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The interaction between the vortex-filament lattice and a periodic distribution of dislocations is 
investigated. The mean pinning force has a peak if the periodicity of the vortex-filament lattice is 
equal to that of the dislocation array. The results agree with the experimental findings. 

1. INTRODUCTION 

The experimental dependence of the critical current 
Ie in hard superconductors on the external magnetic 
field reveals in many experiments that the maximum of 
Ie is reached shortly before the field reaches the criti
cal value Hc2 (see, e.g., [1-7]). Within the framework of 
modern concepts, one can name many causes of this 
peak effect[D-lO]. Since the ability of hard superconduc
tors to carry current without losses up to the critical 
current can be attributed to the pinning of the vortex 
filaments by the lattice defects, attempts are also made 
to relate the appearance of the peak effect with the . 
pinning mechanism. In this paper we wish to propose 
and discuss the theory of one of the possible mechan
isms. 

2. CALCULATION OF THE AVERAGE 
PINNING FORCE 

To calculate the density of the pinning force, we use 
the Peach-Koehler formula[llJ 

(1) 

where ki is the density of the forces with which the 
mechanical stresses O'km act on the dislocation distribu
tion Qjm' For Qjm one can introduce a quasidislocation 
density, with the aid of which we can describe the point 
defects, precipitates, etc. [12J. 

The dislocation distribution is a property of the in
vestigated samples and is assumed specified. The stres
ses O'km in our model are the proper stresses in the 
superconducting'samples, due to the lattice of the vortex 
filaments. We start with the calculation of these proper 
stresses, assuming for Simplicity that the sample is in
finite. 

The starting point of our calculations are the 
Ginzburg-Landau equations C 13-16J, which are connected 
with the equations of linear elasticity theory and take the 
following form: 

21m (-i1!8,- ~ A,)' '¥+a.(1+a,.(Inkx),.+'/,a,;>,e,,· e.n '1", (2) 

~. (1 +b,.(Ink x),.+1/2 b,;>,e./'e.i') I'¥ I''¥ =0, 

• (0) C iIIe 4e' (3) 
], =-4 e'Ji<e.m.A •. m.j=~-(,¥·,¥.,-'¥'¥.'->--A"'¥I·, 

n m me 
(C'Ji<,+IIC'Ji<,)e,,·= (Ink X)", (4) 

Ink (8,l+lIe,,+e,t) =0. (5) 

Here E~ and E~ are the elastic and plastic deformations, 
and the symbol Ink denotes alternation of indexes of the 
form 

(6) 
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Xij is the stress function of elasticity theory[ 16, 19J, Eijk 
is a unit antisymmetrical tensor, and the symbol 'I' k 
denotes a derivative with respect to the k-th coordinate. 
In the derivation of (2)-(5) we used the following expres
sions for the changes in the elastic constants c5CijkZ and 
for the spontaneous deformation c5 Eij : 

6CiJi<,=a.oai,.d '¥ I'+'/,~.bi ... d '¥ I', (7) 
6e,;=-a.oa<;1 '¥ 1'-lh~.b<;1 '¥ I'. (8) 

with 00 and {30 the known Ginzburg-Landau coeffi
cients[13J. ~j' aijkZ' bij' and bijkl are material tensors 
describing the connection between elastic properties and 
the superconductivity properties. 

The system (2)- (5) was solved approximately in 
analogy with the Kammerer solution [16]. As the zeroth 
approximation we assume a state in which there is a 
lattice of vortex filaments C17 ,lBJ and in which there are 
no deformations. Then, in first-order apprOximation, we 
solve the mechanical equations (4) and (5) connected with 
the field of the order parameter '1'. Since we wish to cal
culate only those proper stresses which are due to the 
vortex-filament lattice itself, we put E[j = O. We obtain 

Ink ( (CHC)-'Ink x}=-Ink 68. (9) 

This equation for the stress functions Xij can be 
solved, according to Kammerer [16J, by successive ap
proximations, and for our model we can again confine 
ourselves to the first-order approximation (OC = 0). The 
remaining equation for the stress function 

(10) 

can be solved by the method described by Kroner C 19J • If 
isotropy is assumed 

C,;:= 2~ 6,,6,,- ~ m + 1 6"-6,,, a,.=a6,., b,.=b!5,. (11) 

(G is the shear modulus, m is the reciprocal of the 
Poisson coefficient, and a and b determine the relative 
volume change OEii due to the quantity I'l'l [16J), then Eq. 
(9) goes over, after making the transformation 

(0)1 1 (.(O) 1 (0») (0)1 (12) 
Xi; =TG Xi; -~ 6i, , X".i =0 

into the equation of the double potential 

t.t.x:;·)' =- (a.a 1 '¥ I'+'/,~ob I '¥ I') ,.,.6,,+ (a.al '¥ I'+'/,~.b 1 '¥ I') ,f,;, (13) 

where we substitute for 'I' the well known Abrikosov 
solutionC 17, 18J 

1 '¥ 1 '= 'l"o'le. I '3-'1. L (_1)m.+m+ •. 

(14) 
x exp{- n_(m'+n'_mn) + 2ni (mx+ 2n~m y)}, 

'3 d'3 
Here d is the distance between the vortex filaments. 
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The stress functions E!?)I are written in the form 1] . 

(Ojl _ E (Wmn _ {2,.,i (. 2n-m)} Xi, - Xi; exp -- mx+ -- y 
mn d l'3 ' 

(15) 

and the right hand side of (13) is expanded in the corre
sponding Fourier seires. This yields x~?)/mn and then, 

1] 

according to (12) x!?)mn. We now calculate the stresses 
with the aid of (4).1We obtain 

~ {2,.,i ( 2n-m)} a.,= ~ a,rn exp d mx+ Y3 y . (16) 

The stresses due to the vortex-filament lattice have the 
same periodicity as the vortex filament lattice itself. 
The coefficients aljn are given in the Appendix. The 
convergence of the series (16) is ensured by the conver
gence of (14). 

For the average density of the pinning force we can 
write 

1 SL SL E { 2,.,i ( 2n-m} 17 li,=--· £'J' a .. mnexp -- mx+-_-y IX;,(x,y)dxdy. ( ) 
(2L)' d' l'3 

_L_L mn 

This formula will be used in the next section for a 
periodic distribution of the dislocations. 

3. PEAK EFFECT AS THE RESULT OF A PERIODIC 
DISTRIBUTION OF THE DISLOCATIONS 

By way of the simplest example of a periodic disloca
tion distribution, we consider the arrangement shown in 
the figure [ao] • In the shaded regions, the dislocation 
density has a constant value Qiij' and in the remaining 
regions it is equal to zero. If we expand this distribution 
in a Fourier series, we obtain [ao] 

IX,;= ~ IX,;" exp { 2;i (rx+sy) }, 

T, dij 1 . ttC . ate 
at; =;Z -;:; SIn T r SIn T S ' 

(18) 

(19) 

We now confine ourselves for aij to the special case of 
edge dislocations, which lie parallel to the z axis and 
whose Burgers vectors are directed along the x axis 
(i.e., only the component a31 differs from zero). In addi
tion, we take into consideration the fact that the stress 
components a 13 and a23 are equal to zero. Integration 
yields in formula (17) 

k _ ~ a mn ~ "sin2,.,(mld+rll)L. (2n-m S) 
1-- "-.l" "-.lIX.. 2,.,(mld+rll)L sm2,., --ai3+T L 

mn " (20) 
X·'[2,.,(2n-m+~. )L]-I 

, dl'3 I ' 

- E E sin2n(mld+rll)L. (2n-m 8)L 
k z= O'u mn "3i T8 Bln2n --_-+-

( m r) dl'3 t 
mn " 2,., d+T L (21) 

x [ 2,., ( 2;f3m + 1-) L] -I 
The average quantities kl and ka are now functions of 

the period d of the vortex-filament lattice. The quantity 
d2 itself is proportional to the magnetic induction: 

d'=~~ 
l'il B ' 

where 4>0 is the flux quantum. 

(22) 

The value of d can vary under the influence of an ex
ternal magnetic field. Since the function (sin xL)/xL has 
a clearly pronounced maximum for large values of L at 
x = 0, and in the remaining regions differs little from 
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zer~ the oEly terms that contribute to the expressions 
for kl and kg are those in which the arguments of both 
sign functions are simultaneously equal to zero. There
fore in double sum over m and n there remain only the 
terms for which m = 2n or m = O. If we now take into ac
count the expression for a~n (see the Appendix), we ob-
tain 1] 

lil=O, 

r. 0I~'0"2(2+S) (2 8) ",=all "-.l IX.. sm ,., ~ - L/2n ~ + - L 
• dY3 1 dl'3 1 

(23) 

+ 0-1 ~ 0,' 2 (2 s ) (2 8 ) all "-.l IX.. sm ,., ---= - - LI2n -=- - - L 
• dl'3 I dl'3 t 

+ 02~ 0"2(4+S) (4 S) all "-.l IX" sm n ---=- - LI2n --=- + - L 
• dY3 1 dY3 1 

+ 0-' ~ 0.' 2 (4 S ) (4 8 ) all "-.l IX.. sm ,., - - - L12,., -=- - - L. 
• dY3 1 dY3 1 

(24) 

The first two sums in (24) differ from zero only at 
discrete values of l: 

21=aY3lsl, s=±1, ±2, ... (25) 

The remaining sums make a finite contribution at 

41=df31 s I, s=±1, ±2, ... (26) 

If the lattice period d of the vortex-filament lattice is 
connected by one of these two relations with the disloca
tion-distribution period, then a sharp maximum appears 
in the average density of the force ka. This peak of the 
average density of the pinning force manifests itself in 
experiment as a peak of the critical current. The case 
s = 0 corresponds to d - 00 and will therefore not be 
considered. 

4. DISCUSSION 

The theory developed here is confirmed in the experi
mental results described in the literature. Schlump 
et al. [5] observed the peak effect preCisely in the case 
when the distance between the vortex filaments coincides 
with the dislocation-lattice period. Similar results were 
obtained by Koch and Carpenter [6] , who observed the 
peak when the distance between the vortex filaments was 
equal to the distance between the precipitations. Peter
mann[7] obtained a peak at a distance between precipi
tates equal to four distances between the vortex fila
ments. 

Actually, the peak is not as clearly pronounced as in 
our model. This can be attributed to the fact that the 
dislocation structure in the samples does not always 
have the same periodicity, and this causes a broadening 
of the peak. The fact that the sample has finite dimen
sions also contributes to the broadening of the peak. 
With the aid of more realistic models of the dislocation 
distribution it will be possible to determine which of the 
many peaks that are possible on the basis of (25) and 
(26) is actually produced in a given sample. In our spec-
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ial case, the largest peak pertains to s = 1, since aOs is 
proportional to l/s. 31 

In conclusion we make one more remark concerning 
the temperature dependence of the magnetic field at 
which the peak occurs. The magnetic induction B is con
nected with the field H in the vicinity of H 2 by the rela-
tion [ 17 , 18] C 

B-H= H-H" 
1,16 (2,,'-1) . (27) 

We denote the fields pertaining to the peak by the sub
script p, and obtain for the external magnetic field ~ 
using the well known temperature dependence of Hc2_ 

H 1.16(2,,'-1)B. + "12 xU, [ (T )'J .= 1+1.16(2,,'-1) 1+1.16 (2x'-1) 1- T, (28) 

The known experimental data do not make it possible to 
verify this relation. 

We are grateful to Prof. H. Weber and H. Seer for 
valuable discussion, and also to Prof. I. E. Dzyaloshin
sku for critical remarks. 

APPENDIX 

We present here expressions for the coefficients of 
Eq. (16) corresponding to the frequently used approxi
mate form of Abrikosov' s solution. 

1 'l'1'='l'.'lc.I'3-"·{1-2exp (-l';)(cos'2; (x-- :3 Y) 

+cos ~n :3 y+cos 2; (x+ 1; Y))} . 
If the vortex filaments are directed along the z axis, 

then all the components a~ln, awn, and also the coeffi
cients aU, al~-\ a~~, aral, a:, ara2, aU, a~l vanish. The 
nonzero components are given by the formulas 

='/ .0'1;1°==1/,0'1111 =' /a02~i-l =-1/",OSJ01=1/"a:;t _1/,0.,10='/,0';:° 

==-1/ ,AU tt= I 1,0,;1-1 =--3-1/'0'12 1°=_3-11.0'12 -1'!-3-1;. au U=3-I/'O'U-l-~tl.A, 

l/eaul%=I/.o~l-i: =t/IO:~t =1/,0'1:" =1/,01120 
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Here 

A=2G~~(ii-20)exp(- n_) +20exp (_ 2~), 
m-i 4n "1'3 "1'3 

B=2G~Eoexp (_ 2~), 
m-i 4,.. "1'3 

ii=a Ic. 1'3-''', O='/2b(lc.I'3-"·)'. 
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