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It is shown that two phases should exist when an excitonic state is formed in a semimetal located in 
a strong magnetic field: (a) a "reduced-metal" phase in which, as a result of pairing, some of the 
carriers are removed from the free-carrier system at T =0, and (b) an "excitonic-insulator" phase in 
which there are no free carriers at T =0. These phases differ not only at T =0, but at finite 
temperatures as well, because the electron density in the reduced metal has a long-period 
superstructure along the magnetic field, the period becoming infinite upon transition to the 
excitonic-insuiator phase. The qUalitative shapes of the curves T c(E .), on which'" -+ 0, and Tc 1 (Eg), 

which separates the two excitonic phases, are determined. 

1. THE SPATIAL VARIATION OF THE ELECTRON 
DENSITY 

In an earlier paper [11 we investigated the metal
excitonic insulator phase transition of a bismuth-type 
semimetal located in a strong magnetic field directed 
along the principal axis, and qualitatively considered the 
differences that arise when the magnetic field is oriented 
along other directions. Although a change in the direction 
of the magnetic field appreciably affects the quantitative 
characteristics of the new phase, the qualitative charac
teristics are more or less the same in all cases, and they 
can be followed on the example of the case when H II C3 • 

In [ll we found the specific heat, the conductivity, and the 
high-frequency permittivity of the new phase. These 
characteristics enable us to distinguish it sufficiently 
clearly from both the purely dielectric and the purely 
metallic phases. 

An important characteristic feature accompanying the 
appearance of the excitonic phase is the change in sym
metry, to wit, the appearance of a new spatial periodicity 
in the electron-density distribution and the electron 
potential. 

Let us first of all find the change in the electron 
density as compared to the density in the metallic phase 
in the case considered in [ll, i.e., when A« EFe, EFh 
(EFe and EFh are the electron and hole Fermi energies). 
The electron density is of the form 

p(r) =<'jr+(r) 'l' (r) >, 

where (see [ll) 

'l' (r) = L {[p'~'+I<e-;('P·+k"+p_:p,_,ei(3P'+')']eiK" 
, 

+ ['¢Pc+kei(Po+k)Z+'¢_Po_ke-i(PD+klz] eil':\r+ [cppo+kei(Po+k.)z+cp_po_lie-i(Po+k)z] elK2f 

(1) 

+[ '1p,+,e'(p'+"'+'1-,,_,e-'(P'+'''] e'K,,}. (2) 

Here 1/J, cp, and 71 are the annihilation operators for the 
various electron clusters with centers at the points L 
on the twofold axes (the vectors Kl , K2 , and K3 in k 
space) and p+ is the creation operator for the holes 
(center at the point T whose vector is Ko). It is as
sumed that only the vicinity of the Fermi limit (PO,-PO 
for the electrons; 3Po, -3Po for the holes) will be im
portant to us. Substituting (2) into (1), and taking only 
the "anomalous" terms giving the change in the period 
into account, we obtain 

Bp (r) = L {<PSPc+k1.P_po_k)ei(Kt-Ko)r+2ipoz+<P_3Po_k¢po+k)ei(Kl-Ko)r-2ipoz 

• 
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We have not written out the corresponding terms for the 
other electron groups. 

The averages occurring here are some definite 
Fourier components of the complete Green function 
-i(T(>I1(r, t)>I1+ (r', t'm for the electrons in the crystal. 
Let us use the time-reversal symmetry (see [2l(: 

G(r, t; r', t') =G(r', -t'; r, -t) 

or 

G(Ol, r, r')=G(Ol, r', r) 

for the complete G-function. Hence we obtain 

<'1'+ +1jJ+> =<'1'- +1jJ->, <1jJ+p->=<p+ +1jJ- +>, 

(4) 

where the subscript + corresponds to the neighborhoods 
of Po and 3Po, and the - corresponds to those of -Po 
and -3Po. Similar relations are valid for the other elec
tron clusters _ It follows, in particular, from this that 
Al and A{ (see (19) in w) are connected by the relation: 
Al = Af*. We shall henceforth denote Al by A and con
sider it to be real. 

Expressing our averages in terms of the functions G, 
F, and D (see [ll), and using the formulas (35) in [ll, we 
obtain 

eH ~ dOl ~ dk L'l. 

IIp=4i 2"c J 2n"" _~ 2" (Ol+~h) (Ol-~,) -3L'l.2 

X cos 2poz[cos (KI-K,)r+ cos (K,-Ko)r+ cos (K,-Ko) r] 

4" eH SoodOl'S~dk L'l.2 1 
- '2"c _00 ~oo 2" (Ol+~h) (Ol-~,) -3L'l.' Ol-~, 
x [cos(KI-Ko)r+ cos (K,-Ko)r+ cos (K,-K,)r], 

where ~e=vek, ~h.=Vhk,ve=Po/me, and vh=3Po/mh; 
the poles are bypassed according to the following rule: 
w - w + i 1i sign w, 1i > O. The integration in the second 
term makes the term vanish, so that only the contribu
tion from the first term remains. Recalling the defini
tion of A in [ll (formula (19», we obtain 

2eH L'l. 
IIp=--1 -I cos 2poz[cos(KI-K,)r+cos(K2-Ko)r+ cos (K,-K,)r]. (5) 

"c AI 

If we substitute into this I All - e2 / K (K is the permit
tivity) , and consider a sufficiently strong magnetic field, 
then Po - .J eH/ c and the vibration amplitude 1ip turns 
out to be of the order of (eH/c)3/2 ye-Y, where y-1TvK/e2 . 
In not too weak fields (eH/c)3/2 determines the number 
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of carriers (in this case y» 1), so that ye- y is the rela
tive amplitude of the variation of the electron density 
with respect to that of the carrier density. 

The symmetry of lip corresponds to the rhombo
hedral lattice with a doubled period and a superstructure 
in the form of a wave of long period 1f/po superimposed 
on it along the z axis. In the typical alloy BiSb, in which 
this transition is observed [3] , the period along the z 
axis should correspond to hundreds of interatomic dis
tances. 

2. THE DISAPPEARANCE OF THE SUPERSTRUCTURE 
(THE VICINITY OF T c) 

If we consider the transition to the excitonic phase 
from the insulator side, i.e., when Eg >0 (Eg is the 
gap between the bands), then the question will be the 
pairing up of the individual carriers, and no Fermi de
generacy will be involved. Consequently, only the 
doubling of the rhombohedral period-without any super
structure along the z axis - should be observed in the 
new phase. Therefore, this superstructure should ap
pear somewhere, i.e., another phase transition should 
exist. Since po - 0 as the carrier density decreases, it 
is natural to suppose that the period of the superstruc
ture becomes infinite at the transition point. 

It is difficult to obtain the T c1(Eg) curve of this 
transition in the general case, for when the condition 
T, ~«EFe, EFh is not fulfilled there is no small param
eter in the theory, and the effects connected with the 
interaction of the excitons become important (see [4,5]). 

This makes the problem practically insoluble. 

p' p' 
~,(p)=-+E.-It=--(IE,I-Iltl), 

2m, 2m, 

p' p' 
£,(p)=-+It=_· -~Iltl; 

2m, 2m, 

it is assumed that Eg < 0, i-L < 0, and me« mh. Going over 
to integration over p > 0, we have 

i=~Soo~ [th(~,/2T)+th(~,,/2T) + th(S.l2T)+th(~h2/2T)], 
2 0 2n ~,+£ht ~'+~h2 (6) 

where ~h1=~h(P+K) and ~h2=~h(P-K). 

The chemical potential i-L is determined from the 
condition of equality of the numbers of electrons and 
holes. We assume that I i-L I ~ T « I Eg I. Then the electrons 
will be degenerate, and we obtain 

eH --- eH SOO dpl2n 
3-·2'1'2m.IE,I=-- . 

2nc 2nc _00 exp[ (p'!2m.-lltl)!T]+1 

Setting 

T /(::IE,I)="C, 

and introducing a new integration variable x = p/ -J 2mh T , 
we have 

3 • dx 

l'i = S e"'-'/'+1 . 
o 

(7) 

If 17» T, the holes would be degenerate, and we should 
be back at the previous situation. We shall see later that 
in fact 17~0.1T. This enables us to expand the integral 
in the formula (7) in powers of 17/T. We then obtain 

3/'1' i=O.537+0.338Tj!"C+O.053 (Tj!"C) ,+ ... (7 ') 

If the interaction is a Ii-function interaction, then 
Nevertheless, we shall use the self- consistent field the upper limit of the integration in (6) is equal to in-

method employed in [1]. This is justified on the following finity. It is easy to see that the integrand decreases 
grounds. First of all, as we shall see below, if me« mh, : when p > -J 2me I i-L I , and the integral converges. In order 
then it turns out that Tc1 ~ EFh« EFe at ~=O, i.e., at to avoid too complicated computations, we consider the 
the point of intersection of the curves Tcl{Eg) and interaction to be smeared out and introduce accordingly 
T dEg). This means that the electron gas is degenerate, the upper integration limit according to the condition 
and a small parameter remains in this case. This is I ~e 1< L, where L < I Egi . This will allow us to replace 
not true for the beginning of the Tc1(Eg) curve, since it ~e by ve(P- POe) in the integral and set p = POe in ~h1 
turns out here that ~»IEgl. In this case we shall em- and ~h2' Let us add and subtract the same integral, but 
ploy a model approach that will help us understand the with ~h1 = ~h2 = O. In the difference we can set the limit 
qualitative characteristics of the transition and make equal to infinity. In consequence, we obtain 
estimates. For quantitative computations this model 
approach will, of course, not do. 

The terms with ~1 in the Hamiltonian (18) of [1l play 
the role of a potential that acts on the electrons and holes. 
To make the points at the electron and hole Fermi levels 
eqUivalent, this potential should contain Fourier com
ponents proportional to, say, exp[i(Kl - Ko) • r + 2ipoz)]. 
Such an introduction of the self-consistent potential is 
possible in the neighborhood of the point of intersection 
of the curves Tc1(Eg) and Tc{Eg). We begin our in
vestigation with the study of this point. For this pur-
pose we assume that ~1 is proportional not to e2ipoz, 
but to eiKz , where K is an unknown quantity that can 
be determined from the conditions of equilibrium (or, 
what is the same, from max ~(T) or max Tc). The 
point is that the equation for ~ can be linearized in the 
vicinity of ~ - 0 and the individual harmonics do not 
interfere. 

According to [1], the equation for the critical temper
ature is (X= Xl) 

where 

i=~ SOO dp , th[~,(p)!2T]+ th[~,(p+K)/2T] 
2_ 00 2n £,(p)+~h(p+K) 
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For the integrals with ~h1 and ~h2 we can find ex
pressions in the form of series: 

~ j ~hI thW2T) -~ th(shlI2T) d~=-t ,{1_i_ i 
2 0 S(~'-£hI') f::t (2n+1) n'T'(2n+1)'+s,.' 

We shall subsequently require quite large values of the 
ratio (1fT?/(~h)2=(1fT)2/(17-1)2. In view of this, we set 
~h1 (or ~h2) equal to zero in all the terms of the sum 
over n except the term with n=O. We then obtain 

_"V_, = In _2"1_L _ --:-c:-cS'-,hI_' =-::" 

'A nT ~hl'+ (nT)' Sh2,!i:T)' -['/,W)-1] (~ht'+sh22)/(nT~'. 
(8) 

The coefficient in the last term is equal to 0.051, and 
since the significant values are 1fT» ~h, this term can 
be discarded. 

If K=O,then ~h1=~h2=~h=(POe2/2mh)-li-LI. Using 
the previously introduced notation, we obtain 
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4-rLm. 
-rexp{2(1)-1)'/[ (1)-1)'+"'"'j)=R,,,, --.-e-"""'. (9) 

npo. 

In fact, the upper limit is L-POe2/me. Since T-1']-l in 
the region of interest Ito us, we have R - 1. In other 
words, (mWme)e-lTVe ~-1, or taking account of the 
fact that ~-e27K and ve-" IEgl/me, we have 

(10) 

The entire expounded theory is valid in the region where 
lTVe/~ »1, Le., according to (10), In(mWme)>> 1. Formu
las (9) and (7) determine the Tc{Eg) curve in the region 
K = O. Let us now consider the region of small but finite 
K. Expanding (8) in powers of K up to terms of order 
K2, we obtain the correction to the right-hand side: 

4~(n,;)' -(n,;)'(3-1)+(1)-1)'(5+1) . 
po.' [(1)-1)'+(n,;)'1" 

if the coefficient of K2 is negative, then Tc decreases 
as K2 increases, and, consequently, maxTc occurs at 
K=O. If, however, this coefficient is positive, then Tc 
increases with K. Thus, in the region with K = 0 the 
quantity (lTT)2 is greater than the critical value, which 
is equal to 

( ) ' (1)-1)'(5+1) 
n't'o ::::a • 

3-1) 
(11) 

Of course, it is assumed in this case that 1'] < 3 in the 
region of interest to us. In the opposite case the coeffi
cient of K2 is always positive. 

Let us make the assumption that (lTTo)2 »1. Then it 
follows from (11) that 1']"'3, Le., 3-1']'" 32/(lTTo)2. It fol
lows from (7') that T,.,31 for 1']«T. Thus, 3-1'],.,0.003, 
and the correction to (7') from the term with 1']/T is 6%. 
Consequently, the assumptio~ is justified. But it fol
lows from Eq. (9) that e-lTVe/ ~-10me/mh, and since 
this quantity should be small, the formulas obtained 
are strictly applicable to the quite rare case me« O.lmh. 
But our aim is not so much to obtain rigorous formulas 
as to qualitatively analyze the phase diagram. 

Equations (7), (9), and (14) determine the point of 
intersection of the T c{Eg) curve, on which ~ = 0, with 
the Tc1(Eg) curve, on which K - O. For small I Egi 
(and high Tel, the Tc(Eg) curve corresponds to K=O. 
For high I Eg I , we should have K '" 0, which corresponds 
to a positive coefficient for the term with K2. To find 
the Tc(Eg) curve and the equilibrium value of K we 
must find the term with ~. Setting in (8) lTT» ~h, we 
obtain the value: -2(lTTo)-2(K/POe)4. The coefficient of 
K4 is negative. Determining K2 from the maxTc con
dition, we find (with allowance for the condition 
(lTTo) » 1): 

K' 32,,' (,;0'-,;') 
--;:z = (n,;o)' (12) 

and the correction itself to the right-hand side of Eq. (8) 
is equal to 

2· (32) 'n' (,,0'-,,') , 
(n,;o) 10 

Thus, as we move along the Tc{Eg) curve from the 
point of intersection of the curves Tc and Tc1 the 
quantity K increases in proportion to [(To-T)/To]I12. 
Although the growth of K leads to a correction in the 
formula for the critical temperature, this correction 
is of the order of (To-T)2 and is small compared to 
the change in Tc given by Eq. (9). Thus, Eq. (9) deter-
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mines the Tc{Eg) curve not only for K=O, but also in 
the region K ",0 where To-T «To. 

3. THE Tc1(Eg) CURVE AS T -+ 0 

It is must more difficult to find the Tc1(Eg) curve in 
the vicinity of T = O. First of all, the commonly em
ployed self-consistent potential approximation is appli
cable only for sufficiently small ~,when the logarith
mic situation is maintained. As we shall see below, this 
does not occur. Consequently, there is not a small 
parameter in the theory, and we should allow for the ex
citon interaction exactly (see [4,5J), which entails great 
mathematical difficulties. 

Secondly, since we cannot expand in powers of ~ (even 
in the self-consistent field approximation), the theory is 
nonlinear and we cannot, as before, assume that ~(z) 
ex: eiKz . In fact, ~ is some complex periodic function. 
We could, in principle, attempt to find it in the self
consistent field approximation, but the result can all the 
same serve only for estimates. In view of this, we 
consider a simpler (though unrealistic) model, in which 
the interaction term in the Hamiltonian is 

H,",=-11 L,P-p-x(¢p+<pP+1)p)-11 L, (¢p++<pp++1)p+)~-P-'" (13) 

where 
11=1. L, <P-P-K1jJP)' 

P 

This model does not correspond to the introduction of a 
true periodiC potential, for in the latter case there would 
also be terms of the type 

-11 ~ P-P+K(1jJP+<PP+1)p), 
P 

which would lead to great complications. Since, however, 
the results obtained from this model are quite plausible, 
we can hope that it correctly describes the phase dia
gram at least qualitatively. 

In this model the Green functions have the same 
form as in [IJ (formulas (22», where ~e=(p2/2me) 
-(IEgl-1 Ill), ~h=[(p+K)2/2mh]-1 Ill. The energy 
spectrum consists of three branches: 

oo,=s •• oo, .• ='/,(S.-Sh) ± ['/.(S.+Sh) '+311'] 'I,. (14) 

The equation for the determination of ~ is of the form 

1=~S- dp th(oo,12T)-th(oo,/2T) . 
2 ·2n 00,-00,· 

(15) 

We assume, as before, that me« mh, and be interested 
only in small K. In this case the ~e and ~h curves are 
disposed as shown in Fig. 1. It is not difficult to see 
that in this case W2 >0 for all momenta, while W3 can 
change sign. In view of this we obtain from (15) at 
T=O 

1=A. S .!!_1_ 
21t 6h-O},' 

111,<0 

According to (14), the limits of the integration region 
(W3 = 0) are determined by the equation 

(16) 

(17) 

Let us first suppose that the needed values of ~ are 
of the order of POe2/mh. Then we find, correct to 
terms of order ~" memWPOe2 - " me/mh, that W3 > 0 in 
the entire region where ~e > 0 and ~h < 0, i.e., for 
POe < P < (POh - K) and -( POh + K) < p < -POe. It follows with 
the same accuracy from the electroneutrauty condition 
that POh = 3POe. Let us introduce for simplification a lim-
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It is natural to suppose that the point K = 0 corre
sponds to the tangency (with respect to w) of the branches 
1 and 3 in Fig. 2. Let us consider the vicinity of the 
point of contact from the standpoint that there is no in
tersection. In Eq. (16), the integration is over all mo
menta and, according to (20), we can assume Eg=O in 

P it. In consequence, we have 

FIG. 1 FIG. 2 

itation on the integration domain over p in (16): 1 ~e 1 < L 
(this does not change the qualitative result). We obtain 
from (16) 

').., . 
1= --s d~{[ (~+~h!)'+.12~'l-'''+[ (~+~h,)'+12~'l-'I'), 
. 2:rw, 

_L 

where ~h1 and ~h2 have the same meaning as in (6). 
Integrating and expanding in powers of K, we obtain 

~=ln Lm., +In ~-1 +~~[(1+~')-'I'_~(1+~2)-"']' 
').., 2po, !; 8 po, 4 

where 

It follows from this that max ~ is necessarily attained 
at K;" 0, and, consequently, the assumption that K - 0 
in the region of 1 Egi where ~-POe2/mh is incorrect. 
We can establish in similar fashion, although in a more 
laborious manner, that K;" 0 also in the region where 
~-POe2/(memh)1/2 . 

Thus, we are obliged to assume that the equality 
K = 0 is attained at large ~ of the order of mee 4 / K2 . 
Let us now look at the question from a somewhat differ
ent standpoint. Let us consider Eq. (17) for K=O. Its 
solution is 

p'=lj, (Po.'+Po.') ± [Ij. (POI,' -Po.') '-12m,mh~ '] 'I,. 

Consequently, the region where W3 >0 exists until the 
expression under the radical sign can be positive, i.e., 
until 

(18) 

From the expression for the Green functions, (35) in 
[ll, we can obtain the electroneutrality condition, which 
determines the chemical potential j.L. It has the follow
ing form: 

(19) 

(9 is a step function). The physical meaning of this con
dition consists in the following. It follows from [lJ that 
the electron spectrum contains three branches having 
the schematic shapes shown in Fig. 2. The residue of 
the Green function corresponding to the branch 1 is 
equal to 2/3, while for the branches 2 and 3, the residue 
is equal to 1/3. Therefore, under the condition of par
ticle conservation, the cont.ribution from the branch 1 
should double in comparison with the contribution from 
the branch 3. It follows from (19) that POe vanishes, 
i.e., 1j.L1- 1 Eg I, upon the disappearance of the region 
where W3 >0. It can be seen from Eq. (18) that in that 
case 

(20) 
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1=2. j{[(L+ (P+K)')' +12~'] -'I. 
2:rt 0 2m, 2m. 

+[(L+ (P-K)')' +12~']-'I'} dp 
2me 2m/; 

').., [Soo dp K' SOO p'dp ] 
"" --;:;- [(p'/2m,)2+12~'l'" - 4m,m. [(p'/2m,)'+12Ll']'" . (21) 

o 0 

It follows from this that ~- meX2 and that max ~ is at
tained at K= O. 

The region around the point of contact is somewhat 
more complicated when the tangency is considered from 
the standpOint that it is an intersection of the branches 
1 and 3. We shall not present the detailed calculations. 
It turns out, as a result of the calculations, that the co
efficient in the term with K2 in the equation similar to 
(21) is positive, i.e., max~ corresponds to K;"O. Thus, 
the assumption is confirmed. 

Of course, it must once more be emphasized that the 
computation performed is not rigorous, because of the 
use of the nonphysical Hamiltonian and the use of the 
self-consistent field method. But the result obtained is 
physically the most probable, for otherwise we should 
have two phase transitions occurring at T = 0, namely 
K- 0 and the metal-insulator transition. Since, as al
ready indicated above, the appearance of density oscil
lations along the z axis, i.e., of K;" 0, itself entails a 
Fermi degeneracy, which, at T = 0, will obtain as long 
as there is a band intersection, it is natural to suppose 
that the intersection and the superstructure disappear 
at the same point (at the same value of Eg). 

Thus, it follows from the foregoing that the Tc1(Eg) 
curve intersects the abscissa axis at the point where 
~-mex2-mee4/K2 and 

1 ,-;:;; 1 ,-;:;; m,e' 
E,=E,,-- Y-~-- Y--,-· 

mil mil. 'X. 
(22) 

It should be noted that it makes sense to speak of a 
metal-insulator transition only for T = 0, for at T;" 0 
there is always a finite number of carriers, and these 
phases are indistinguishable. The question under con
sideration here, however, is the disappearance of the 
superstructure along the z axis (the period becoming 
infinite), i.e., the problem of the crystal-symmetry 
change, which can be accurately determined at any tem
perature, and to which the entire Tc1(Eg) curve corre
sponds. 

The natural character of the results gives grounds 
for supposing that Eq. (16) can also be used to make 
qualitative predictions for low but finite temperatures. 
Let us therefore attempt to determine the shape of the 
curve Tc1(Eg) near T = O. Expanding W3 about the 
maximum, we obtain 

where a-I. By replacing tanh(wJ2T) by -1, we incur 
an error of the order of 2nF( 1 W 31 ). In the region of in
terest to us, w3max"'0. Thus, the temperature correc-
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tion will be proportional to v'Tmh. Consequently, we 
obtain 

T" (Eg) - (m,/mh) (A-Ao)'/ Ao. 

If we allow for the fact that Eg is added to p2/2me 
in the integral (21), then expansion in powers of 1 Egi 
-I Eg21 yields A- Aocx: 1 Egl-1 Eg21 . Consequently, we 
have 

(23) 

(since Ao-m~e4/K2). It follows from this formula that 
Tc-IEglme/mh when IEgl-mee4/K2»IEg21. This 
result can be matched to within logarithmic factors 
with the region where the Tc1(Eg) curve intersects the 
TdEg) curve. 

4. THE PHASE DIAGRAM 

According to (4], the behavior of the TdEg) curve at 
Eg > 0 is essentially determined by the exciton interac
tion. If there is repulsion, then the curve TdEg) starts 
from E% = Eg1 = Eo ln2(n/ Eo) (here n,. eH/mec and Eo 
= mee4/2K2) , the binding energy of the isolated exciton; 
on the whole the phase diagram looks like the diagram 
in Fig. 3. If, however, the exciton interaction is an at
tractive one, then a liquid appears at the edge of the 
excitonic phase formation on the Eg > 0 side, and the 
phase diagram in this region has a more complicated 
shape. 

Our analysis will also do qualitatively for substances 
with a different energy spectrum, and for other direc
tions of the field. It follows from this analysis that 
with the exception of the very unlikely case when there 
are one group of electrons and one group of holes with 
the same density, there should necessarily exist in all 
cases two phase transitions in the band-overlap region 
(Eg < 0). The new phase, in which only a number of the 
free carriers are paired off, can be called a "reduced 
metal." The point of transition of this phase to the 
true excitonic insulator phase at T=O (Le., Eg2) can 
be determined from the vanishing of the conductivity. 
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As for the entire Tc1(Eg) curve, it can be determined 
only from the disappearance of the long period along the 
z axis. The corresponding electron-density oscillations 
cannot exceed in amplitude the total carrier density, and 
therefore the relative intensity of the secondary x-ray 
peaks will be very low (<10- 6). The infrared radiation in 
the requisite wave band is strongly absorbed, and will 
therefore also not do. 

Another possible method for detecting the superstruc
ture is the high-frequency sound diffraction method. But 
this question requires further analysis. 

In conclusion, we note that the problem considered 
by us here is close to the chromium phase diagram 
problem studied by Rice in (6] with the aid of a model 
band structure with isotropic electron and hole spec
tra. Rice obtains the dependence of the Neel point on 
the carrier- concentration disparity. As in our prob
lem, two ordered phases are possible, in one of which 
a superstructure exists. Between these phases is an 
equilibrium curve corresponding to a phase transition 
with a change in symmetry. The transition can be of 
second, as well as of first, order. We may say apropos 
of this that according to our assumption, the Tc1 curve 
corresponds to a second-order transition. Actually, 
the possibility of a first-order transition is not excluded. 
In that case the curve found by us would correspond to 
the stability limit of the reduced-metal phase, and the 
true transition curve would lie to the left of ours. The 
fact, however, that our curve ends at the metal-insulator 
transition point (at T = 0) points contrary to such a 
possibility. 

The author is grateful to Yu. V. Kopaev, who drew 
his attention to Rice's paper and pointed out the possi
bility of a first-order transition 
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