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The Shubnikov-de Haas effect in magnetic fields up to 120 kOe was used to study the influence of 
hydrostatic pressures up to 15 kbar on the splitting of the Landau levels in tellurium for H II C3 

resulting from the inversion asymmetry. A considerable increase in the amplitude of the 0+ 
·oscnIation maximum and splitting of the first maximum were observed when the pressure was 
increased. The results were compared with a current model of the influence of pressure on the 
structure of the upper valence band of tellurium. 

INTRODUCTION 

A characteristic feature of the energy band structure 
of tellurium is a shift of the maxima of the upper 
valence band from the high-symmetry point M to points 
located at ± kzm along the Brillouin zone edge parallel 
to the trigonal axis CsY] The spin degeneracy of the 
states in the upper valence band at the point M is 
lifted completely by the strong spin-orbit interaction. 
Consequently, the application of a magnetic field does 
not cause an additional splitting of these states and the 
energy spectrum at the point M does not contain terms 
linear in H. However, when the extrema of this band 
are shifted from the high-symmetry point, the Hamil
tonian in the effecti ve mass method may contain terms 
proportional to the product of the wave vector and the 
magnetic field: k' H. A dispersion relationship was ob
tained in[2] for the upper valence band of tellurium in a 
magnetic field H II CS and it contained the following 
term: 

where 

G=2Cg, / k'//J!B(L\.'+C2k.')''', Q=eH/m.cc, 

gl/IlB is the spectroscopic splitting factor in the ab
sence of the spin-orbit interaction. 

It follows from Eq. (1) that in a magnetic field 

(1 ) 

H II CS the valleys corresponding to ±kzm shift in the 
opposite directions along the energy scale. The appear
ance of the G factor, which is a linear function of the 
component kz, is a direct consequence of the absence 
of an inversion center in the crystal lattice of tellurium. 
We shall follow the terminology adopted in[2] and attri
bute the Landau level splitting to the inversion asym
metry. 

Such splitting should be manifested in the Shubnikov
de Haas oscillations by the appearance of the zeroth 
oscillation maximum and by the splitting of the other 
maxima. The value of the G factor measured in the 
Shubnikov-de Haas experiments is governed by the 
separation of the noncentral extremal sections from the 
high-symmetry point. In a field H II Cs the factor 
G = Gm is governed by the value of kzm . The first 
observations of the zeroth maximum of the Shubnikov-de 
Haas oscillations in the tellurium subjected to a mag
netic field H II C3 were reported in [2]. 

We found that the deviation of the magnetic field H 
from the Cs axis reduced the amplitude of the zeroth 
maximum and shifted it in the direction of stronger 
magnetic fields until it disappeared at an angle 
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cp (H, Cs ) ~ 60°. Thus, the range of angles in which the 
zeroth maximum was observed corresponded to the 
range of existence of the noncentral extremal sections 
of the Fermi surface of tellurium.[l] We concluded from 
these observations that the Landau levels of tellurium 
were split by the inversion asymmetry and the G factor 
was Gm = 5 ± 1. 

It was demonstrated in[3] that the dispersion rela
tionship (1) could be obtained also by analyzing the 
valence band of tellurium with the aid of the k' p 
method.[4] A study of the cyclotron resonance in tellur
ium in the far infrared region (see[5]) revealed very 
weak absorption lines (P4 in the notation used in[51) in 
H II CS• Linear extrapolation of the magnetic-field de
pendence of the transition energies corresponding to 
these lines passed through the origin of the coordinates. 
Th~se lines could not be attributed to cyclotron transi
tions between the Landau levels usual for this orienta
tiOl). We could assume that the lines were due to transi
tions between the Landau sublevels resulting from the 
inversion-asymmetry splitting. According to this inter
pretation the value of the G factor should be Gm ~ 9. 

The assumption of the splitting of the Landau levels 
by the inversion asymmetry was used in[6] in discussing 
the results of an investigation of the magneto phonon 
resonance in tellurium. The value Gm ~ 4 obtained in[6 j 

was in good agreement with our results. [2] 

A strong influence of hydrostatic pressure on the 
amplitude and poSition of the zeroth maximum was also 
mentioned in[2]. The form of the upper valence band of 
tellurium described by the dispersion relationship (1) 
is governed by ~ = 2AA/ C2 and we can distinguish two 
cases: 1) if ~ < 1, this band has a saddle point at kz 
= 0 and two maxima at 

[ LI. 1-6' 'I. 
k,=k,m=± 2A -6-] . (2) 

where the saddle point is separated from the band edge 
by 

L\.e=L\. (6-1) 2/26; 

2) if ~ > 1, the band is nearly parabOlic with a single 
maximum at kz = O. 

(3) 

The first case corresponds to tellurium under normal 
pressure and then t = 0.764. A detailed study of the in
fluence of a hydrostatic pressure on the Shubnikov-de 
Haas oscillations was used in[7] as the basis of a linear
apprOximation model of changes in the energy band 
structure of tellurium. under pressure and the pressure 
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FIG. I. Zeroth maximum of the Shubnikov-de Haas oscillations in a 
sample with p = 1.4 X 1017 cm-3 obtained for different angles <P(H, C,). 
The upper part of the figure shows the complete uncompensated magneto
resistance curve (dashed) and its amplified initial region (chain) for 10 = 0° 
(H II C3 ). The position of the zeroth maximum is identified by arrows. 

coefficients of the parameters of the band structure 
were determined. According to this model, the value of 
~ at Po = 14 kbar becomes equal to unity and it then 
follows from Eqs. (2,and (3) that kzm and Ill:: vanish 
so that the saddle point disappears in the energy spec
trum, i.e., we now have the second case and the band is 
nearly parabolic, 

An estimate of Gm obtained by the k . P approach (2] 

gives: 
(4) 

Consequently, at 14 kbar, when ~ = 1, the G factor 
should vanish and all the manifestations of the splitting 
in the Shubnikov-de Haas effect should disappear. 

In view of this, it would be interesting to investigate 
in greater detail than in (2] the influence of pressure on 
the behavior of the zeroth maximum of the Shubnikov
de Haas oscillations in tellurium. 

. EXPERIMENTAL RESULTS 

We studied five tellurium single crystals with hole 
densities p = 2 X 1016 - 3 X 10 17 cm -3 by applying pres
sures up to 15 kbar at 1.5 OK in magnetic fields up to 
120 kOe. The hole densities in samples 1-5 were 2.0, 
2.4, 4.2, 6.5, and 30 x 10 16 cm -3, respectively. All the 
measurements were carried out in a magnetic field 
H II C3• The method used in the investigation of the 
Shubnikov-de Haas oscillations under pressure was de
scribed earlier (see[7]). 

Figures 2 and 3 show the influence of pressure on 
Shubnikov-de Haas oscillations in two samples: No 1 
with P = 2 X 1016 cm-3 and No.5 with p = 3 X 10 17 cm-s• 
Parts of the oscillation curves shown in Figs. 2 and 3 
were obtained, as usual, by compensating the monotonic 
component of the magnetoresistance and amplifying the 
oscillatory component. Only one maximum with the 
quantum number N = 1 could be distinguished for sam
ple No.1 at P = 0 kbar (Fig. 2a); the zeroth maximum 
was not observed. At the highest pressure P = 15 kbar 
(Fig. 2b) the oscillation maxima with N = 0, 1, and 2 
were observed clearly and the zeroth maximum was 
considerably stronger than the first maximum. 

The oscillation pattern obtained for sample No. 5 
at P = 0 kbar (Fig. 3a) represented the well-known(I,7] 
beats of two components corresponding to the maximum 
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FIG. 2. Shubnikov-de Haas oscillations in sample No. I (p = 2 X 1016 

cm-3 ): a-P = 0 kbar; b-P = 15 kbar. The scale on the right applies to the 
uncompensated curves identified by crosses. 

FIG. 3. Shubnikov-de Haas oscillations in sample No.5 (p = 3 X 1017 

cm-3 ): a-P = 0 kbar; b-P = 11.1 kbar. 
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FIG. 4. Pressure dependences of the Shubnikov-de Haas oscillation 
maxima of sample No.1 (p = 2 X 1016 cm-3 ). Here, 0+, 1, and 2 are the 
numbers of the oscillation maxima. 

and minimum (central) sections of the dumbbell-shaped 
Fermi surface, Moreover, in fields of about 100 kOe 
we observed a fairly strong zeroth maximum (the quan
tum numbers were identified by expanding the beats into 
components, as described in [1]). 

At P = 11 kbar (Fig. 3b) the oscillations became 
nearly single-periodic and we observed not only the 
zeroth maximum but also the splitting of the first maxi
mum. The second maximum was not split but became 
considerably flattened near the peak. Unfortunately, we 
were unable to determine accurately the position and 
amplitude of the zeroth maximum for this sample be
cause fields up to 20 kOe, used in the present study, 
were insufficient to observe the last minimum. 

The positions of the oscillation maxima on the re
ciprocal magnetic field scale are plotted for different 
pressures in Fig. 4 (sample No. 1). When the pressure 
was increased, all the maxima shifted toward weaker 
fields and then they began to shift back to stronger mag
netic fields. 
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FIG. 5. Pressure dependences of doubled amplitude of the Shubnikov
de Haas oscillations in samples Nos. I and 2: 0), D) zeroth maximum for 
samples Nos. 1 and 2; .), X) first maximum for samples 1 and 2. The chain 
curve represents the calculated amplitude of the zeroth maximum and Pk 
is the point of merging of ellipsoidal Fermi surfaces. 

The amplitude of the zeroth maximum of the lightly 
doped samples increased by more than two orders of 
magnitude in the pressure range up to 15 kbar (Fig. 5), 
The amplitude of the first maximum also increased. A 
singularity in the 4-6 kbar range (Fig, 5) arose because 
at these pressures and hole densities the topology of the 
Fermi surface changed[7 J as a result of merging of two 
ellipsoidal surfaces into one dumbbell-shaped surface, 
This gave rise to beats in the Shubnikov-de Haas oscil
lations (the calculated pressure at which this merging 

. of the Fermi surfaces occurred is identified by an 
arrow and Pk in Fig, 5), 

DISCUSSION OF RESULTS 

In the analysis of the results obtained we shall con
centrate our attention on sample No.1 investigated over 
a wider range of pressures (up to 15 kbar) than other 
samples, including those investigated earlierYJ 

Figure 6 shows the data on the period of the oscilla
tions observed in this sample in the pressure range 
P> 12 kbar. The oscillation period is defined as 
~ (1/H)12 = 1/H2 - l/H I, where HI and H2 are the 
positions of the magnetoresistance oscillations with 
quantum numbers 1 and 2. It is known that this estimate 
of the period for ellipsoidal Fermi surfaces may be in 
error by about 2% because of the dependence of the 
position of the Fermi level on the magnetic field, The 
same figure includes the pressure dependence of the 
quantity ~ (l/H )01 = l/H 1 - l/Ho (Ho is the position of 
the maximum which should be attributed to N = 0), The 
value of ~ (l/H )01 is less than ~ (l/H h2' This means 
that the zeroth maximum is located in weaker fields 
than the fields corresponding to the point of intersec
tion of the Fermi level with the zeroth Landau level 
although the influence of the magnetic field on the Fermi 
level should shift the maxima with small quantum num
bers in the direction of stronger fields, All these ob
servations demonstrate that we are indeed dealing with 
the split-off 0+ Landau subleveL 

The continuous curve in Fig. 6 represent the pres
sure dependence of the period of the oscillations which 
result from the quantization of the maximum section of 
the Fermi surface in H - Cs (this curve is calculated 
for the hole density in sample No. 1 using a linear 
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FIG. 6. Influence of pressure on the oscillation period governed by the 
nohcentral extremal section of the Fermi surface of sample No. I (p = 
2 X 1016 cm-3 ) subjected to H II C, : 0) periods deduced from the zeroth 
and first maxima;.) periods deduced from the first and second maxima. 
The continuous curve represents calculations . 

model which describes well our earlier experimental 
data obtained up to 12 kbar[7J). We can see that in the 
present case the calculated curve fits quite well the 
experimental dependence up to 15 kbar. This is very 
remarkable if we bear in mind that in the model sug
gested in[7 J the pressure coefficient of the effective 
mass ml has been estimated from the data given in[8J 
on the influence of pressure on the forbidden band width 
E:g , which demonstrates that 

_1_~=_6 .10-' kbar-1 
Ego iJP . 

i.e., the value of E:g extrapolated linearly vanishes at 
a pressure P = 16.6 kbar. 

For the other samples used in the present study, the 
agreement with the theoretical model is just as good 
as in [7J. In particular, the results for sample No.5 are 
compared with the calculations in Fig. 9 in[7]. 

The considerable rise of the zeroth maximum under 
pressure (Fig. 5) can be explained by a significant re
duction in the broadening of the Landau levels as a re
sult of the scattering of holes. This broadening is 
characterized by the Dingle temperature Tb ~ r / 1Tk, 
where the width of the level is r ~ ti/T and T is the 
lifetime of carriers in the oscillatory states, which is 
of the order of the relaxation time in the expression for 
the electrical conducti vity. Although in some cases the 
characteristic time T which determines the Dingle tem
perature may differ considerably from the conductivity 
relaxation time, it has been demonstrated experimentally 
that for a large number of semiconductors, including 
tellurium, (9J these two quantities differ by not more 
than a factor of 1.5-2. Therefore, in order to estimate 
the pressure dependence of the oscillation amplitude we 
shall use the relaxation time To = ml/e:ppo, where Po 
is the electrical resisti vity in the absence of a magnetic 
field. We shall estimate the reSistivity from the formula 

{ 5 f, (-1)' (fiQ)'" 2n'rkTlfiQ 
P.L=po Hz ~---r"-' - 2EF sh(2n'rkTlfiQ) 

T=I 

( 2nrr) ( 2nE.r n)} xcos(Jtvr)exp --- cos -----
fiQ fiQ 4 ' 

(5) 

given in the review[lO], where PI is the resistivity in 
a transverse magnetic field, E:F is the Fermi energy, 
II = (%)GmmO/ml is the phase factor associated with 
the splitting of the Landau level. In the case of oscilla
tions with a rapidly damped amplitude we need consider 
only the harmonic with r = 1. 

For our samples the value of Po decreases approxi
mately by a factor of 8 when the pressure is raised to 
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FIG. 7. The pressure dependence of the G factor: 0) sample No. I; 
D) No.2; X) No.3; A) No.4; e) No.5; the continuous curve represents 
calculations based on Eq. (4). 

15 kbar but the hole density p remains practically con
stant (compare Figs. 1 and 2 in[7J). This reduction is 
primarily due to an increase in the relaxation time. 
This pressure dependence of the relaxation time and, 
consequently of the Landau level broadening, ensures 
because of the exponential dependence of the amplitude 
of r, an increase in the amplitude of the zeroth maxi
mum by more than two orders of magnitude, which is 
in agreement with the experimental resutls. The other 
facto rs in Eq. (5) are of the 0 rde r of unity and vary 
weakly with pressure. In calculations of these factors 
we shall use the pressure coefficients given in[7J. The 
results of our calculation of the amplitude of the zeroth 
maximum of sample No.1 is represented by the chain 
curve in Fig. 5 

Thus, a considerable proportion of the experimental 
results obtained in the present study is explained satis
factorily by the linear model of the influence of pres
sure on the valence band of tellurium, suggested by us 
in [7 J. However, contrary to this model, the zeroth maxi
mum does not disappear on approach to Po = 14 kbar. 
The results presented in Fig. 5 demonstrate that the 
amplitude of the zeroth maximum reaches saturation 
close to 14 kbar and although it may begin to decrease, 
it certainly does not vanish. 

Figure 7 gives the values of the G factor at different 
pressures deduced from the pOSition of the zeroth maxi
mum of samples Nos. 1-4 and from the splitting of the 
first maximum of sample No.5 at pressures of 8, 9, 
and 11 kbar. The continuous curve in Fig. 7 represents 
the dependence Gm(P) calculated using Eq. (4) and the 
pressure coefficients given in [7 J. Thus, contrary to the 
model given in [7 J, the zeroth maximum does not disap
pear and the G factor does not vanish at Po = 14 kbar. 

Apart from the terms included in the derivation of 
Eq. (1), the matrix Hamiltonian[lJ does not include terms 
which could give rise to the splitting of the Landau 
levels for k ,,:. O. Consequently, the existence of the 
zeroth maximum at P 2:: 14 kbar can be explained only 
if we assume that throughout the investigated range of 
pressures the saddle point in the spectrum and the 
central minimal section of the Fermi surface are re
tained in spite of the fact that the oscillations are no 
longer observed. 

The pressure Po = 14 kbar is suggested in[7J be
cause at this pressure the experimental results agree 
best with the calculations throughout the investigated 
range of hole densities 3 x 10 16 - 1.3 X 10 1B cm-s (see 
also Fig. 6 in the present paper) and, moreover, at 
pressures up to 12 kbar used in[7J the zeroth maximum 
is retained for H II Cs. It is possible that the saddle 
point disappears at higher pressures (17-18 kbar), 
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which are within the limits of the error (~30%) in the 
calculation of Po mentioned in[ 7J. An increase in Po 
by 2-3 kbar has no significant influence on the agree
ment between the experimental results given in[7J and 
the corresponding calculations. However, it is most 
likely that pressures P 2:: 14 kbar are outside the range 
of validity of the linear model, [7 J particularly in view 
of what we have said about the pressure dependence 
of Eg. 

The results reported in[2J and in the present paper 
demonstrate that the interpretation of the observed ef
fects on the basis of the splitting of the Landau levels 
as a result of the absence of the inversion center is 
most appropriate in the case of tellurium. Th~s is sup
ported by the angular dependences of the pOSition and 
amplitude of the zeroth maximum[2j (see also Fig. 1) 
and the observed splitting of the first and second max
ima of the Shubnikov-de Haas oscillations. The exist
ence of the zeroth maximum cannot be explained by the 
transfer of carriers from the zeroth Landau level to an 
impurity level because, in this case, the zeroth maxi
mum would have existed for all angles between Hand 
Cs, which is in conflict with the results reported in[2J• 

There is no doubt that the extension of the pressure 
range to P > 20 kbar will enable us to determine more 
reliably the nature of the observed effect. 
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