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The nonequilibrium Zubarev density-matrix method is used in a derivation of the transport equations 
describing spin diffusion processes in the case of quadrupole resonance of nuclei of spin 3/2. 
Nonequilibrium states of the reservoir of dipole-dipole interactions and diffusion of energy in this 
reservoir are allowed for. Expressions are obtained for the diffusion coefficients and relaxation times. 
It is shown that electrical diffusion barriers play an important role in the diffusion of spin in nuclear 
quadrupole resonance, the diffusion of the dipole-dipole interaction energy is not impeded by barriers, 
and the spin-lattice relaxation time of the dipole-dipole reservoir energy is approximately 100-1000 
times shorter than the relaxation time of the quadrupole energy. 

1. Investigations of the nuclear magnetic resonance 
and dynamic polarization of nuclei have demonstrated 
that spin diffusion plays an important role in the relax­
ation of nuclei in the presence of paramagnetic impur­
ities. [1) This process transfers the Zeeman energy of 
individual nuclei to paramagnetic impurities which under­
go fast spin-lattice relaxation. Relaxation equations 
allowing for the diffusion of spin under magnetic reso­
nance conditions are derived in [2) by the nonequilibrium 
Zubarev density matrix (statistical operator) method. 

Spin diffusion processes should also occur under 
nuclear quadrupole (NQR) conditions, except that, in this 
case, the quadrupole energy of individual nuclei diffuses. 
The present paper gives a theoretical analysis of this 
situation in the case of quadrupole resonance of nuclei 
of spin 3/2. Once again, the nonequilibrium density 
matrix method is used for the derivation of the approp­
riate equations. The diffusion coefficient has been cal­
culated in(3J for NQR of I = 1 spins. The NQR spectra 
of different spins differ very considerably and, conse­
quently, the effective parts of the operators describing 
the dipole-dipole interaction and the interaction with the 
alternating field are also different from one spin to 
another. Consequently, the spin diffusion under NQR 
conditions must be considered separately for each type 
of spin. 

However, the principal difference between our results 
and those obtained by Buishvili and Volgina [3) or the 
investigations of spin diffusion under magnetic resonance 
conditions is an allowance for the diffusion of the energy 
in the reservoir of dipole-dipole interactions or, briefly, 
in the dipole-dipole reservoir (DDR). It is well known 
that the DDR plays an important role in the dynamics of 
spin systems of solids. The nonequilibrium DDR energy 
occurs in the transport equations alongside the non­
equilibrium energy which governs the spin spectrum. 
Therefore, it is necessary to allow for the spin diffusion 
of both energies, especially as the DDR diffusion coef­
ficient is considerably greater. 

The spin diffusion processes are due to the magnetic 
dipole-dipole interactions d6'dd of nuclei. In order to 
develop the necessary theory, we must consider the re­
lationship between d'Gdd and the interaction of nuclei with 
the lattice JilL: If the interaction d6'dd is much greater 
than :telL, it is necessary to consider separately an inde­
pendent system in the form of a dipole -dipole reservoir. (4J 

The transport equations describing the NQR spin system 
in a homogeneous sample depend strongly on whether 
a DDR,is present[5,6J or not(71. These considerations also 
apply to the derivation of the transport equations for in­
homogeneous systems. 
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2. We shall consider a system of nuclei of spin 3/2 
with a quadrupole moment Q immersed in an axially 
,symmetric field in a molecular crystal. The quadrupole 
energy levels are then given by the operator 

:J{Q = 'f,h'"Q ~ [P~3 1" ~ - p~, - pi,], (1) 
k 

where wQ is the quadrupole resonance frequency, P~m 
are the projective operators defined in(7). The nuclei 
interact with one another via magnetic dipole-dipole 
interactions Hdd of which the most important is the part 
Hd which is adiabatic relative to the operator HQ and is 
described by (see[71) 

, 
:M.=1i 1: 1: il',~"U, 

;*}0:;=-2 

t?J = I;I;-(p:,pi, +pi,p:,)_3/. (P~'P;3+ php~ ,+ P~ ipi ,+ P~3P;'), 
II! = 2 (T;P:i+I~P:,), I?j= 3 (p;,Pi ,+ php~l)+4P~,P;i' P;;;:;;= p_m, on, 

in-a, = !i{'+, :JJ i / 2 = _3j"h:'{2rij-3 sin2 Gijexp (±i.Zt:pli)' 

il'i/'=-'/ ,Ii,'r" -, sin 8,; cos 8;; exp (±i<p,j), il'i;'=Ii,'ri)-' (1-3 cos' 8i;);" 
(2) 

where rij' il ij , and 'Pij are the spherical coordinates of 
the radius vector joining nuclei i and j, and y is the gyro­
magnetic ratio. The operator describing the interaction 
between the nuclei and an alternating magnetic field 
2H 1coswt perpendicular to the crystal-field axis is 

'w' V3 * ~ k k) t (k k)' int ~ - -2- ,,,", I.-J[ (P31 + Psi e-W + P13 + P-'3 e'W'], (3) 
k 

where W 1 = yH 1 • The operator (3) consists only of the 
terms which describe the resonance transitions between 
the spin energy levels. (7) 

The spin-lattice relaxation of nuclei in a magnetic 
crystal is governed by the interaction of these nuclei 
with torsional vibrations (Bayer mechanism):(7) 

Q'=3I,'-I(I+1) , 
Q±t=I±I,+IJ±, 

, 
:MfLB='/,liwQ 1: 1: F,-"Q,", 

k 11=_2 

1;.=8.-(8,)L, 
1;.'=e;-(8.')L, 

Q±'= (I,±il ,) '= (I ±)', 

F,'=-21;,', 
Fk±t=S~, 

F.±'=1/21;.', 
(A)L = Tr(Ae-~"'L) /Tr e"~:1fL, 

(4) 

where Ilk is the angle made by the instantaneous direc­
tion of the axis of a molecule k and its equilibrium 
orientation <lIiJL' HL is the Hamiltonian of the lattice 
which is regarded as a thermostat kept at a temperature 
1/kBj3· 

In the case when a crystal contains magnetic im­
purities, the relaxation of nuclear spins may also give 
rise to a magnetic dipole interaction with these im­
purities 

:M;~=1i .EI: tDj~~ljS~~, tDj:'=I])"'(r",), (5} 
J,n a,e. 
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where sn is the operator of the spin of a magnetic 
impurity. Impurities unavoidably cause distortions of the 
lattice and, consequently, they shift the NQR frequency. 
In the first approximation, these shifts are given by the 
operator 

"e_ 1 .'\"1Q(o)[i+i i i "'E-7"L..! r," PaaP;,;;-Pu-P'ii]' (6) ,.n 
where n (rjn) is the shift of the NQR frequency of a 
nucleus j because of the distortion of the crystal field 
by an ion at a site n. The change in the rate of the Bayer 
relaxation near a magnetic ion can be ignored compared 
with the magnetic relaxation rate. 

The total Hamiltonian of the system can be divided 
into the main part J'l3o and a small perturbation V t as 
follows 

J'I3,=.;ii?'Q+J'I3d+J'I3L, V,=J'I3,'+J'I3n , 

.mQ=J'I3q+J'I3E+J'I3 .. , J'l3M =(J'I3n M )L, 

J'l3n =J'I3,LB4-J'I3n M -(J'I3,L M> L. 

The operators J'l3E and J'l3M give rise to the shifts 

Q,= 2:Q(r'n), w,= 2: ~"(rjn) (S,n>L 
n 

of the energy levels which depend on the distances from 
the magnetic impurities. At moderate impurity con­
centrations these shifts exceed the NQR line width only 
for a small number of spins near an impurity. For this 
reason we shall allow for the shifts nj and wi..()nly in 
those expressions which do not contain the NQR fre­
quency wQ. 

For this form of the operator J'l3o the parameters 
which describe a nonequilibrium state of a homogeneous 
~stem will be selected in the form of the operators 
3tQ, J'l3d, and XL' (6J The presence of magnetic impurities 
in the system gives rise to a spatial inhomogeneity and 
a nonequilibrium state should be described by the den­
sities of the operators JeQ and ;;r d: 

.7eQ (r)= ~ It 2: (WQ+Q,)Q,"6 (r-r,) +11 2:w/;'6 (r-r,), 
I , 

, 
J'I3, (r) =11 2: 2: gJ~" U6 (r-r,) 0 

(7) 

i¢ja=_2 

In this case, the entropy operator is of the form 

9' (t, 0) =~ (t) +~J'I3L + S d'r[ ~Q (r, t)~Q (r) +~d (r, t) J'l3d (r) ), (8) 

whlrre (3Q(r, t) and {3d (r, t) are the parameters conjugate 
to:JeQ(r) andXd(r) in the nonequilibrium thermodynamic 
sense/aJ and f/(t) is the Massieu-Planck potential. 

3. Applying the Zubarev method/aJ we obtain a non­
equilibrium statistical operator corresponding to the 
entropy operator of Eq. (8) and then we apply the same 
Zubarev operator in the derivation of the transport equa­
tions of the nonequilibrium averages (;;reQ, d(r »t of the 
operators (7). Such calculations yield equations of the 
type 

application of an alternating field, relaxation processes, 
and transport phenomena. 

The relaxation times Tpq due to the Bayer mech­
anism and the probabilities of transitions Wpq under the 
influence of an alternating magnetic field are calculated 
in [6J. The quantities Rpq = Rpq (r) are the relaxation 
times due to the interaction with impurities: 

R-' = 54It'wQ'(S.'>N "t, '\"1 I <D'"(r-r ) I' 
QQ <:.MQ2) 1+'tp2U)(,/4 n, 

where A2 is the second moment of the NQR line, and T e 
is the correlation time of the z component of the spin of 
a magnetic impurity. 

If p " q, the quantities Rpq are proportional to the 
first moment of the NQR line, as always found in prob­
lems of this type, and they can be ignored compared 
with the diagonal terms. In considering spin diffusion, 
it is usual to employ the reciprocal relaxation times 

-1 Rpp averaged over the angles: 
-I '\"1 I 1_' 

Rpp = ~CP r-rn , 

c _ 27 S(S+1) (y.ylt)'"t. 
Q- 5 1+(i)Q2Te2 ' 

(10) 

W!=wQ'TrJ'l3f/Tr;J'I3Q'= (9i8/Sly'II' 1:,r;' 0 . 
4. The diffusion coefficients in Eq. (9) are 

o 

D~:(r) = (SpJ'l3;) -, S d'r' S dt,e,t'<J?(r)I;(r', t) >, (11) 

where JQ, d(r) are the fluxes of the operatorsdeQ(r) 
and :Jed (r). 

The diffusion coefficients can be calculated if we 
know the spin correlation functions of the type 

(f,,"fj(t», (f,,"t.Nmny(t)fu:(t», .. 0, 

(12) 

(13) 

where the time dependence is governed by "bordering" 
with the operatord'€d +J'I3E +.7tM. The functions (13) 
are the Fourier transforms of the cross-relaxation 
curves, which are usually approximated in the form [9J 

(t~f0 (t) > "" (t~f:'> g,":, (t), 
(14) 

(f~t0t~n (t) t:, (t) > "" (t~:,t:U!:v> g,;:'::nu, (t), 

where the time dependence is entirely due to the factor 
g(t). In this approximation the only nonvanishing diffusion 
coefficients are n~q = n~j)/jp. q' which are diagonal with 

respect to the indices p and q. 

In calculations of g(t) the bordering by the operators 
(9) J'6d, J'€E, and J'l3M is performed independently because 

they commute. Then, 
where (A)O is the equilibrium average of the operator A, nt; are the diffusion coefficients, and p, q = Q, d. The 

system (9) represents diffusion-type equations which 
describe local changes in the quadrupole energy and in 
the energy of the dipole-dipole interactions due to the 
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exp (i:J(JMtll- ' ) I." exp( -i:J(JMtll-') =exp (iaw.t) I.", 

exp (itJ'l3E II-') Pm: exp( -itJ'l3EII-') =exp{i sign(m - n)Q.t}Pm:, 

and the result of bordering with the operator J'l3d is 
usually interpolated by Gaussian curves of the type 
exp{-w~l/2}. 
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Substituting Eq. (14) into Eq. (11), we obtain 

Do"' (r) ='/,.L, (r'-xt) (x'-xn ['I,[.9',!,['F(Ol,-Ol;+Q,-Q;) 
; 

where F is a function of the profile of the cross-re­
laxation curve: 

F(x) = (2ltOl/) -'I. ~xp (-x'/20l.'}. 

(15) 

We shall assume that the concentration of magnetic 
impurities is sufficiently low so that each nucleus 
effectively interacts with just one impurity. We shall 
consider one paramagnetic ion located at the origin of 
the coordinates. Then, the vector r in Eq. (15) is meas­
ured from this ion. The presence of the functions Fin 
the diffusion coefficients gives rise to diffusion barriers. 
At large distances from a defect the arguments of these 
functions are small compared with :">d and D(r) is in­
dependent of r. Near defects the fr equency shifts are 
large and D (r) decreases rapidly on approach to a defect. 
A measure of the changes in D(r) near an impurity is 
provided by the radius of a diffusion barrier and 0 is 
that distance from an impurity at which the shift of the 
NQR levels induced by the impurity is equal to the 
nuclear dipole-dipole width of the NQR line. In solving 
the diffusion equations the concept of a diffusion barrier 
and its radius is used in the case of Gaussian approx­
imation of the function get) so that we can assume 
approximately that 

D?' (r) = {COnst=Dp "" r>I5, 
o ,r<6. (16) 

In contrast to the diffusion of spin in the nuclear 
resonance of the nuclei of spin I = 1/2, there may be 
several diffusion barrier s to the diffusion of spins of the 
nuclei with I > 1/2. The additional barriers appear 
because the I > 1/2 nuclei have electric quadrupole 
moments, (so that, they interact with the crystal field of 
the lattice) and because of special features of the NQR 
spectrum. 

We shall cCllsider separately the magnetic and elec­
tric shifts of the NQR frequency. In the magnetic case 
(ilj = 0) Eq. (15) includes F(:">r + Wj) and F(:">r - Wj)' : 
When the neighboring nuclei distributed radially around 
a magnetic ion at distances equal to the lattice constant 
a from one another, we have 

[ 1 1] 311.1<1(S,) [ ( a)] 
0l;+0li+,=311.1.1(S,> r;' + Ir;+al' "" r;' 1+ 1--;:;- . 

Since the ratio a/rj is small, the frequency difference 
corresponds to a dIffusion barrier radius oM which is 
smaller than the radius corresponding to the frequency 
sum. This means that the terms proportional to 
F(wr + Wj) correspond to a diffusion flux of energy ex­
citations closer to a paramagnetic ion, i.e., they cor­
respond to a faster relaxation. In view of this, we can 
drop the term F(Wr + Wj). The radius of a diffusion 
barrier for the frequency difference and sum is found 
by equating Wj -+ wh to wd ~ 6y2ha-3 : 

'I. 1] 'I, 
6M -"'a [ ~' (S,>] , 6M +"'a [-f(S,> (17) 

This expression includes the effective average value Sz. 
If T eWd» 1, which means that during the time needed 
for the reorientation of a nuclear spin because of the 
dipole-dipole interaction with the neighboring nuclei 
an electron spin does not change its orientation, we find 
that <Sz) ~ 1. In the opposite case, we find that 
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<Sz) ~ hyHo/kBT « 1, where Ho is the terrestrial field. 

The radius of an electric diffusion barrier can be 
estimated if we know the distortion of the crystal field 
resulting from the introduction of a paramagnetic im­
purity into the lattice. We shall assume that this dis­
tortion of the field is equivalent to the presence of a 
charge Ze; then 

3Ze'Qloa _ [Ze'Ql0] 'I. 
Q j -QJ+l= 3 1 6E --a ~ 

r; 1" 
(18) 

where YQ is the antiscreening parameter. [10] 

In solving the diffusion equations it is convenient to 
assume that the diffusion coefficient DfJ. v = D 0 is 

P P f.l.V 
isotropic, which is strictly true only if the distribution 
of the quadrupole nuclei has the cubic symmetry. If, 
moreover, the expression for Dt v is Simplified by re-

taining only those terms which correspond to the min­
Imum diffusion barrier, it is found that, in the case of a 
magnetic diffusion barrier, 

Do""I,F(O)y'h' L,' r,;', (19) 
; 

where the summation is carried out over the nearest­
neighbor nuclei j. 

In the case of an electric diffusion barrier, we have 

DQ - 15/,F(O)y'h' L,r~'. (20) 
J 

Equation (20) is also valid in the case of a magnetic 
barrier if the relaxation radius b (this point is discussed 
later) is greater than 0 and the role of a barrier in the 
diffusion process is unimportant. In this case, we may 
assume that DQ(r) is constant for all values of r. 

The diffusion coefficient Dd is given by expressions 
more cumbersome than Eq. (15). It follows from the 
speCial features of the quadrupole spectrum of nuclei 
and from the properties of the functions f~ in Eq. (2j 
that the general expression for the coeffiCIent Dd in­
cludes terms proportional to F(O). They correspond to 
nonbarrier diffusion and the fastest relaxation processes. 
Retaining only these terms and assuming that the dif­
fusion coefficient is isotropic, we obtain 

Dr(r) ="I,F (0) Ol,-'6" L, r/W';k, 
1# 

W,jh=51 Ujk) 1'+51 (iki) 1'+51 (kij) I' 
+ (kij) (kji)+(jki) (ikj) + (jki) (kii) , 

(kij) ==.9',.'.9"j-' -.9',/[/',,-'. 

(21) 

Hence, it follows that D~v is independent of r. 

Assuming that the diffusion coefficient is isotropic 
and using Eq. (2) as well as the transition probability 
Wpq / a] we find that the transport equations (9) can be 
represented in the form 

a [OlQ (0l-0l0) ] -(Jf6'Q(r) >'=DQI1(Jf6'Q(r) >'-W (Jf6'Q(r) >,+ ----(Jf6'd(r) >' 
Jt 1 C Ol! 

- [-+--+] [(Jf6'Q(r»'-(Jf6'Q(r»o], (22) 
TQO r 

a ; t (()~(i)Q 
-(Jf6',(r)> =D,I1(Jf6',(r) > -W-­
iJt OlQ 

'I- [(Jf6'o(r»'+ OlQ(Ol-;-OlQ) (Jf6',(r) >,] 
w" 

- [_1_+~] [(Jf6',(r) >'-(Jf6',(r) >0], (23) 
Tdd r 

where W = 1TwiG(w - wQ) and G is a function of the NQR 
line profile. 

5. In analyzing the physical consequences of the 
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transport equations (9), we shall follow the work of 
Khutsishvili. [1] We shall assume that each nucleus inter­
acts only with one magnetic ion and that a sample can 
be represented in the form of Nm spheres of radius R, 
each of which surrounds one magnetic ion. The radius 
R is given by the condition (41T/3)R~~ = 1, where N~ 
is the number of impurities per unit volume. 

It is convenient to begin with the case when there is 
no alternating field <w = 0) and relaxation occurs only 
in magnetic impurities (Tpp = 0). The solution of Eq. 
(23) can be used to find the quadrupole energy flux UQ(R) 
across a sphere of radius RY] 

aUQ(R) 1 ° 
--at-=-T~;;-[UQ(R)-UQ (R)), 

_1_-4nN 0D '" F _ {0.7bQ, bQ>6 
TQD - m ""Q, Q- '/,(bQ/6)'bQ, bQ<6 

(24) 

where bQ = (CQ/DQ)1/4 is the relaxation radius defined 
so that if r < bQ the rate of direct magnetic relaxation 
exceeds the rate of diffusion of the spin energy and 
UQ(R) is the average value of the quadrupole energy of 
aIr the nuclei in a sphere whose radius is R under 
equilibrium conditions. [1] Multiplying Eq. (24) by Nm 
we can find the change in the quadrupole energy of the 
whole sample as a result of relaxation at impurities. 

We shall integrate Eq. (22) over the volume of a 
sphere of radius R. The integral of the terms 

C 
DQ/';<deQ (r)'- ~[<deQ (r) )'-<J'€Q (r) )') 

r 

is equal to the right-hand side of Eq. (24). The subse­
quent summation over all the spheres yields the follow­
ing transport equation for the quadrupole energy of the 
whole system: 

3-.:<de )'=-W [<de )'+ wQ(w-wQ) <J'€ ),] __ 1_[ <de )'-<J'€ )') at Q Q (i)d~ d T Q Q Q, 

A similar procedure reduces Eq. (23) to 

~(ded)'=-W W-WQ [<deQ>'+ wQ(w-wQ) <J'€d>'] 
at O)Q (f)i 

- ;d [<J'€d)'-<ded)'), 

Td-I=Tdd-l+TdD-t, TdD-I=4nNmDdFd, 

Fd=O,7bd~0,7 (CiDd) 'f •• 

(25) 

(26) 

It should be noted that, in contrast to the quadrupole 
energy relaxation, the dipole-dipole reservoir (DDR) 
relaxation always includes the case corresponding to a 
small-radius diffusion barrier. This is due to the 
presence in Dd of the principal terms corresponding to 
nonbarrier diffusion. The terms omitted from the coef­
ficient Dd in the bd > ° case contribute to the relaxation 
time to the same extent as the nonbarrier terms. Other­
wise (bd < 0) their contribution is (bd/o)3 times smaller 
than the contribution of the nonbarrier terms. 

6. We shall now estimate the nuclear spin-lattice 
relaxation times associated with the impurity mech­
anism. We shall consider low temperatures (liquid nitro­
gen or lower) at which the Bayer relaxation times (ris­
ing exponentially with decreasing temperature) cease to 
contribute significantly to the nuclear relaxation rate. 
In these estimates we shall retain only the nearest 
neighbors in all the lattice sums and assume that the 
number of these neighbors is six. Then, 
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wd-331'lila', Dd=576F (0) a'(l'lila')', 

DQ= ~F(O)a' (l'Ii)' s s= {1, 6M >6 .. , bQ 
40 a" 25, 6 .. >6M OTI, bQ>6 .. ,M. 

We shall use the following typical values of the para­
meters which occur in the expressions for the relax­
ation time s : 

1/2n =10' Hz/G, Q=10-"em2, lQ=10, wQ/2n=3'x 10' Hz, 

Z=1, 8='1" 1,=2~, Nm =1O", a=4 x 10~':' em, 

where {3 is the Bohr magneton. For these values of the 
parameters we obtain 

DQ""6 ·10-" em2/see, Dd""7 .1O-1! em2 /see, 

wd-5,'1O' rad/see, 6 .. -7a=2,8 ·10-' em. 

The correlation times of the components of electron 
spin vary strongly from ion to ion and they also depend 
on the temperature and concentration. [1] At liquid nitro­
gen temperatures and for concentrations N~ = 1017 cm-3 
the impurity spin correlation time is governed by the 
spin-lattice relaxation processes; in estimates we may 
assume that 'Te ~ 5 x 10-7 sec. In this case, we have 
Wd'Te « 1 and a magnetic barrier is unimportant. The 
relaxation radii are found to be smaller than 0E: 
bQ;:::j 1.7 X 10-7 cm, bd ;:::j 7 x 10-8 cm. The relaxation 
times are: TQD ~ 30 sec, TdD ~ 0.25 sec. 

At helium temperatures we find that 'Te ~ 10-4 sec 
or longer. In this case, the radius of a magnetic dif­
fusion barrier is 15M ~ 2 x 10-7 cm < 0E and the relax­
ation radii are bQ ~ 4.5 X 10-8 cm, bd ~ 1.8 x 10-8 cm. 
The relaxation times are TQD ~ 6 X 103 sec and 
TdD ~ 1 sec. 

At higher impurity concentrations the correlation 
time 'Te is governed by the spin-spin interactions of im­
purities: 'Te = 1//M;, where M2 is the second moment 
associated with these interactions. If N~ = 1019 cm -3, 
we, find that, for example, 'Te ~ 3 x 10-7 sec. In this case, 
we find that TQD ~ 0.2 sec and T dD ~ 1.5 X 10-3 sec. 

We find that, in all cases, TQD » T dD. This is due 
to the fact that, under the conditions considered here, 
the diffusion of the quadrupole energy is hindered by a 
barrier (bQ < 0), whereas the dipole-dipole energy 
diffuses unnindered by any barriers. If we vary the type 
of llR gnetic impurities and their concentration, we can 
alter the relaxation time within a range wider than that 
given by the above estimates. 

In NQR processes a typical relaxation time repre­
senting the interaction between the electron quadrupole 
moment and thermal vibrations of the lattice amounts to 
several tenths of a second at liquid nitrogen temper­
atures and several tens of seconds at helium temper­
atures. Our estimates show that at high impurity con­
centrations (N~ ~ 1019 cm-3) the relaxation via para­
magnetic impurities begins to compete with the 
relaxation via the lattice vibrations even at liquid nitro­
gen temperature, at lower impurity concentrations this 
begins at helium temperatures. The range in which the 
spin diffusion in NQR is important is shifted toward 
low temperatures compared with the magnetic resonance 
of spins 1/2. This is due to the unavoidable competition 
of stronger relaxation mechanisms in NQR. 

The occurrence, under these conditions, of shorter 
dipole-dipole reservoir (DDR) relaxation times should 
influence the saturation effects. In the case of saturation 
slightly away from resonance (w f wQ) the transport 
equations (25) and (26) for <~Q)t and (~Io)t are combined 
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into a single system so that the line profile under sat­
uration depends not only on TQ but also on Td «< TQ). [6] 

7. Equations (25) and (26) are formally identical with 
a system of the transport equations for homogeneous 
media. [6] However, in the present case, the relaxation 
time includes a contribution of the diffusion of spins 
toward magnetic impurities. An analysis of the solutions 
of equations such as (25) or (26) is given in [6J• 

If the nuclear dipole-dipole interactions are not 
stronger than the spin-lattice interactions, we cannot 
introduce the DDR concept. In this case, we can use the 
Zubarev method to derive a system of transport equa­
tions for the operators Pmn (r) = EP~n 0 (r - rk) which 

k 
is of the following form for the assumptions made above: 

a LL a .' a , -<Pmn(r»'= -a Dmn'''-a <p,,(r» at x· x' 
r" ~v 

1 <p (r»' <p (r»' [ () ie +J'e ']>'- \""1 " - " + ---;;;( pmn r, Q t /..J T mn, r, 

Apart from the relaxation mechanism involving mag­
netic impurities, which we have considered above, an 
inhomogeneous relaxation may take place in the pres­
ence of electric charges and other lattice defects. If the 
direct spin-lattice relaxation time of the nuclei located 
near defects is considerably shorter than those of the 
nuclei far from defects, we may find that such "electric" 
defects govern the relaxation of the sample as a whole 
because of the spin diffusion processes. 

The authors are grateful to D. N. Zubarev, M. A. 
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present paper. 
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