Anistropy of stimulated Mandel’shtam-Brillouin scattering

L. M. Gorbunov

P. N. Lebedev Physics Institute
(Submitted February 14, 1973)
Zh. Eksp. Teor. Fiz. 65, 1337-1343 (October 1973)

It is shown that in an isotropic liquid medium the angular distribution of SMBS depends on the ,
intensity of the pumping wave. At low intensities the scattered radiation is directed forward direction

and at high intensities backward.

1. INTRODUCTION

The stimulated Brillouin scattering is known to occur
because the state of a medium in an electromagnetic
field is unstable when the density of this field exceeds
a certain threshold value. Beyond this threshold the in-
tensity of the scattered radiation increases and acoustic
waves appear and grow in amplitude. Since the rate of
growth of these waves as well as the threshold field vary
with the direction, we can expect an anisotropy in the
intensity of the stimulated Brillouin scattering and this

anisotropy should depend on the pumping wave amplitude.

~ We shall show that in a homogeneous isotropic liquid
medium traversed by a plane linearly polarized pumping
wave of constant amplitude the minimum threshold of the
stimulated Brillouin scattering corresponds to the
forward direction, i.e., this threshold corresponds to the
scattering in the direction of the pumping wave. How-
ever, in the case of small scattering angles, the rate of
development of instabilities is slow. As the intensity of
the pumping wave is increased, the range of angles
in which the stimulated effect is observed expands and
the angle at which the instabilities develop most rapidly
increases. Finally, at sufficiently high pumping wave
intensities, the instability corresponding to the backward
direction grows most rapidly.

We shall conclude by considering the possibilities of
measuring the predicted features of the stimulated
Brillouin scattering and we shall consider some experi-
ments in which these features have probably been
manifested.

2. INITIAL RELATIONSHIPS

Let us consider a homogeneous liquid medium
traversed by a linearly polarized pumping wave

E=E, cos (0it—kor).
In the linear approximation the equations for para-
metrically coupled, via the pumping wave, perturbations

of the den51ty p1 and electric field E are: (see for ex-
ample,):

(u=A+rA—a—ﬁ 2.1)
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where v ® (3p/3p);/ ? is the adiabatic velocity of sound;"’
p is the unperturbed density of the liquid; ¢’ = Ree (wy)
is the real part of the permittivity, where 2

e(w)= J‘dt ele (t).

The quantity ' represents the absorption of sound and
can be expressed in terms of the viscosities 7 and ¢
and in terms of the thermal conductivity «:%!
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where cy and cp are, respectively, the specific heat
at constant volume and constant pressure.

If we seek the solution of Eqs. (2.1) and (2.2) in the
form 0, = p e Giwt +iker gy = Tiwt +iker (g, etivgt +ikr

B
+ E1-el®ot—1K) the relationship between the frequency
w and the wave vector k is given by the dispersion
equation

kz
(m’-hmklI‘ ) =— —p (

Tom ) [—(kE”z_“’" E’ ]
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Small terms of the order of w/w, are omitted from the '
right-hand side of Eq. (2.3).

We shall assume that the wave vector k is real and
solve Eq. (2.3) for w. This formulation corresponds to
the traditional problem of the time dependence of the
initial perturbationsm- and is usually considered in
connection with the stimulated Brillouin scattering in a
resonator.™ 2 If we then find that Imw > 0, the initial
perturbations grow in time and the system is unstable.
The conditions corresponding to the onset of the insta-
bility follow from Imw = 0.

We shall consider only low pumping fields when the
approximation of a weak parametric coupling is valid sl
and the change in the dispersion law of the acoustic

waves is slight:
o=kvt+A, |A| <kv.

Using the dispersion law for the pumping wave

wie’ = kic?, we obtain the following equation for A from
Eq. (2.3):
. kvo,® K
(20-HIT) (28411 =p 5o ( cos® (p—i) 2.4)
where
kE, 2m0%e”
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The quantity k in Eq. (2. 4) is governed by the laws of
conservation ko —k =k’, wo— @ = ' (k' and w’ are the
wave vector and frequency of the scattered wave) and if
small terms of the order of v/c are ignored, we find

that
(2.6)

where cosy = k - ko/kko. If we introduce the scattering
angle ¢, which is the angle between the vectors ko and
k’, we find that k = 2kosin(g/2).[

k=2kocosy,

3. THRESHOLD FIELDS .

In this section we shall consider the change in the
threshold fields of a pumping wave as a result of changes
in the angles ¢ and yx.

The solution of Eq. (2.4) is
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Ap=— —Z (k’I‘+1ﬁ°{ (KT+yo)*—4 [k“rxo

kva,® k* Ya
"3 (ace’) /0w ”(1 T % “’)]} )
and it follows from this solution that one of the roots
describes growing perturbations (Ima- > 0) if
kD00 (@’e”) /0wy
vt (1—k ko~ cos® @)

(3.1)

W>pth = (8.2)

The quantity ity represents, in accordance with Eq.
(2.5), the threshold fields in which the instability appears
and the stimulated Brillouin scattering becomes possible
[ImA(utn) = 0]. Using Eq. (2.6), we find from Eq. (3.2)
that

B (X 9) _ cosx . po=2kolyo 9 (ad'e’)

o 1—4cos®y cos’ @ Ao

If ¢ =90°, the well-known result given in
from Eq. (3.3).

Figure 1 shows the surface uth(x, ¢)/Ho. The length
of the vector drawn from the origin to the point of inter-
section with the surface represents the threshold field
for the excitation of acoustic waves along a given direc-
tion.>> In particular, if ¢ = x = /4, the threshold field
is anomalously high. This is due to the fact that in this
case the pumping and scattered waves are mutually
perpendicular so that the high-frequency pressure in
Eq. (2.1) is zero.

vl

(3.3)

[ is obtained

It is clear from Fig. 1 that the lowest fields for the
excitation of acoustic waves correspond to a direction
normal to ko, i.e., to the case when the radiation is
scattered along ko (# = 0). This result can easily be

understood on the basis of simple physical considerations.

An instability and, consequently, the stimulated Brillouin
scattering appear if the energy transferred from the
pumping wave to the acoustic and scattered electro-
magnetic waves (this energy is proportional to the in-
tensity of the pumping wave) exceeds the energy lost by
the latter waves due to the usual dissipative mechanisms.
Since the absorption of the acoustic waves because of

the viscosity and heat conduction decreases rapidly with
increasing wavelength, it follows that weaker pumping
waves are sufficient for the excitation of longer acoustic
waves. However, it is clear from the condition (2.6)

that the longer acoustic waves (small k) correspond to
the scattering at small angles ¢, i.e., to the forward
scattering.®’

4. MAXIMUM GROWTH INCREMENT

In this section we shall determine the direction along
which the acoustic and scattered waves grow most
rapidly for a given amplitude of the pumping wave.

Using Eq. (2.6), we can rewrite Eq. (3.1) in the form

ImA- —Y(x‘qz)——({[acos x—11*

+4—acosx(1 —4 cos?y cos (p)} —(acos? x+1)) (4.1)

where a = (2ko)’I' /¥o. For a pumping wave of a given
intensity (i.e., for a given value of ) there are angles
Xo and @, for which this intensity is equal to the thresh-
old value so that y(xo, ¥o) = 0. According to Eq. (3.3),

these angles satisfy the condition
cosyo/ (1—4cos™ecos’@o) =p/po. 4.2)

It also follows from Eq. (4.1) that irrespective of the
value of 4 we find that y — 0 if x — 7/2. This reflects
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FIG. 1

the circumstance that as the acoustic wavelength in-
creases, the dissipation and the high-frequency pressure
both become weaker [see Eq. (2.1)]. Therefore, if

Xo ~ T/2, an instability appears at a low pumping wave
intensity but the growth of the acoustic and scattered
waves is slow.

Thus, for Xo and ¢, as well as for x = 7/2 the growth
increment vanishes. Obviously, there are angles xmax
and @max for which the function y(x, ¢) has a maximum.
It follows from 3y/8¢ = 0 that ¢ax = 7/2. We thus
find from Eq. (4.1) that

(n3)-
(o) =

In this case, it follows from Eq. (4.2) that the increment
vanishes for the angle defined by cosxo = 1 /io.

T ({tacos 114 acosy } '~ Gacostyn)) . w9

We shall consider Eq. (4.3) in two cases.
1. Low pumping wave intensities (u/u, < 1)

The instability region is bounded by the angle x < xo,
where cosyo = i/to < 1 and the backward stimulated
Brillouin scattering is impossible. Equation (4.3) and
the condition 8y /9y = 0 lead to a cubic equation for
coSXmax, Whose real positive solution is

(. h 16’ 16 po?
cosx“"‘*( /m‘,a) {(HVH 27 ap’ ) ( VH 27 ap? )
(4.4)
If the amplitude of the pumping wave is so low that
16/ 27 > ap®/ul, we find that
€08 Ymax=W/2Mo  Ymax="/s@Yo (11/ o) %. (4.5)

However, if 16/ 27 < ap®/ul and a > 16/27, we find
from Eq. (4.4) that
"{maz":"/z'foa"’ (u/zp,a) s,

COSYmax™ (/2 p0) ™, (4.6)

2. High pumping wave intensities (u/u, > 1)

In this case, the acoustic waves are unstable for any
value of the angle x in the ¢ = 7/2 plane and this applies
to the waves corresponding to the backward scattering.
However, in order that the maximum growth increment
should correspond to the angle xmax = 0 (backward
scattering), we need pumping wave intensities given—
according to Eq. (4.3)—by the relationship 1/
= 2(a +1),i.e.,

E,* (2k,) T v
2% > (2k)T 0(*+
8n (k)T Yo 1) kowo®
9 (woe”) /0
Stace’)/boy 4.7)
p(9e’/dp),
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FIG. 2. Function y(x)/7, for different values of the parameter u/u,:
1—pfpe < 1;2—-1 < p/ue <a;3—pu/po >a. The dashed curve represents
the dependence ugp, (X)/Mo-

The stronger the damping of acoustic waves, the greater
is the intensity of the pumping wave required to ensure
that the stimulated Brillouin scattering grows fastest
along the backward direction.

It follows from Eq. (4.3) that if 4/u > a the dis-
sipative effects are unimportant and the growth incre-
ment corresponding to the backward scattering ist!

de’\ E, o, Ve’ "
1= 0P (ﬂ—p) L4 (npvc&(que')/ﬂmo)

The results obtained in this section are illustrated
in Fig. 2. It is clear from this figure that as the inten-
sity of the pumping wave increases, the range of insta-
bility becomes wider and the maximum of the growth
increment shifts in the direction of the angles corre-
sponding to the backward scattering.

(4.8)

5. CONCLUSIONS

We have ignored the escape of the scattered radiation
from the scattering volume, which corresponds best
to the stimulated Brillouin scattering in a resonator.
It is reported in'® that the stimulated Brillouin scatter-
ing occurs at a small angle (3 ~ 2.5°) in a nonaxial
resonator and the forward scattering threshold is lower
than the backward threshold, in agreement with our
conclusions. However, the opposite result is reported
in a later paper ) and it is found that the stimulated
Raman scattering has a strong influence on the stim-
ulated Brillouin scattering.

A possible cause of this disagreement with® is the
requirement of long light pulses for the reliable ob-
servation of the stimulated Brillouin scattering.®

Our relationships allow us to estimate the durations
and intensities of the pumping waves required for the
observation of the stimulated Brillouin scattering at
various angles. We shall consider the following para-
meters typical of liquids:"+% p =1 g/cm®, p(3e’/3p)g
=1.5; v = 10° cm/sec; n = Ve’ =1.4; y, = 10° sec™;
ys = ko)’ = 10° sec™, wo = 2 X 10" sec”™ . According to
Eq. (3.3), we have uo ~ 1077 and (1/iko) = 1 for
Eo~ 3 xX10*V/cm (W = 3 X 10" W/cm?). The quantity
a in Eq. (4.1) is unity.® Equations (4.5) and (4.6) yield
the values listed in Table I. It is clear from Table I
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TABLE 1

/e W, W/cm? €OS Xmax 8 max’ deg Ymax' sec”!
0.1 3.108 0.05 6 10¢
0.5 1.5-107 0.25 30 3.107
1 3.107 0.8 110 2.108
3 108 1 180 10°

that if experiments in resonators are carried out using
relatively weak (s ~ 6°, W ~ 3 X 10°® W/cm?) but suf-
ficiently long (7 = 1/¥ax > 107° sec) pumping light
pulses, it should be possible to determine the anisotropy
of the stimulated Brillouin scattering.

The author is grateful to V. P. Silin for valuable
comments and V. Ragul’skii for advice on the experi-
mental aspects.

DEquation (2.1) actually contains the quantity (9p/3p)s — (EZp/16m) x
(3%'/0p?)s. However, in all practical cases, the second term in this equa-
tion is negligible.

In this case, the polarization of the scattered wave is naturally deter-
mined entirely by the right-hand side of Eq. (2.2), which corresponds to
the minimum threshold of the stimulated Brillouin scattering.

31t should be noted that if the rejected small terms are included, we ob-
tain » .

W th (@, x=2/2)/po~ - <4,  ph x=0=n/4)/po~ — >,

91t should be noted that for other sound absorption mechanisms, which
may occur in a plasma, [”] the angular dependence of the threshold of
the stimulated Brillouin scattering is quite different.

9In the determination of the stimulated Brillouin scattering at small
angles in the liquid used in [®] it might be necessary to allow for the re-
laxation of the viscosity.

9We should bear in mind that the quantities v, and g vary in a wide
range (from 108 to 10° sec™) for different liquids.
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