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The problem of diffraction of an intense electromagnetic wave by an opaque screen with slits in 
front of a nonlinear medium is solved exactly within the framework of the nonlinear parabolic 
equation. Expressions are derived for the angular distribution of the diffracted radiation intensity. The 
waveguide channel production thresholds are found. 

The nonlinear dependence of the index of refraction 
of a medium on the field of a wave propagating in it 
leads, as is well known, to a number of remarkable 
effects. large numbers of both experimental and theor
etical studies have been devoted to such effects as the 
self-focusing of radiation entering the medium and the 
waveguide propagation of intense light beams. These 
effects are specific for the nonlinear medium. There is 
also interest, however, in the problem of the effect of 
the nonlinearity of the medium on such classical linear 
effects as, for example, Fraunhofer diffraction. A com
plete theoretical investigation of these questions has not 
been possible until recently because of the absence of 
appropriate analytical techniques. The situation was 
changed by the paper of Zakharov and Shabat, r 1J in which 
the method of the inverse scattering problem for a non
linear parabolic equation was proposed, within the 
framework of which all the enumerated phenomena were 
considered. 

In the present paper, the method of Zakharov and 
Shabat[lJ is applied to the problem of the diffraction of 
a wave by a screen with slits backed by a nonlinear 
medium. Exact expressions are obtained for the inten
sity of the diffracted radiation as a function of direction, 
which are identical, in the limit of small intenSity of the 
incident wave, with well-known formulas (see(2J). From 
these expressions, it is easy to find the positions of dif
fraction minima and maxima, which depend in simple 
fashion on the nonlinear characteristics of the medium 
and the intensity of the incident wave. In principle, this 
allows us to make reliable measurements of the param
eters which characterize the nonlinearity of the medium. 

The results that have been obtained are valid up to the 
wave intensities which lead to the formation of a wave
guide channel. Here it turns out that the intensity of the 
radiation diffracted at zero angle behaves as 
In [Ic! (Ic - I)] as 1- Icr' where I is the intensity of 
the inciden~ wave and Icr represents the threshold of 
waveguide channel production. 

From the mathematical viewpoint, the problem under 
consideration reduces to study of the asymptotic behav
ior of the solution of the Cauchy problem for a nonlinear 
Schrodinger equation. The results previously obtained 
along these lines reduce to the statement that the solu
tion approaches zero asymptotically almost everywhere. 
In the present study, some integral relations are estab
lished which do not give the actual asymptotes of the 
solution, but which are quite satisfactory for considera
tion of the diffraction problem. Analytic relations can 
also be established for the well-known Kortweg-de Vries 
equation, in which we also employ the method of the in
verse scattering problem. (3J 
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1. ASYMPTOTIC STATES 

Two-dimensional stationary self-focusing of an elec
tromagnetic wave is described by the equation[4,5J 

2ik aE +~=_k,6nnl IEI'E 
az ax' no 

(1) 

for the complex envelope E. R is assumed that the index 
of refraction n varies as n = no + IinnZIEI2 (cubic non
linearity). 

We introduce the new variable t = z/2k and denote 
k2linnl/no by K. In what follows, we limit ourselves to 
the case of focusing media, i.e., we shall assume that 
K > O. Equation (1) is written in the standard form 

(2) 

We shall call the variable t the time (which is very coh
venient, since Eq. (2) also describes the longitudinal 
self-modulation of a quasimonochromatic wave (see[6J ), 
where t is the time). 

The method of Zakharov and Shabat [1J of solving the 
Cauchy problem for Eq. (2) consists in the following. We 
consider the set of linear equations 

a~ . a~.. 
-+,~u,=q(x)u, --'6U,=-q (x)u" ax ax 

(3) 

where q(x) = i(K/2)1I2E(X, 0), and ~ is an arbitrary real 
parameter. If the initial condition for Eq. (2) is that 
E(x, 0) fall off sufficiently rapidly as jxj - 00, then each 
solution of (3).with the asymptote U1 = e-i~x, U2 = 0 as 
x - - 00, has a definite asymptote as. x - + 00, which we 
shall wri~e down in the form a(Oe-l~X = U1, U2 
=b(~)e-l~X. It turns out here (see[1J)thata(Ois 
analytiC in the upper half-plane of the complex variable 
~ and ja(Oj2 + jb(OjZ = 1 for real ~. 

The first stage in the solution of the Cauchy problem 
consists in the determination of a( ~), b( ~) (the scattering 
matrix). Knowledge of the scattering matrix for the set 
(3) has fundamental value, inasmuch as it turns out that: 
first, if E(x, t) changes in time in accorcfwith eq. (2), 
then a(~) does not depend on the time and b(~, t) 
= b( L 0) exp (4iet); second, the "potential" q(x) is 
uniquely established by the scattering matrix, for which 
it suffices to solve the following set of linear integral 
equations for the functions K1,z(x, y): 

K,(x,y)=F'(x+y)+ S K,"(x,s)F"(s+y)ds, 

(4) 

K,"(x,y)=- SK,(x,s)F(s+y)ds, 

where l ) 
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1 S- b(~) F(x)=- --e(!'ds 23t_
00 

a(s) , 
(5) 

q(x) is expressed in terms of the solution of the set (4): -
q(x)=-2K.(x,x), S Iq(s) l'ds=-2K,(x, x). (6) 

, 

It is obviously not possible to obtain the solution of the 
set (4) in the general case. However, effective study of 
the asymptotic behavior of the solution of (4) as t - co 

turns OI.~t to be possible. We ~ultiply the first of Eqs. 
(4) by el~y, the second by e-1b, and integrate them 
over y from x to co. We denote the integrals 

by K1 , 2(X, ~). We obtain the following equations for these 
quantities: 

1 ,b'(s') e'(H"'x 1 ,. ,b'(s') e'<I-",x 
K.(x s)=--fd. -------fd. K, (x· )-----

, 23ti b a' (s') s-S' +iO 23ti b ,'0 a' (6') s-S' +iO ' 

1 b (s') e-i(H'), 

K; (x, s) =- 23ti J K. (x, s') a(s') s-S' -iO ds'. 

(7) 

For their derivation, we made use of the fact that 

Joo . 1 S b'(6') e'<I'-Ilx 
F(s+y)e-"'dy=-- dS'--e""---. 

x 211i a(6') s'-s+iO 

We consider the asymptotic form of the solutions of 
the set (7) on the lines x - vt = const, t - <Xl. We note 
in advance that the zeroth order of the asymptotic ex
pansion of the integral 

eiCll(~')1 

1= S I(s') s' -s-iO ds' 

in powers of l/t has the form 

Ill' (s) >0 
Ill' (s) <0' 

(8) 

Therefore, as t - co, one can write formulas (7) in the 
form 

K. (x, s)= c.·(s)exp[ -4is't-isxJ+ 

+_1-S ds' K '(x nco (6') exp(4is"t+i(s-s')x) 
23ti ". s'-s-iO' 

K'(x .'J=_1_Sd"K (x e)c'(t' j exp(4i s"t-i(s-s')x) 
, , '0 23ti b • ,b '0 s' -s+iO . 

Here c( ~) = b( ~ )/a( ~), and CI( ~), in view of (8), is 

c.(s)={Cm, o , 
s<~v/4 

s>-v/4' 

We seek the solution of the set (7) in the form 

K.(x, s) =A (s)exp(-4is't- iSX) , K,(x, 6) =B(s)e"', 

(x = vt + xo). Using (8), we obtain for A and B: 

A (S) =c.' (s) (HB(s», 

B(s)=_1 SA(s')C(s') ds'. 
, 23ti S' -s+iO 

(9) 

(10) 

The solution of the set (10) can now be found in gen
eral form. Specifically, we consider a function al( ~), 
which is analytic in the upper half-plane, and which does 
not have zeros there, such that lal( ~) I = la( ~) I if 
~ < -v/4, and lal( 0 I = 1 for ~ > -v/4. Further, let 
b I = C lal' Then, as is not difficult to establish, B( 0 
= ai - 1, A(O = bi(~). It is obvious that this solution 
satisfies the first of Eqs. (10). We now verify the satis
faction of the second. Its right-hand side is 
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_1 f b.·(S')c(S') d6'=~fJg-G~ 
23ti 6' -s+iO 23ti a. l;' -s+iO 

1 S (1 _,) ds' 
=2,ti a.(S') -1-a. (6)+1 6'--6+iO' 

(11) 

Inasmuch as al( ~) has no zeros in the upper half-plane 
and al - 1 as ~ - co, we have 

The contour of integration for :he remaining integral 
can be closed in the lower half-plane, since ai( ~ *) is an 
analytic function of ~ there. In this case, 

-~S a.' (6')-1 d '-a '( )-1 
23ti s'-s+iO s - . s , 

i.e., the second of Eqs. (10) is also satisfied. 

It remains to find al(O, knowing the modulus of this 
function on the real axis: 

la.(s) I={ la(s) I, 
1 , 

6<-v/4 
s>-v/4 ' 

(12) 

The function al( ~ ) has no zeros in the upper halfplane; 
therefore In al( ~) is analytic for Im ~ > O. On the real 
axis, In al( 0 = lnlal( ~) I + i arg al( ~) and arg al( 0 is 
easily found: 

1 -'I'lnla(s') Ids' 
arga.(s)=--;- !oo l;'-s (13) 

We have thus found KI,2(X, ~). In particular, 

l(,(x, s)=(a,(s)-1)eih. 

Carrying out the Fourier transformation with respect to 
y, we find 

K,(x, x)= lim _1_ f (a. (s)-1)e'!('-') ds. 
V-+X+O 2n 

this last integral is determined by the residue of the 
function al( ~) at infinity, which is easily found from (13). 
As a result, we have that as t - co, x - vt = const, 

1 -'1' 1 
limK,(x,x)=---;- L In J,;(ITT ds· 

Using Eq. (6), we find that 
- 2 -'1' 1 

lim J Iq(s,t)I'ds=- J In-1--ds. (14) 
,~OO 11 a(s) I 

~+vt -_ 

The right side of this formula represents the part of the 
wave packet moving with velocity greater than v. The 
integrand on the left side is identical, with accuracy to 
within a factor, with the canonical actions for the Hamil
tonian system (2) (see[ 7J). Relation (14) shows that these 
canonical operations are simply connected with the 
asymptotic state of the system. 

The expressions (12), (13) for al(~) and bl(~)' given 
by bl(O = cI(~)al(O, give us in essence the matrix of 
scattering by the part of the potential moving with veloc
ity greater than v, which allows us to establish a collec
tion of relations of the type (14) for the integrals of cer
tain polynomials in q(x) and its derivatives. However, 
this is already beyond the scope of the present paper. 

Relation (14) is sufficient for the solution of the prob
lem of the diffraction of a nonlinear wave on a screen 
with a slit (or any set of slits). Inasmuch as t = z/2k, 
Eq. (14) essentially gives us the integrated intensity of 
the diffracted radiation at angles larger than 
arctan (v/2k). Since Eq. (1) is applicable only for the 
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consideration of diffraction at small angles, then, by 
setting the angle 0 « 1, we obtain a simple expression 
for the intensity of the radiation diffracted in the angular 
range 0 to 0 + dO:, 

k kS"-' 
dl(S)=;;-lnl a( -2) IdS, (15) 

2. SLIT DIFFRACTION 

We apply the general relations obtained above to ~'1e 
problem of diffraction from a slit. Let a screen be 
placed in the plane z = 0, and let the slit be a strip 0 < x 
< I. We shall asswne the field in the plane of the screen 
to be given: 

{ O, x<O, x>l 
E(x)= E O<x<l . 

0, 

(16) 

The scattering matrix for the system (3) with potential 
q(x), which is of the form (16), can easily be fOWld. 
Simple calculations give 

1 , , 
a(~) =--[ (x+~,)e-"'+ (x-\;) e"'] e'" 

2x(S) , (17) 
xm =sign \;(6'+ I gol')'/', 

Then, 
1 s~+lgol' 

la(s) I' s'+lg,I' cos' xl 

Substituting the resultant expression in (15), we obtain 
the angular intensity distribution of the diffracted radia
tion: 

dl(S) k { k'S'/4+,lg,I' } 
----;w- = ;;-In k'e'/4+ Igol' cos'[I(k'S'/4+lg,I') 'I,] , 

(18) 

where IqolZ = Klo/21, and 10 is the integrated intensity of 
the wave incident on the slit: 

1,= J IEI'dx=IE,I'I. 

In the limit K - 0, we have from (18) 
2/, ,klS de 

dl(8)=-;:;lksin -2-6" (19) 

which is identical with the well-known expression for 
Fraunhofer diffraction (see, for example, [zJ). The zeros 
of Eq. (18) occur at points 0 where 

cos' [1«k8)'/4+lg,I,)'j']=I, 

i.e., 

In linear theory (O:nin)l = 41Tznz /~lz. Hence, 

e~'n= (e;'n)}-26nn/,/I. 

(20) 

(21) 

It is not difficult to establish the fact that exactly the 
same relation holds for the positions ,of the diffraction 
maxima, i.e., 

8~"x= (S~"x)I-26nnl/,/I. 

It is important to note that the value of the shift of the 
maximwn or minimwn does not depend on the integrated 
intensity. Everything is determined by the value of IEolz 
in the plane of the screen. 

As follows from (18), the intensity at the diffraction 
maximum 0 = 0 behaves as 

k (X) -'f, -lncos-' 1,1- . 
"X 2 

This expression becomes infinite for 101K/2 = 1Tz/4, i.e., 

(22) 
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As 10 - Icr the intensity of the diffraction at zero angle 
behaves as 

( dl) 2k 2" 
-;w ._,=;;-In (ler-l)lx . 

The critical value of the intensity (22) is the threshold 
for production of a uniform waveguide channel, which 
was found previously. (8J Finally, we note that, in ac
cord with what was said above, all the results of the 
present section are applicable in the subcritical regime, 
i.e., for 0 < I < Icr' 

3. DIFFRACTION BY A PLANE GRATING 

We now consider diffraction from a grating, i.e., in a 
system of N identical slits; the distance between the 
centers of neighboring slits is denoted by L. As before, 
we shall assume the field in the plane of the screen to 
be specified, setting E(x) = 0 if x does not fall on any slit 
and e(x) = Eo in the opposite case. The scattering matrix 
of the system (3) with y(x) of the given type is represen
ted in the form of the product of matrices on potentials 
of the type (16). This feature allows us to find la(~)lz: 

, Igol'" sin' N1.. (23) 
la(s) 1=1- s'+lg,I' sm Xl sin'1.. . 

Here I is the width of the slit, XZ = I; Z + IqolZ, and the 
quantity A is 

l..=arccos (cos xl cos s (L-I) -\;X-' sin Xl sin S (L-l», 

The angular intensity distribution of the diffracted 
radiation is given by the general expression (15). The 
transition to the linear limit can be made in the follow
ing way. If K - 0, then A = ~; here it is easy to estab
lish the fact that A = I;L. Further, expanding lnla(~)rz 
in powers of K, we obtain the well-known expression 
(see [3J ): 

dI 2/,", sin' '/,k18 sin' (,/,NkLS) 

-;w= "Nkl e'sin' (,/,kLe) 

Here Itot is the total light intensity incident on all the 
slits. 

We now turn to the nonlinear problem. It is evident 
that the intenSity of the diffraction at zero angle is given 
by 

( dl(S) ) = l:.-ln_,...::I".,..-,
dS ,~, "X cos'Nlgll' 

This expression becomes infinite for Nlqll = 1T/2. Here 
the total intensity of the radiation incident on the slit is 
~r = 1Tz /2 KN l. At intensities exceeding this value, a 
waveguide channel is formed (to which corresponds the 
o -like singularity in dl / dO). It is curious to note that 
both the threshold value of the intensity and the depen
dence (dl/dO)e = 0 on Itot for a set of N slits of width I 
are exactly the same as the same quantities fOWld in the 
previous section for a single slit, the width of which is 
Nl. 

In conclusion, the author thanks Y. E. Zakharov for 
his interest in the study and useful comments. 

l'rhe expression given for F(x) is valid only in the absence of zeros in 
a(n in the upper half-plane of~. Inasmuch as the appearance of such 
zeros leads to the generation of a waveguide channel, the representation 
(5), together with all the subsequent formulas, is valid for incident wave 
intensities not sufficient for the production of a waveguide channeL 
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