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A theoretical analysis is made of the interaction of ultrasound with electrons in solids in a wide 
range of ultrasound frequencies and, in particular, at intermediate frequencies too high for the 
phenomenological approach but sufficiently low for the scattering of electrons to remain important. It 
is shown that at these intermediate frequencies the theoretical formulas contain, in principle, the 
fullest information on the scattering mechanism. The relaxation of the anisotropic part of the electron 
momentum· distribution function can be described with the required accuracy by a finite number of 
different time constants. Very simple approximations of this kind are used to derive for the first time 
the formulas for the electronic absorption coefficient of sound and for the acoustoelectric current, 
which are valid at intermediate frequencies in the case of an arbitrary electron statistics and a fairly 
wide range of scattering mechanisms. 

1. INTRODUCTION 

The interaction of ultrasound with electrons in solids 
has been investigated for many years. The problem was 
first formulated in 1938.[1] In some cases, use was made 
of a phenomenological approach valid at sufficiently low 
frequencies of sound. [2] In other cases a transport equa­
tion without the collision integral was employed. [3,4] The 
latter approach is valid at sufficiently high acoustic fre­
quencies and is analogous to the Landau absorption of 
plasma waves. It would be interesting to develop a theory 
valid over a wide range of frequencies from which these 
two approaches could be deduced as the limiting cases. 
This theory should be based on transport equations for 
plasma particles with a full allowance for collisions. One 
variant of such a theory is put forward in the present 
paper. 

Although the need for a theory valid over a wide range 
of frequencies has been recognized for some time (see, 
for example, reviews in [3,4]), a satisfactory solution has 
not yet been obtained. In most cases, the collision inte­
gral in the transport equation of electrons has been used 
in the form 

1 
- -[((p, r, t) -t, (e, r, t) J. 

't 
( 1) 

where f(p, r, t) is the distribution function of the elec­
tron moment p, r is the radius vector, t is the time, 
fe( €, r, t) is the local equilibrium distribution function, 
€ is the electron energy, and T is the relaxation 
time. The value of T is usually assumed to be con­
stant[4-7] or dependent on €.[S,g] The main objection is 
that the replacement of the true collision integral with 
Eq. (1) is sometimes too approximate. For example, the 
criterion for going over to the collisionless absorption 
of sound is not always correct if we use Eq. (1). We shall 
discuss this point in detail in Sec. 3. 

A correct allowance for not one, as in Eq. (1), but two 
different (energy and momentum) relaxation times was 
made in [10,11] but only at low frequencies within the 
framework of the phenomenological approach. An at­
tempt to go outside the approximation (1) in dealing 
with intermediate frequencies of ultrasound was made 
in [12] By definition, at intermediate frequencies the 
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electrons which interact effectively with sound include 
those for which ql( €) - 1, where q is the wave number 
of sound and l( E) is the mean free path of an electron of 
energy E. If ql ~ 1, the coefficients in the expansion of 
f(p) in terms of spherical harmonics do not decrease 
with increasing order of the terms.[13-15] However, only 
the zeroth and first-order harmonics are included in [12], 
which is not justified. 

Thus, we can see that there are as yet no published 
general formulas for the electronic absorption coeffi­
cient a and the acoustoelectric current jac in the 
ql-l range. In fact, in this ranre we can use only the 
expressions for a derived in [7 for a totally degenerate 
electron gas and one special scattering mechanism. We 
shall try to avoid incorrect assumptions in the deriva­
tion and solution of the transport equation for electrons. 
This should make it possible to obtain for the first time 
the formulas for a and jac correct for ql- 1 in the 
case of an arbitrary statistics of electrons and a fairly 
wide range of scattering mechanisms. 

2. RELAXATION OF ANISOTROPIC PERTURBATIONS 
OF THE ELECTRON DISTRIBUTION FUNCTION 

An acoustic wave and an external electric field 
perturb the distribution of the electron momentum. 
The relaxation of these perturbations can be described 
by the classical transport equation 

.!.!..+~!.!..+F~=I[!ol- ~ !n(S)Pn(cos6) (2) 
at m ax ap. ~ 'tn(s) , 

where F is the force exerted by the acoustic wave and 
the static electric field on an electron. It is assumed 
that sound travels along the x axis and that the force F 
is applied in the same direction; E = p2/2m; m is the 
effective mass. The right-hand side of Eq. (2), which 
represents the collision integral, can be expanded in 
terms of the Legendre polynomials Pn(cos e), where e 
is the angle between p and the x axis; I[fo] is the .iso­
tropic part of this expansion and 

~ 

!= L!n(S)Pn(cos6). ( 3) 
n=O 

This representation is valid under the quasielastic scat-
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tering conditions [15J and will be useful in obtaining the 
solution. 

It is evident from the structure of the right-hand 
side of Eq. (2) that the relaxation of the anisotropic per­
turbations f (the terms with n~ 1) is complex and gen­
erally cannot be described by a single relaxation time. 
Each spherical harmonic in Eq. (3) corresponds to a re­
laxation time 7n( E)'. The properties of a sequence of 
relaxation times {7n( E)} have not been analyzed in suf­
ficient detail. Since all these relaxation times play an 
important role in the acoustoelectronic effects in the 
ql ~ 1 range, we shall discuss their properties in greater 
detail. 

The time 7n( E) is expressed in terms of the cross 
section for the scattering s(~) through an angle zp 
(~=coszp): . 

1 1 h. 
'to (e) = 't(e) - 't(e) , 

where 

hn= (i s(s)ds) _t j s(S)Pn(s)ds. 
_1 _1 

(4) 

( 5) 

The first term on the right-hand side of Eq. (4) is inde­
pendent of the number n and represents the contribution 
of the processes resulting in the "loss" of an electron 
from a state with given value of p. The second term 
represents the "gain" by the state p. The parameter 
An in Eq. (5) is evidently the ratio of the loss and gain 
contributions. Since I Pn(~) I:s 1, it follows from Eq. (5) 
that I Anl:S 1. Since Pn(~) oscillates in the range -1:S ~ 
:S 1 (the number of sites is n), we find that an increase 
in n causes An to approach zero and it makes the time 
7n( E) to approach T( E). This property is the basis of the 
approximation which can be formulated generally as 
follows. There is always such a number v that if n > v 
we can satisfactorily assume that 7n( E) = 7( E). Therefore, 
Eq. (2) can be written as a system of equations for the 
first harmonics fo(E) , f1(E), ... , fV(E) and the residue . 

cp=f- .Efn(e)Pn(cos6). 
• _0 

This final system of differential equations must now 
be solved. We shall demonstrate later that the differen­
tial equations frequently reduce to the algebraic form. 
There are no principal difficulties in solving these equa­
tions for any value of v. However, the simplest cases 
are those for which the values of v are small, for ex­
ample, v= 0 or 1. 

We shall now consider the scattering mechanisms for 
which 

(1-S)"'-' 
s(S)- [1+x(e)-s]" (6) 

where K(E)=1i2/4mErb« 1 and 1'1) is the screening 
radius. A cross section of the type (6) corresponds pri­
marily to a power dependence 71( E) 0: Ea and typical val­
ues of a are -1/2,0,1/2, and 3/2. The results of calcu­
lations of the integrals (5) with the functions s(~) in Eq. 
(6) are given in Table I. We can clearly see a general 
tendency for I Ani to decrease with increasing n. It 
follows from Eq. (6) that the rise of a reduces the 
anisotropy and the importance of scattering through 
small angles. The greater the role of small angles in 
the integrals (5), the smaller is the difference between 
An and unity because Pn(~) '" 1 for (1-~) < l/n. This 
explains why (see Table I) the value of I An I decreases 
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'. 

-'/' -0.7·10-' -0.6·10-' -0.6·10-' -0.6·10-' -0.5·10-' 
0 10-' 0.32 0.19 0.13 0.10 0.08 
'f, 0.78 0.66 0.59 0.53 0.49 
'f, 5.10-4 0.9991 0.9976 0.9957 0.9932 0.9903 

-';' -0.3.10-2 -0.2·10-' -0.2·10-' -0.2·10'" -0.2·10-" 
0 0.31 0.17 0.11 0.08 0.06 
'/. - 0.73 0.59 0.50 0.44 0.38 
'/2 0.9963 0.9906 0.9831 0.9742 0.9642 

-'/. 10-' 
-0.5·10-' -0.4.10-2 -0.3·10-' -0.3·10'" -0.3·10-' 

a 0.30 0.16 0.10 0.07 0.05 
'/. 0.70 0.55 0.45 0.38 0.33 
'/. 0.9934 0.9832 0.9704 0.9553 0.9387 

--'I. 5·10-' 
-0.02 -0.01 -0.01 -0.01 -0.7·\0-' 

0 0.26 0.12 0.06 0.03 0.02 
'/. 0.61 0.43 0.31 0.23 0.18 
'I. 0.9750 0.9395 0.8981 0.8533 0.806& 

-'/. 10'" 
-0.03 -0.02 -0.01 -0.01 -0.9·10'" 

0 0.23 0.09 0.04 0.01 0.001 
'/. 0.56 0.36 0.24 0.16 o.n 
'/. 0.9567 0.8987 0.8342 0.7681 0.7024 

-'/. 5·10-' 
-0.09 -0.05 -0.03 -0.02 -0.8·10'" 

0 0.12 0.005 -0.021 -0.024 -0.02 
'/. 0.39 0.16 0.06 0.01 -0.01 
,/. 0.86 0.71 0.57 0.45 0.35 

-'I. -0.13 -0.06 -0.03 -0.01 -0.5·10-' 
0 10-' 0.05 -0.03 -0.03 -0.03 -0.02 
'/. 0.29 0.07 -0,0005 -0.02 -0.03 
'I. 0.78 0.57 0.41 0.29 0.20 

with increasing K (for a given a) and rises to unity with 
increasing a (for a fixed K). The dependence of An on 
the number n weakens somewhat at high values of a. 

The lowest value a= 3/2 is obtained for the scatter­
ing by ionized impurities. For such values of a the 
parameter A1 is always close to unitr, i.e., 7« 71' 
According to Table I, 7/71-10-1-10- . This means that 
the separate time constants in the sequence {7rJ may 
differ from one another by several orders of magnitude 
(7n - 7 for n - 00). Clearly, the approximations v = 0 
or v = 1 with a = 3/2 are hardly justified even in rough 
estimates. 

If a= 1/2 and K~ 5x 10-2 and even for a= 0 and 
K'" 10-2 or K'" 5x 10-2 we have A2« A1 and we can ignore 
all the parameters An with n~ 2, i.e., the approximation 
v= 1 is valid. If a=-1/2, we find that irrespective of the 
value of K we obtain I Anl:S 1.3x 10-1« 1 (n~ 1). This 
allows us to use the approximation v = O. If an error of . 
30% can be tolerated, we may assume that v = 0 also 
for a"O and K~10-4. If we take v=l for a=O and 
K~ 10-4 , we obtain a simple interpolation which allows 
for the difference between the relaxation times of the in­
dividual spherical harmonics to within 20%. This inter­
polation improves the agreement between the theory and 
experiment. [16J We shall derive concrete results for 
v = 1. Our formulas also include the approximation v = 0 
as a special case. 

3. ABSORPTION AND VELOCITY OF SOUND. 
ACOUSTOELECTRIC CURRENT 

Equation (2) is nonlinear because of the term F8f//lpx. ' 
The nonlinearity will be allowed for by iterations of the 
amplitude. We shall be interested in the linear effects 
(absorption O! and correction to the velocity of sound 
~vs/vs) and in the acoustoelectric current jac in the 
approximation linear with respect to the acoustic energy 
flux. The effects under consideration can be calculated 
using Eq. (2) if 

e't/1i~1, liq<p=mv. 

Then f and F can be represented in the form 

f= f + f e'(q·-·"+ f' e-',q·-·", 
F=F+Fei(q~-(a)t)+F·e-i(q%-fI)t), 
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where w = vsq is the velocity of sound, and F,"1, F and 
f may depend weakly on x and t, compared with the ex­
ponential functions in E;q. (8). Substituting Eq. (8) into 
Eq. (2), we obtain 

-F~+II'o]- '6 'n(e}Pn(eose) _o-IFf+F"f], (9) 
op. L..J 'tn(e} Op. 

1.=0 

-i(!!!!:""-Ol)l+Ilfo]- ~ [.(e}P.(eose) F...!.L+F.!L. (10) 
m L..J 'tn(e} op. op. 

n=l 

In Eq. (10) the function 1 is the electron distribution in 
an external static field "F. The equation for this function 
can be obtained from Eq. (9) by dropping the right-hand 
side. If F T J m « v, the solution of this equation is well 
known and we shall use it later. The term -iqPxf/m in 
Eq. (10) ensures the "coupling" of the spherical har­
monics so that if ql( E)'<: 1 the harmonics do not decrease 
with increasing n and the function £ is "elongated." 
The presence of an inhomogeneous term -£ on the right­
hand side of Eq. (9) causes "elongation" of the smooth 
function I. 

We shall assume that 11= 1 and use Eq. (10) to de­
rive equations for fo, f1' and ;Po In this way, we obtain 

iOl1:. (e}[o(e)+1:. (e}l[[o]- ~ {iql.(e)[. (e) 

+. ~~:; [2e of;~e} +2[. (e) ]}=-F't. (e) ( ::. ) .. (11) 

{' v.(e} o[o(e}} 
11-iOl't.(e} ][.(e}+ iql.(e}[,(e}+--;;w2e -o-e-

+A(e}=-'t.(e}F (~) , (12) 
op. • 

[Hi ( p~q -00) 't(e}] Iji+F't(e} :p~ =6(e}A(8}P.(6) 

-1:(e}F[.!L-(~) P.(s}-(.!L) ] 
,op. op.. op. 0 

2 { v.(e} [o[.(e} ]} -"3P'(S} iql(e}[.(e}+6(e} --;;w 2e-o-e --[.(e} ,(13) 

where 

A(e}=iql.(e}<W.+ :'(~i [2e(s :~).+3<SIji>.], 
s=eose, l.(e)=v(e),;.(e}, l(e}=v(e}'t(e}, 

,/28 
v(e}= r-;;:, 

2n+1 • « ... }>n=-2-S dsPn(6) (. .. ). -. 

(14) 

The following expression is obtained from Eq. (9) for 
the function II ( E) : 

f.(e}=-'t.(e}F(~) -2't.(e}Re[F,(!L),]. (15) 
oP. • op. • 

We shall substitute an electron current ]=0(1<1, q)'F/e 
alternating at the frequency of sound w into the system 
of standard Maxwell equations and of elasticity equations. 
Then, a and ~vs/vs can be expressed, subject to the 
usual assumptions, [2-4] in terms of 0(,.., ,q): 

, 2n I ,+ '] Re a(Ol, q) 
a=-TJ X. 

v,e, 11+4nia(0l, q)/Oleol' ' 

~ = ~I TJ'+:x.'] 1m a(m, q)-4nla(m, q) I'/me. , 
v. Oleo 11+4nia(0l,q)/Ole,I' 

( 16) 

(17) 

where the electromechanical constants are T/2 = 41T{3o/ Eopv1 
and i = A 2q2 Eo/41Te2 pv1, {3 is the piezoelectric modulus, 
A is the deformation potential, Eo is the permittivity of 
the crystal, and p is its density. The calculation of a 
and ~vs/vs reduces to the calculation of a(w, q). 
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The equation of continuity yields 1 = envs, where the 
alternating electron density is 

11= (~1t)'S d'p [,(e). (18) 

It follows from Eq. (18) that in order to find ii, rand 
a(w, q) from Eqs. (11)-(14), it is sufficient to find only 
fo(E). When fo(E) is found, we can ignore the energy re­
laxation, i.e., we can drop the term 1[£0]. This can be 
done if 

'ql,(e»1 (fOrql(e};;'1) (19) 

and 

q'l.(e)l,(e) >1 (forql(e)<1), (20) 

where lo(E) =V(E)To(E). The conditions (19) and (20) have 
a clear physical meaning. If ql ~ 1, an electron actually 
travels a distance -lo before its energy relaxes signifi­
cantly. Therefore, lo should be compared with the 
wavelength in Eq. (19). If ql« 1, the collisions which 
change the momentum effectively reduce the distance 
traveled by an electron without energy relaxation to 
-~. This quantity occurs in Eq. (20). The condition 
(20) is the lower limit of the frequency range in which 
our final expressions are valid. 

The problem of the influence of electron-electron 
collisions (of frequency lIee« T~l) on fo(E) can be solved 
in a similar manner. These collisions are unimportant 
if the conditions (19) and (20) are satisfied and Zo(E) is 
replaced with lee( E) = vlle~. Since lee» l, the electron­
electron collisions may be important only at low frequen­
cies subject to ql« 1. We shall therefore ignore elec­
tron-electron collisions in our analysis. 

Equations (11)-(14) are easiest to solve if they can 
be reduced to linear algebraic forms. This can be done 
if the terms -F can be dealt with by the perturbation 
theory. In this case, the small parameters are 

v.(e}/v (e) (for ql(e) ;;'1), 

3m't. (e) v.(e) 
q'l.'(e) -v-,- (forql(e)<1). 

(21) 

We must bear in mind that these parameters are, in 
fact, small for all the energies E which contribute to 
the final integrals. It is worth noting that the lineariza­
tion of Eqs. (11)-(14) with respect to d does not apply 
to the isotropic part of the static function ~(E) which 
thus remains the distribution function of the hot elec-
tron gas. 

In the zeroth approximation with respect to Vd we 
find from Eq. (13) that 

Iji=A(e}6(e}G(e, s}p.(s}-'I,iql(e}G(e, s}P'(s}, (22) 

where 
G(e, 6} ={Hi[ql(e}s-Ol1:(e} l}-'. 

Multiplying Eq, (22) by ~ and applying the operation 
«( .. ,)1, we obtain the equation for A( E). Eliminating from 
t;."his equat~on and from Eqs. (11) and (12) the guantities 
A(E) and f1(E), we arrive at the equation for fo(E). In 
solving the last equation, we must bear in mind that 

'(v/v(e) }'<1 (23) 

for all the energies which contribute to the quantity 
a(w, q) being calculated. The validity of Eq. (23) is 
easily checked with the aid of the final formulas for 
a(w, q). Naturally, the solution method is basically 
similar to the next (first) approximation with respect 
to vd. In this way, we find the following expressions 
for the electrical conductivity: 
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Rea(ro, q) 4Tte'v. (2m) 'I., s· .,tids a!.(s) ~(s)~(s) (24) 
q(2nli)' 0 a& 1+~'(s)' 

I ( ) 4Tte'v.(2m),/· S• r- d a!o(s) 1 
ma ro,q = q(2nli) , s s-o;:- 1+~'(s) • 

o 

(25) 

where 
~(s)=ro't(e) [ arctgql(s) + 3(6(e)-1)], 

ql(e)-arctgql(s) q'l'(e) 

~(s)=1- Vd(S) [1+ 2av. ] 
v. ql, {s) v(s) ~ (s) . 

The correction, proportional to vd in Ima, is small 
compared with the expression given above if the small 
parameters of Eq. (21) are used. If ql(E:)«l and Vd=O, 
Eqs. (24) and (25) reduce to the corresponding formulas 
given by Lipnik.[12J 

It is now convenient to specify the statistics of elec­
trons. Let us assume that the statistics is of the Boltz­
mann type and the electron temperature is T. If 

roD(T) <ro. (26) 

where wD(E:)=3vi,/~(E:)71(E:), the expression for Ima(w,q) 
can be simplified by dropping ~2( 10) from the integral 
in Eq. (25). Then, the denominator in Eqs. (16) and (17) 
becomes 

I 4Tt,' ( 1 I 1+ia(ro,q)- = 1+--) . 
0080 q"rD2 

(27) 

If the cond,ition (26) is satisfied, the quantity ~2( 10) can 
also be dropped from the denominator in the integrand 
of Eq. (24) for Re a(w, q) provided the remaining inte­
gral converges and the main contribution to this inte­
gral comes from energies 10 - T. This is true for a < 1/2. 
If a= 1/2, the remaining integral diverges at the point 
10 = 0 as In 10. The convergence is ensured by ~2( 10). 
If 10-0, we find that ~2(E:) -[wD(E:)/W]2 and this quan­
tity rises, restricting the range of integration if 10 - 101 « T 
([(WV(E:1);WY = 1). An analysis shows that the contribu­
tions of the thermal (10 - T) and low (10 - 101) energies to 
the integral in Eq. (24) are in the ratio which is equal to 
ql(T). In other words, if ql(T).$ 1, the electrons with low 
energies 10 - 101 may play an important role in the absorp­
tion of sound. It should be noted that the conditions of 
validity (7) of the transport equation are not yet violated 
for 10-101' Using Eq. (27), we find that Eqs. (16) and (24) 
yield the final formula for a: 

a=- (T)'+x') (qrD )' e'(2m)'I, S· r; de 8'o(e) ~(s)~(e). (28) 
(1+q'rD')' s,qnli'. iJs 1+~'(e) 

We shall now consider the condition for going over 
to the collisionless regime. It is clear from Eq. (28) 
and from the expression for ~(E:) that if throughout the 
range of 10 which is important in integration the con­
dition ql(E:) »1 is satisfied, the value of a ceases to 
depend on the relaxation times 7 and 71. This is the 
collisionless regime. The condition for going over to 
this regime can be written in the form 

ql(T»1. (29) 

It is indeed found that if Eq. (29) is satisfied, only 
the energies 10 - T contribute to the integral (28). It 
should be stressed that 1 in Eq. (29) is defined in terms 
of the "loss" relaxation time and not in terms of the 
total relaxation time which occurs in the expression for 
the static electrical conductivity. 

A criterion of the type given by Eq. (29) was first 
derived by Akhiezer, Kaganov, and Lyubarski1[SJ and 

736 Soy. Phys.·JETP, Vol. 38, No.4, April 1974 

then confirmed by many others. In all these investiga­
tions use was made of Eq. (1) with 7 independent of 10. 
It was shown in [8,9J that if Eq. (1) was used the depen­
dence of 7 on the energy resulted in the retention of the 
parameter w T(T) in the expression for a applicable in 
the ql(T)>> 1 range and the collisionless formula was 
obtained only for wT(T)>> 1. It follows from our calcu­
lations that if the approximation represented by Eq. (1) 
is not invoked, the criterion (29) applies to 7 indepen­
dent of or dependent on 10. 

It should also be noted that if 7= const, our final 
formulas for a(w, q) and a differ considerab16 from 
those obtained in the approximation of Eq. (1). 3J The 
difference is obviously due to the fact that 'Ii.,t 7. How­
ever, even if we formally assume that 71 = 7, we find 
that for an arbitrary electron statistics the structure 
of the expressions for a(w, q) obtained in the present 
paper differs from that given in [3J. Only the Spector 
formulas for a(w, q) and a obtained for a degenerate 
electron gas are fully justified (for 71 = 7). 

The results obtained are illustrated in Figs. 1 and 
2. Figure 1 shows the dependence of the relative ab­
sorption coefficient a/ ao on the parameter ql(T) calcu­
lated using Eq. (28) subject to vd=O. Here, ao is the 
absorption coefficient in the collisionless case. We can 
see that the collisionless formula is considerably in 
error not only for ql(T) = 1 but also for ql(T) S 10. How­
ever, a can be smaller or greater than ao. Figure 2 
shows the dependence of the parameter r = Vs/Vdc on 
ql(T) for the case when a=-1/2 (here, vdc is the 
critical drift velocity at which the absorption of sound 
changes to amplification). If a = 0, we find that r = 1 and 
if a = 1/2 we obtain r'" 0 .65, which is practically inde­
pendent of ql(T). 

We shall now consider the acoustoelectric current. 
The density of this current is given by 

(30) 

Substituting as t(E:) the second term from Eq. (15), we 
obtain, subject to the approximations (19)-(21), (23): 

(31) 

where 

~,(s)=~+~(e) v(s) , ~,(s)=1- Vd(S) [1+~ H'/,a]. 
ql,(e) v. v. ql,(s) ~,(s) 

The expression (31) is valid in a wide range of frequen­
cies, including the intermediate frequencies ql- 1. If 
Eq. (29) is satisfied, the dependence on T disappears and 
Eq. (31) reduces to the formula for the collisionless case. 

.4. CONCLUSIONS 

The analysis given above has been stimulated by the 
need to have clear ideas about the acoustoelectronic in­
teraction at all frequencies. At low and high frequencies 
this interaction can be described by the phenomenological 
and collisionless theories, respectively, but there has 
been no theory for the intermediate range of frequencies. 

It is clear from our analysis that intermediate fre­
quencies are of special importance from some pOints of 
view. At these frequencies the relaxation times 7n(E:) 
with all values of n occur in the theory. The set of these 
relaxation times gives the fullest information on the 
scattering processes. For example, Eqs. (28) and (31) 
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1" 
J--------~--------, 

2 J II f 10 rifT) 

FIG. 1 FIG. 2 

to 
~1{T) 

FIG. I. Dependence of the absorption on the parameter ql(T): I-a = 

-Y2,/) = I; II-a = 0, /) = 2/3; III-a = Y2, /) = 1/3. 
FIG. 2. Dependence of the amplification threshold on ql(T) for the 

case a = -'/2, /) = I. 

contain the "loss" relaxation time T. This time T is 
interesting because it represents the relaxation of lo­
calized (in the electron momentum space) perturbations 
of the statistical equilibrium state. These local pertur­
bations appear not only as a result of interaction with 
ultrasound but also in other cases such as the applica­
tion of strong electric fields when vd~v(T). A compari­
son of Eqs. (28) and (31) with the experimental results 
can give information on the relaxation time T. This 
has been demonstrated by recent experiments. [lS] 

Finally, it should be noted that the information on the 
relaxation times Tn( €) with different values of n can 
be obtained from the interaction of electrons with any 
(not necessarily ultrasonic) short-wavelength (ql- 1) 
excitations in solids. 
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