 1. 

Penetration of the vortex through the barrier takes 
place as a result of fluctuations. Since the energy of the 
vortex is proportional to its length, the flipping of an en­
tire rectilinear vortex is less probable than the initial 
transition of a small part of the vortex and its further 
expansion. The energy of a curved vortex has the form 

U{y(x),z(x)l= S {11>;:" [(HY"+z")"'-11+:V(y) }dx, (1) 

where <1>0 is the flux quantum, Hc1 the lower critical 
field. The field H is directed along the surface on the 
x axis. In the potential relief U {y(x), z(x)}, there is a 
saddle point to which corresponds a saddle configuration 
of the vortex yo(x), z = O. The configuration yo(x) can be 
determined from the equation 

BU{y(x)}/lly=O. (2) 

Inasmuch as the integrand in (1) does not depend on x, 
we can immediately write down the first integral of 
Eq. (2): 

I1>.H" [ y." ] 
4n (1+y,")'" (1+y.") "'+1 -V(y.)=const. (3) 

Since V(Y) = 0, y' = 0 on the surface of the sample (the 
line of force cannot have a kink), we have const = O. The 
activation energy computed with the help of Eq. (3) has 
the form 

(4) 

where Ym is determined from the equation V(Ym) = O. 
The principal contribution to the integral (4) is made by 
the region y ~ 6, where 6 is the penetration depth of the 
field. In this region, V(Y) has the form 

11>. 11>. 
V(Y)=TnHe-"'-Tn(H-H,,). (5) 

(It can be established that the term which corresponds 
to the interaction of the filament with its image, is im­
portant only at distances of the order of 6/ln K and there­
fore can be omitted with accuracy ~ l/ln K.) Substituting 
V(Y) in (4), we obtain 
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u.= 11>;~1l {~' _ [H'~~", ]'" (arcsin ~' + ;)+ ; }; 
n+2 

U.=~I1>.H,,1l as H ...... H", 

U.=I1>.H,t'1l/8H for H;::toH::pH". 

The latter limiting case has been considered by 
Gala1.ko. [4J 

2. TIME OF SURMOUNTING THE BARRIER 

(6) 

(6a) 

(6b) 

The transition through the barrier takes place as a re­
suit of thermal fluctuations and the probability of tran­
sition is proportional to exp{-Uo/T}. In the limiting 
case H - Hc l' we can determine the dependence of the 
preexponential factor on the field in a manner similar to 
what has been done by Petukhov and Pokrovskil. [3J The 
problem reduces to the solution of the Fokker- Planck 
equation. 

In the vicinity of the saddle point, U{y(x)} can be 
represented as a quadratic form: 

U{y.+Ilyl=U.+-} Sf IlY(X~:~(x') lly(x)lly(x')dxdx', (7) 

where 

(8) 

This quadratic form can be diagonalized: 
1 ~. 

u=u'+ 2 ~Jlnl']n'. (9) 

Among the eigenvalues of the quadratic form (9) there 
are one negative one, which corresponds to motion along 
the saddle and two zero ones corresponding to shifts of 
the entire configuration along the surface. The remain­
ing eigenvalues are positive. As will be seen from the 
following, the most important region in the calculation of 
the eigenvalues is the one in which the vortex deforma­
tion is weak; therefore, we can use a simplified ex­
pression for the energy: 

11> y" z" ( 1) } lJ{y(x)l=-' S{H,,-+H,,-+ He-·"-H+H,,-----;-h(2y) dx (10) 
4" 2 2 2 

where the field h(2y) describes the interaction of the 

'1(Ij) 

.' 
Or-------~~--------~g 

FIG. I. Energy of a rectilinear vortex V(y) as a function of distance 
from the surface: a - for H < Hc1, b - for H > Hc1. 
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vortex with i~s image and is equal to h(2y) 
= (cJ>0/21T02)Ko(2Y/o). 

In this case, the problem of determining the coeffi­
cients il n of the quadratic form (9) reduces to estimates 
of the eigenvalues of the Schrodinger equation: 

(l1a) 

\ 
\ 
\ 
\ 

V'(y,f.t1 
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I 
I 
I 
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FIG. 2. Potential in Eq. lla. The dashed part of the curve corresponds 
(l1b) to distances at which destruction of the core of the vortex takes place. 

The form of the potential V" (Yo(x) is shown in Fig. 2. 
The zero eigenvalue ilx = 0 corresponds to the eigen­
function cp = dyo/dx, as is easily established, by differ­
entiating (3) with respect to x. This eigenvalue exists 
even when the wells are moved out to an infinitely great 
distance. In this case, the zero level will be doubly de­
generate. As the wells move together, a splitting of the 
zero eigenvalue takes place. The amount of the splitting 
can be found in much the same way as the ground state 
of the H~ ion is determined, [6J and turns out to be pro­
portional to [(H - Hc 1)/Hc 1p12. In what follows, the value 
of this eigenvalue will be found by another method. 

Among the Jlnz there is also a zero eigenvalue ilOz 
= 0, which corresponds to translational symmetry along 
the z axis. All the remaining eigenvalues J..I.ny' J..I.nz are 
positive and, since the configuration yo(x) is bent essen­
tially only near the ends at distances of the order of 0 
that are small in comparison with the total length of the 
vortex 10, correspond to free oscillations: 

IJ>,H" n'n' IJ>. n' 
f.tn"""f.t"""~T=s;6'(H-H,,). (12) 

Inasmuch as the eigenvalue corresponding to motion 
along the saddle is much smaller than the other (non­
zero) eigenvalues, we can assume that the motion along 
the saddle is the slowest, and that the nonequilibrium 
shape of the vortex can be characterized by a single 
parameter, assuming that equilibrium has been estab­
lished in the other degrees of freedom. 

Since the vortex is weakly curved on the principal 
part of its length, replacement of the vortex energy by 
the free energy is done in a manner similar to such a 
replacement for the rectilinear vortex, and reduces to 
renormalization of Hc l' which will be assumed to have 
been done in what follows. As a saddle-point parameter, 
it is convenient to choose the distance 1 between the ends 
of the vortex filament. Thus, for example, the length 10 
between the ends of the filament in the saddle-point con­
figuration is equal to 

S S 1 [ H-H,]-'" - ( H" )'" 1,= dx=2 ---= e-·I'---'- dy=Y2nll --- . (13) 
Y2 H" H-H" 

To determine the form of the energy U(l) as a function of 
l, we must vary the functional (1) with the added condi­
tion f dx = 1. The calculations are entirely similar to 
those which were carried Qut for the determination of the 
activation energy and lead to the dependence 

U(I) =U + nlJ>,H"Il' nlJ>.H"Il' 
• I. 21 

«D. 
-;;;;:(H-H,,) I, 

where Uo is determined by Eq. (6). 
point, U(l) has the form 

Near the saddle 

U(I) =U.+'/2U" (I,) (I-I.)', 

where 
U" (l.)=-~ __ ,_I • IJ> U (H-H ) 'I, 

Y2n'Il H" 
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(14) 

(15) . 

The Fokker-Planck equation for the distribution func­
tion of the vortices has the form (7) 

af a{1[aU af]} a;=fil -.; atf+Tat . (16) 

The coefficient of viscosity 11[ is connected with the vis­
cosity coefficient per unit length 11 by the relation 

( ay )' 1]'=1]S 7h dx. , (17) 

The coefficient of viscosity 11 was found by Gor'kov and 
Kopnin[8J and is equal to 11 = 6yacJ>OHcl/c2, where y is 
a numerical factor of the order of unity. 

Solving Eq. (20) in the quasistationary approximation, 
we determine the vortex flux from the surface of the 
sample per unit time: 

..!.._~( IJ>.H,,)"'(H-H,,)'I'exp{_U,}, (18) 
or YT 1]1l' Il Tl T 

S is the area of the surface of the sample. 

3. CONCLUSION 

An estimate of the argument of the exponential in Eq. 
(18) gives a value of the order of 105 • This shows that in 
the case of an ideally smooth surface, penetration of the 
vortex into the sample from the surface at H ~ H 1 is 
practically impossible. Evidently, the most proba'iile 
mechanism for establishment of the mixed state is the 
creation and penetration of vortices close to roughnesses 
of the surface. In the case of sharply delineated rough­
nesses, the field near them can reach values of the order 
of Hc and the energy barrier is absent in this case. For 
such a mechanism, the vortex filaments would exist near 
the roughnesses and at fields below Hc1' This fact can 
be tested experimentally. Equation (18) determines the 
interval in which the lifetime of the metastable state 
can vary depending on the treatment of the surface. The 
field dependence described by Eq. (18) could also exist 
when a film of a superconductor with a low value of the 
field Hc is sputtered onto the sample. 

The authors express their deep gratitude to L. P. 
Gor'kov and V. O. Pokrovskitwho contributed in many 
ways to setting up the problem and to its solution, and 
also N. P. Kopnin for interest in the work and many 
useful discussions. 
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