
Oscillation regimes in a rotating solid-state ring laser 
E. L. Klochan, L. S. Kornienko, N. V. Kravtsov, E. G. Lariontsev, and A. N. Shelaev 

Nuclear Physics Institute' of the Moscow State University 
(Submitted March 29, 1973) 
Zh. Eksp. Teor. Fiz. 65, 1344-1356 (October 1973) 

Theoretical and experimental investigations are reported of the oscillation regimes in a solid-state ring 
laser. It is shown that such a regime may include the frequency locking of waves traveling in 
opposite directions, self-Q -switching, and unidirectional emission. It is demonstrated that the 
oscillation regimes depend strongly on the coupling between the waves running in opposite directions, 
on the resonator tuning, and on the rate' of rotation of the laser. 

, INTRODUCTION THEORY 

Condition of stability of laser oscillations in the case of 
Crystal lasers are characterized by a homogeneously 

broadened gain profile and this gives rise to a consider- 'counter waves of constant amplitudes and different phases 
able competition between the oscillation modes. 

Investigations of the oscillation regimes in solid
state lasers with ring resonators are of considerable 
interest from the point of view of interaction between 
waves traveling along the ring in opposite directions. 
Achievement of unidirectional emission in a solid-state 
ring laser is important from the practical point of view. 
Such emission results in a considerable narrowing of the 
output spectrum and this makes it possible to reach high 
output powers in the single-mode case. Studies of the 
characteristics of rotating solid-state ring lasers should 
establish whether it would be possible to use such lasers 
in measurements of the angular velocities and angles 
of rotation. 

At present, the properties of solid-state ring lasers 
are much less known than the properties of gas lasers. 
This applies particularly to the cw solid-state lasers. 
Theoretical investigations of the interaction between 
waves traveling in the opposite directions ("counter 
waves") in solid-state lasers have been reported in [1-5]. 
It is shown (1-3] that in the absence of coupling via back
scattering the standing-wave regime in a ring laser is 
unstable. In the case of complex-conjugate coupling 
coefficients the standing-wave regime is also unstable, 
irrespective of the strength of the coupling. Studies have 
been made [4,5] of the stability of unidirectional emission 
and conditions under which such emission is impossible. 

Experimental studies have been made [6,7) of the char
acteristics of solid-state ring lasers operating con
tinuously. Unidirectional Single-mode emission has been 
achieved [6) by establishing a small difference between 
the resonator Q factors for the counter waves. It has 
been found [7) that a strung coupling between counter 
waves due to reflection from the ends of a crystal in a 
ring laser gives rise to stable standing-wave conditions. 

The present paper reports a theoretical and experi
mental investigation of the dynamics of oscillation in a 
solid-state ring laser. It is shown that several oscilla
tion regimes may exist in such a laser. It is established 
that these regimes depend strongly on the coupling be
tween counter waves, on the resonator tuning, and on the 
rate of rotation of the laser. 
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The dynamiCS of oscillation in a ring laser can be 
described by the follOwing system of equations for the 
complex amplitudes of the two counter waves E:1 2 and of 
the inverted population density N (it is assumed that a 
single mode is emitted): 

• ClI i Q 
E",=- 2Q E,,2+ 2 m",E",'f'i 2 E", 

+ a(l-ie) [JI NdxE + J' Ne±""" dxE ] 2T t,2 2,1 t 
(1) 

o 0 

!V=W-N/T,-aNIEI'/T,. 

Here, W /Q is the width of the resonator band; T is the 
transit time of light around the resonator; " is the 
splitting of the natural frequencies of the oscillator 
because of rotation; l is the length of the crystal; (J is the 
transition cross section; T1 is the inversion relaxation 
time; W is the pumping rate; a = (JcTI/8rrtfJ). 

In Eq. (1) the coupling of the counter waves because 
of backscattering is assumed to be linear and it is intro
duced phenomenologically with the aid of complex feed
back coefficients: 

(2) 

where m1,2 are the moduli and ,J1P are the phases of the 
coupling coefficients. The electrlC field E in the ring 
laser is related to the complex amplitudes E1 2 
= E1,2exp(i'P1,2) as follows: ' 

E= ~ ~ [E eqo'~"")+ c c 1 2 L.J 1.2 ••• (3) 
I,' 

Both waves are assumed to be polarized in the same way. 

The parameter E determines the detuning of the laser 
output frequency w relative to the center of a homo
geneously broadened luminescence line E = (w - wo)/Yab, 
where Yab is the half-width of this line. In the case of 
solid-state lasers, the large width of the luminescence 
line usually leads to E « 1 and, therefore, we shall 
assume that E = O. 

It follows from Eq. (1) that in the presence of coupl
ing the threshold value of the inverted population den
sity is 

(4) 

Copyright © 1975 American I nstitute of Physics 669 



Hence, we can see that in the case of equal phases of the 
coupling coefficients (JJ. = .9:!) the threshold value of the 
inverted population density Nth is independent of the 
coupling. For fixed values of the moduli m1,2 the coupling 
between the waves has the strongest influence on the 
threshold condition if the phase difference is 1.\ - .9-21 = 1T. 

The system (1) has steady-state solutions corre
sponding to the generation of counter waves of constant 
amplitudes and phase difference. A study of the stability 
of oscillation conditions is simplified considerably 
because, in the case of solid-state lasers we usually 
have 

(5) 

(1/ = W /Wth - 1 is the excess of the pumping rate above 
the threshold value). 

The time dependences of the perturbations will be 
represented in the form x(t) = x(O)e At . If the inequality 
(5) is satisfied, the perturbations can be divided into 
fast (A ex: W'I]/Q) and slow [A ex: (w'I]/QT1)1I2]. The slow 
perturbations give rise to damped transient processes. 
The standing-wave regime may be unstable under the 
influence of the fast perturbations. In the presence of 
such perturbations, the inversion does not change and 
remains equal to its steady-state value: 

N=N = Nth (1+T) (6) 
51 1+aE.o'+aE"'+2aE • .E',, cos (q,.-2kx) ' 

where E10, E20 , and ifJo are the steady-state values of 
the wave amplitudes and of the phase difference. 

The characteristic equation for the fast perturbations 
can be written in the form: 

(h-6)'+Mo'=O, (7) 

a I Ol 1 E.. Eto 6=-SNstdx--,M'~2 [m.cos(q,.-~.)~+m,cos(q,'-~')-E ]. (8) 
T. Q "'to .. ' 

In deriving the characteristic equation (7), no assump
tions are made on the relationship between the steady
state values of the amplitudes and phases of the counter 
wave,s. It follows from Eq. (7) that the fast perturbations 
are oscillatory. The oscillation frequency is governed 
by the coupling via the backscattering and is equal to 
wM = Mo, whereas the increment (decrement) is 

If we use the system (1), we obtain two expressions 
for 6: 

[ a ]EIO 6= -N-m.sin(q,.-~.) -, 
T E .. 

• 
N=- SNstcos(q,.-2kx)dx>O. 

• 
The following conclusions are arrived at readily from 
the above expressions. A steady-state two-wave regime 
may be stable (6 < 0) only if the feedback coefficients 
are sufficiently large: 

m",>aN/T. (10) 

In the case of equal phases of the coupling coefficients 
(.9-1 = .9-2),'the two-wave regime is unstable for all values 
of the moduli m1,2' At fixed values of the moduli m1,2 
the coupling between the waves has its strongest sta
bilizing influence on the two-wave regime if the phase 
difference is .9-1 -.9-2 = ± 1T. 

The difference between the phases of the coupling 
coefficients Xl - X2 = 0 corresponds to the scattering of 
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waves by inhomogeneities of the permittivity E. In the 
case of scattering by inhomogeneities of the conductivity 
a, the differenceis 1.9-1 - .9-21 = 1T. 

These results have a simple physical meaning. In 
the presence of two counter waves the population 
inversion in the medium is depleted in a spatially in
homogeneous manner [see Eq. (6)]. The ~:ains of the 
counter waves of amplitudes E1,2 are givEm by the ex
pression 

(11) 

According to Eq. (11), the wave with a greater amplitude 
has a larger gain. In the absence of coupling of the 
waves via backscattering this leads to an instability of 
the standing-wave configuration and a complete sup
pression of the weaker wave. If allowance for the back
scattering coupling is made, the effective gain of a wave 
during one pass through the resonator changes to 

err [I E".] , E". a." =a S N"dx--E N ±m."Tsm(q,-·~.,,)--. 
o 1,2 Efta 

If the inequality (10) is satisfied for the phase difference 
.9-1 -.9-2 = ± 1T, it is found that the weaker wave has the 
greater gain. This leads to a stability of the standing
wave configuration in a ring laser. 

Frequency locking of counter waves at near-threshold 
pumping levets 

We shall now consider in detail the stability con
ditions of the standing-wave regime and title closely 
related regime of frequency locking between two travel
ing waves of apprOximately the same intensities. We can 
easily show that such regimes are possible only for 
equal or slightly differing moduli of the coupling coef
ficients. We shall assume that the moduli m1,2 are 
similar in magnitude but that the phases .9-1,2 are arbi
trary. We shall first discuss the case wh,en the damping 
level just exceeds the threshold value ('I] " W /Wth 
- 1 « 1). 

The solution of Eq. (7) shows that two stable standing
wave regimes are possible and that they are distin
guished by different values of the phase shift between 
the counter waves: 

Q Q 
q,,,=8+arcc05 M ' q,,,=8-arccos M ' 

M= -}[m.'+m,'-2ni.m, cos (~.-~,) I"'. (12) 

m.sin~.-m.sin~. 

8=arctg mlcos~.-m,cos~,' 
The only stable regime (6 < 0) is that for which the 

phase difference <I> = <1>01. In this case, the sum of the 
dimensionless intensities y = a(E~o + E~o) and their 
difference x = a(E~o - E~o) are given by the expressions 

_ 2 { (Mz-Q')"'-(m,m,)"'lsin[(~.-.tt,)/211 } (13) 
y- 3' T)+ OlIQ-(m.~,)"'lsin[ (tt.-tt,) 12)1 , 

x 1 [ m·f-m?' 2 2 '/] -=-- -Qm,m,sin(tt.-~,)+---(M -Q)' , 
y 2.6 2 

6= ~ [~ T)-(1+T) (m.m,)'" I sin ~.~tt, 1-2(M'-Q')"-]. 

The expressions (13) and (14) are valid if x/y« 1, 
'1]« 1, subject to the stability condition 6 < O. 

(14) 

(15) 

It follows fro m Eq. (14) that the differEmce between 
the wave intensities increases with increasing splitting 
of n between the resonator frequencies. If the laser is 
at :rest (n = 0), the intensities of the counter waves are 
equal (x = 0) for equal moduli of the coupling coefficients. 

E. l. Klochan et al. 670 



We shall analyze the stability condition in the case 
of frequency locking of the counter waves with equal 
moduli of the coupling coefficients ml = m2 = m and we 
shall assume that M = mlsin[(,9.1 - ,9.2)/2]1. If the laser 
is at rest (n = 0), the standing-wave configuration is 
stable (0 < 0) if 

, it.-it, , 1 C!) ( ) 
m sin-2- >3Qr). 16 

If the condition (16) is satisfied, the frequency-locking 
regime is stable if the difference between the natural 
frequencies of the resonator is Inl s no, where no is 
the width of the frequency-locking band given by 

Q,= [ m' sin' it,;it. - ~ ( r) ~ -m! sin it,;it.,,) '] 'I •• (17) 

It is clear from Eq. (17) that for given values of the 
modulus m the width of the frequency-locking band has 
its maximum value when the difference between the 
phases of the coupling coefficients is ,9.1 - ~ = ± 7r. For 
equal phases (,9.1 = ,9.2) the lOCking regime is unstable, 
irrespective of the strength of the coupling. The width 
of the locking band no depends on the excess of the 
pumping level over the threshold value. In the case of 
a slight excess over the threshold (7)« 1), we find that 
no decreases with increasing 71. 

The difference between the phases of the counter 
waves ct>01 = Cf> (n) within the frequency-locking band 
depends on n. It follows from Eq. (12) that if we sub
tract the phase difference at the limit of the locking 
band and the phase difference at the center of this band, 
the result is IcJ>Ol(n) - cJ>01(0)1 < 7r/2. Bearing this point 
in mind and using the analogy with the case of strong 
coupling in gas lasers, [a] we may expect the frequency 
characteristic, i.e., the dependence <i>('It), of a solid
state laser to have a discontinuity at the limit of the 
locking band corresponding to the frequency difference 
ci> (no) ;of O. 

We have so far considered the stability of the steady
wave regime under the influence of relatively fast per
turbations. If the laser is at rest (n = 0) and the moduli 
of the coupling coefficients are equal, we can carry out 
a more general analysis which is not limited to the fast 
perturbations. In this case, the roots of the character
istic equation are given by the following expressions: 

1.3=--'!"( 1-'!!!:"Nth .--6-) 
T, 3T 1)'+Mo" 

1 . [( C!) ,. 'fr.-it'l) r) ]'" I.i,'=---z;r:±' (j-m sm-2- T: ' 

(18) 

(19) 

(20) 

The roots A4,5 describe a damped transient spiking 
process typical of solid-state lasers. All the roots have 
a negative real part (i.e., the standing-wave regime is 
stable) if 

mlsin'/,(it,-1'i,) 1 >'/,C!)r)/Q. (21) 

ence between the phases of the counter waves [see Eq. 
(12)] is now given by the expressions 

(22) 

As in the case of near-threshold conditions, the only 
stable regime is that characterized by the phase differ
ence cJ>01. The stability condition of this regime in the 
presence of fast perturbations (0 < 0) is of the form 

, . 1'i'-1'i">~[1_(H8(Hr))'/'-1]. (23) 
m 8m 2 Q 2(Hr) 

If 7)« 1, the condition (23) reduces to (16). The right
hand side of the inequality (23) is a monotonically rising 
function of 71 and if 71 - .. , it tends to w/Q. Since 

mlsin[ (1'i,-'fr,)/211 < (fJ/Q, 

the stability condition (23) is not obeyed if 7) exceeds a 
certain value. Thus, in a ring laser at rest a change 
-in the excess of the pumping level over the threshold 
value may alter the oscillation conditions: for small 
values of the excess 71, the standing-wave regime may be 
stable whereas, in the case of large values of 7), be
ginning from a certain critical value 7)0, this regime 
becomes unstable. 

In the range of stability of the standing-wave con
figuration the intensities of the counter waves 
aE~l = aE~2 = aE~ depend nonlinearly on 7): 

aE,'='/, (Hr) -'10[ H (H8(Hr)) "'1. (24) 

Conditions for self-a·switching the case of complex· 
conjugate coupling coefficients 

As mentioned earlier, the standing-wave regime in a 
laser at rest is unstable in the case of complex-con
jugate coupling coefficients.' If we study the stability 
of the unidirectional emission, we can show that such 
emission also becomes unstable if 

m>~(~"~ Hr) )"', 2 Q" T, 2+r) (25) 

Thus, if the inequality (25) is obeyed, both steady-state 
regimes (standing and traveling waves) become un
stable. This should give rise to self-Q-switching of the 
intensities and a difference between the phases of the 
counter waves. It is interesting to note that instabilities 
of the standing and traveling waves are of OSCillatory 
nature. 

A numerical solution of the system (1) has been ob
tained earlier [3) for complex-conjugate coupling coef
ficients. It follows from the results reported above that 
self-Q-SWitChin~ should arise for the coupling coef
ftcients used in ) because, in this case, the standing
wave and unidirectional emission regimes are unstable. 
The results of numerical calculations given in (3) are in 
agreement with this conclusion. 

The stability condition (21) is identical with the cor- EXPERIMENT 
responding condition (16) in the case of fast perturbations. 

Standing-wave regime at arbitrary pumping level 

The standing-wave regime at an arbitrary pumping 
level will be considered for a ring laser at rest (n = 0) 
on the assumption that the moduli of the coupling coef
ficients are equal. The steady-state value of the differ-
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We carried out an experimental study of the oscil
lation conditions in a ring laser utilizing neodymium
doped yttrium aluminum garnet (YAG : Nd3 +). This laser 
was operated continuously at A = 1.06 J..L. We studied the 
oscillation regimes as a function of the coupling of 
counter waves via backscattering and as a function of the 
rate of rotation (the laser was placed on a rotating plat
form). 
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Description of apparatus 

Our investigation was carried out using three- and 
four-mirror ring lasers. The mirrors were of the di
electric type with a reflection coefficient r close to 99%. 
The three-mirror laser has a perimeter L = 117 cm 
and its area was 8 = 545 cm 2 • It was formed by mirrors 
of Rl = 5000 mm, R2 = 2000 mm, and R3 = co radii of 
curvature. The corresponding parameters of the four
mirror laser were L = 172 cm, 8 = 1824 cm2 , Rl = 2000 
mm, R3 = 5000 mm, and R2 = R4 = co. The active ele
ments were garnet crystals of 5 mm diameter and 
1 = 50 mm long. The experiments were carried out on 
crystals with untreated ends and with ends covered by 
an antireflection coating (the reflection coefficients of 
the crystal ends ranged from 8.5 to 0.4%). 

The crystals were pumped with a gas-discharge 
krypton lamp of the DKRTV-3000 type. The crystal and 
the pump lamp were cooled by running water. The 
threshold pumping power was about 500 W. 

A rotating platform enabled us to carry out measure
ments at rates of rotation down to 1 rev/sec. We re
corded the intensities of the counter waves and of the 
beat signal between them. The output signal was photo
graphed from the screen of an 81·17 oscillograph 
(transmission band ~ 10 MHz) and from the screen of 
an 84-8 panoramic spectrum analyzer. 

Experimental results 

The experimental results obtained indicated the 
existence of several oscillation regimes in the inves
tigated ring laser. It was found that these regimes de
pended strongly on the coupling between the counter 
waves as a result of reflections from the ends of a 
crystal and they also depended on the detuning of the 
resonator and the rate of rotation of the laser. No sig
nificant difference was found between the oscillation 
regimes in the lasers with three- and four-mirror 
resonators. 

We shall now describe the typical oscillation regimes 
observed in our solid- state ring laser. 

1. Frequency-locking of counter waves. In the 
presence of a sufficiently strong coupling between the 
counter waves due to the reflection from the ends of a 
crystal (the reflection coefficient of each end was 
re ~ 1.5%), we observed only the frequency locking of 
the counter waves. In this case, the amplitudes of these 
waves were equal and the fluctuations of the intensities 
due to external perturbations were always in phase. The 
frequency of these fluctuations increased with the pump
ing level and their amplitude rose when the external 
perturbations and the pumping were increased. It was 
not possible to break the frequency locking at the max
imum rates of rotation which could be achieved in our 
study (wrot = 1 rev/sec). This indicated that the width 
of the frequency-locking region no exceeded 1 MHz. 

When the feedback was reduced (re ~ 0.4%), we ob
served several oscillation regimes. In a laser at rest 
we observed two oscillation regimes, depending on the 
resonator tuning: these regimes were the frequency 
locking of the two counter waves and the self-Q-switching 
of the intensities of these waves. The resonator tuning 
could be varied by parallel displacement or rotation of 
the mirrors starting from 1° and by changing the posi
tion of the crystal inside the resonator (rotation by up 
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to 10 and displacement by up to 5 mm at right-angles 
to the resonator axis). 

The laser characteristics in the frequency-locking 
case were as follows. Inside the frequency-locking band 
the difference between the intensities of the counter 
waves was a function of the rate of rotaUon and it in
creased on approach to the limit of the frequency-locking 
region. When the laser was at rest the difference be
tween the intensities of the counter waves depended on 
the resonator tuning. This tuning also governed 
the width of the frequency-locking region, and, 
at a fixed value of tuning, the locking could not be broken 
(the difference between the natural frequencies of the 
resonator in a rotating laser exceeded 1 MHz). It was 
found that the frequency lOCking of the counter waves 
could become unstable when the excess of the pumping 
level over the threshold reached a certain value that 
depended on the resonator tuning. 

In these experiments the maximum value of the ex
cess of the pumping over the threshold rJ was within the 
range 0 < rJ S 1. 

2. 8elf-Q-switching of intensities of c:ounter waves 
in a laser at rest. For certain values of the resonator 
tuning we found that self-Q-switching (a regime with 
time-dependent intensities and phase difference of the 
counter waves) appeared in a laser at rest. 

Typical self-Q-switching oscillograms are shown In 
Fig. 1. This self-Q-switching of the intensities of the 
counter waves could be periodic (Fig. 1a) or more 
complex. 

We noted particularly the self-Q-switching when the 
emission occurred alternately in either of the two direc
tions of the ring laser (Fig. 1b). The frequency of self
Q-switching depended strongly on the resonator tuning 
and ranged from several kilohertz to MHz. The switch
ing of the intensities of the counter waves was nearly 
in antiphase. The switching frequency could be varied 

FIG. I. Oscillograms in the case of self-Q-swtching (11 = 0.2): a-scan
ning at 200 ~sec/div.; b-scanning at 1 msec/div. 
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smoothly in a range of the order of 50 kHz by displacing 
the active element at right-angles to the resonator axis. 

The depth of modulation and the average values of the 
intensities of the counter waves depended 0\1 the 
resonator tuning. For a fixed tuning the average values 
of the intensities and the amplitudes of the intensity 
fluctuations could be very different. 

In the case of periodic self-Q-switching, i.e., in the 
absence of an additional low-frequency switching, the 
fluctuations of the intensity of the counter waves were 
usually in antiphase and the fluctuations themselves were 
nearly sinusoidal. Deviations from the sinusoids in
creased with decreasing switching frequency. It should 
be noted that the switching fluctuations (particularly the 
low-frequency envelope of these fluctuations) were un
stable in time for a given tuning, i.e., the amplitude and 
frequency of the antiphase intensity fluctuations could 
vary (Fig. 2). 

3. Influence of rotation on the oscillation regimes 
in a ring laser. As mentioned earlier, in the case of 
strong coupling between the waves as a result of reflec
tion from the ends of a crystal, the rotation of a ring 
laser at rates up to 1 rev/sec did not alter significantly 
the intensities of the counter waves. 

= = 
-~ -I- I ~ 
=:- -=-- ~-:~- ~ -
:: I::, -:: • 

• ' T i -~ ! I :: - - . :: .: ;---

FIG. 2. Oscillograms of the intensities of counter waves in a ring laser 
at rest and in rotation (1/ = 0.2, scanning at I msec/div.); a~laser at rest 
(Ll.v = 0); b~.6.v = 22 kHz; c~.6.v = 40 kHz. 
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When the ends of a crystal were covered with anti
reflection coatings (re S 0.4%), the coupling between 
the counter waves' became weaker and the oscillation 
regimes began to depend strongly on the rate of rotation 
of the laser. 

In a laser at rest we observed the self-Q-switching 
of the counter waves, whereas an increase in the rota
tion rate weakened considerably the intensity of the wave 
traveling in the direction of rotation. At rates of rota
tion exceeding ~loLA/81TS, the switching regime gave 
place to beats: the amplitude in each beam became 
modulated and a difference-frequency signal (beats) was 
observed as a result of interaction between the two 
wa\ .;s. The frequency characteristics were similar to 
those reported for gas lasers under strong coupling con
ditions. [aJ 

If a laser at rest exhibited self-Q-switching, the 
rotation of the laser again strongly reduced the wave 
traveling in the direction of the rotation; it also 
increased the frequency and reduced the depth of the 
antiphase amplitude modulation of the intensities of the 
counter waves. Figure 2 shows oscillograms of the in
tensities of these waves in a laser at rest (Fig. 2a) 
and during a gradual increase of the rotation rate (Fig. 
2b, .6.11 = 22 kHz; Fig. 2c, .6.11 = 40 kHz) in the case when 
the antiphase low-frequency modulation was very deep 
for the laser aLrest. The radiation was also modulated 
by a vane placed outside the resonator in front of a 
photomultiplier detector. 

The rate of rotation of the laser which produced a 
strong suppression (by a factor of over 50) of one of the 
counter waves was usually lowest in the case when the 
direction of emission was reversed in a laser at rest 
(Fig_ Ib). The dependence of the average values of the 
intensities of the counter waves I± on the rate and direc
tion of rotation of the laser was determined for this 
case (Fig_ 3). 

Figure 4 shows the dependence of the frequency of the 
self-Q-switching fluctuations 11m on the rate of rotation 
wrob plotted for several values of 11m (wrot = 0), which 
were 85, 470, and 860 kHz. The dependence of the fre
quency of these fluctuations on the rate of rotation (for 
a fixed resonator tuning) was described quite satis
factorily by the formula 

vm=[ vni(O) +tw'l"', 
~v=8l'tS"'rotl LA. 

(26) 

DISCUSSION OF RESULTS 

A solid-state ring laser is a complex spontaneously 
oscillating system characterized by several oscillation 
regimes. The investigations reported above show that 
the existence of a given regime depends on the coupling 
between counter waves (this coupling is due to reflec
tions from the ends of a crystal) as well as on the 
resonator tuning, pumping level, and rate of rotation 
of the laser. It follows from our experiments that a 
solid-state ring laser is sensitive to the angular rates 
of rotation in the case of frequency locking of the counter 
waves (intensities of the counter waves and the phase 
difference between them depend on the rate of rotation) 
and outside the frequency-locking region (self-Q-switch
ing and beats). Our theoretical discussion shows that 
the stability of the oscillation regimes in a ring laser 
at rest is governed by the feedback between the counter 
waves. In experiments carried out on antireflection-
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- !5Ufl - !flflU - 5flU (} 5flfl !flUfl 15flfl <i v, kHz 

FIG. 3. Dependences of the average values of the intensities of the 
counter waves I± on the difference between the resonator frequencies 4111 
as a result of rotation. 

Zflflfl. 

15flO 

0...'1 o'f o.f Wrot. sec-1 

IOflO 1500 2000 A v, kHz 

FIG. 4. Dependences of the frequency of antiphase amplitude modu
lation (switching) "m of counter waves on the difference between the 
resonator frequencies All because of rotation. Curves 1,2, and 3 corre
spond to "m(O) = 860, 470, and 8~JHz, respectively. 

coated crystals (re < 0.4%) the oscillation regimes 
change with the resonator tuning. It is natural to assume 
that such tuning alters the coupling coefficients ifi l ,2. 

A~dronova and Bershteln [9] have assumed that the 
coupling between the counter waves is due to the back
scattering by the resonator mirrors and they have shown 
that the resonator tuning (in particular, a change in the 
resonator perimeter) alters considerably the feedback 
fih 2. It should be pointed out that the resonator tuning 
sh~uld be accompanied not only by a change in the 
coupling via the backscattering but also by a change in 
the amplitude and frequency non-reciprocities of the 
counter waves as a result of diffraction effects. [10] In 
view of this, the question arises as to what extent the 
changes in the oscillation regimes resulting from a 
change in the resonator tuning are governed by the 
diffraction effect (in particular, by the diffraction splitt
ing of the natural frequencies of the resonator) and by 
changes in th e coupling as a result of the scattering. 

The experimentally observed change in the frequency 
of the switching fluctuations as a result of a displace
ment of the crystal at right-angles to the resonator axis 
may, in principle, be explained by either of these two 
phenomena. The diffraction splitting of the frequencies 

the experimentally observed dependence of the frequency 
of the Switching fluctuations on the rate tDf rotation (Fig. 
4) excludes this possibility in our. experiments. A quan
titative comparison of the theory and experiment is 
complicated by the absence of direct experimental 
measurements of the coupling between the counter waves. 
Nevertheless, the results obtained can b,e used in draw
ing certain quantitative conclusions. 

If the ends of a crystal are antireflection-coated 
(re :s 0.4%) the experimentally obtained investigations 
indicate a stable standing-wave oscillation regime. 
Using the condition of stability of this regime (23), we 
can estimate the coefficient of the coupling via the back
scattering. If 11 = 1, the stability requires that 

m;;"m 1 sin(tlt-~,) /21 >'/,w/Q. 

Hence, it follows that 1m 1 is at least of the order of the 
width of the resonator band, i.e., m ~ 106_107 sec~l 
The same estimate of Iml is obtained from the measured 
values of the frequency-locking band. If we represent 
the coupling coefficient in the form m = R 1/2 /T (R is the 
ratio of the intensity of the backscattered wave to the 
intensity of the incident wave) and if we assume that 
T = 0.3 X 10-8 sec, we obtain R ~ 10-5_10-3 • 

An estimate of the strength of the coupling between 
the counter waves can also be obtained from the meas
ured values of the frequency of switching in a laser at 
rest. In the case ·of coupling coefficients which are 
nearly complex-conjugate, the fre~uency of the switch
ing fluctuations is 11m (0) = m/21TY The maximum values 
of 11m (0) found experimentally are of the order of 1 MHz 
and, in this case, m ~ 21T x 106 sec-l and R ~ 10-4 • 

The authors are grateful to Leading Engineer N. I. 
Naumkin for his help in the experiments. 
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