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The intensity of gravitational wave emission is calculated for a rapidly rotating drop of a 
homogeneous gravitating liquid that assumes the shape of a triaxial ellipsoid. 

In connection with Weber's experiments on the regis
tration of gravitational waves from cosmic sources, in
terest attaches to the possible sources of gravitational 
radiation of extraterrestrial origin [2-4]. We shall show 
that a uniformly rotating drop of a homogeneous gravitat
ing liquid, which assumes the equilibrium shape of a tri
axial eliipsoid, can be a source of gravitational waves of 
high intensity. The possibility of pulsed gravitational 
radiation from a rapidly rotating tesseral-shape drop 
as it changes from one tesseral figure to another was 
considered in [5]. 

Thus, assume that we have a drop of a gravitating 
homogeneous liquid, rotating as a unit with a constant 
angular velocity n. We assume its mass m, densit(;; p, 
and angular momentum M given. It is well known 6] 

that ellipsoids with three unequal axes (Jacobi ellip
soids), rotating about the minor axis, can be equilibrium 
figures. Poincare and Darvin have shown that the shape 
of a Jacobi ellipsoid is stable against small perturba
tions if 

0.23£lG'I, m'/'p-'I'<Ilf <0.309G'h m'/'p-'I" 

where G is the gravitational constant. Thus, the drop 
in the indicated region of values of the angular mo
mentum assumes the stable form of a triaxial ellipsoid 
with semiaxes a> b > c. 

The intensity of the gravitational radiation will be 
calculated from the well known Landau-Lifshitz formula 
for the quadrupole gravitational radiation [7]: 

dI C[1 ... 1 ......... ] 
dQ = 36nc' "4(Q.,n.n,)'+-ZQ.,'-Q.,Q.,n,n, , (1) 

where 
Q.,= S p(3x.x,-r'6.,)dV 

is the quadrupole mass tensor, nO! is a unit vector in the 
observation direction, and c is the speed of light, while 
the pOints denote differentiation with respect to time. 

In our case, if the drop rotates about the z axis, the 
following independent components will differ from zero 

Q~z=-Q .. =-Qz, tg 20t="j,m(a'-b') ~~, sin 20t. (2) 

We recalculate, a, b, c, and n in (2) in terms of the 
specified m, p, and M. To this end, we introduce new 
symbols k2 =1_b2/a2 and n=1-c2/a2 • As follows 
from [6] f n and k are connected by the known relations 
for the Jacobi ellipsoids. Representing 

(3) 

we find that 

Co=6, 
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and the remaining coefficients cm>l can be deter
mined with the aid of a recurrence relation 

c =~[~' (c,)"(c,);' ... (c,')" ( iJ"-'n(§.L) 
m n(s) ~ i'll'! ... t'! iJ6"-' 

(3a) 
+ ~'~ (cl) i (c,) j. '. (c,) , ( iJm+,-,'l' (s, X») ] 
~~ (m-s)!i!j! ... t! os'oxm-. ,~o I 

.-" 
where the summations L' and L in (3a) should be ex
tended respectively to all the solutions in integer posi
tive numbers of the equations 

i'+2j'+ ... +l't'=m(I'<m) , i+2j+ ... +lt=s; 

where r'=i'+j'+ ... +t', r=i+j+ ... +t. Here 
2(1-46') 

"(6)= (1-S')"'(3+86'-8s')' x''l'(s,x)=F(<p,A)-E(<p,t.)+K(A) 

1 [ 1-s' 1-s' 'h 
-F(X,A)+-, E(X,A)-E(t.)-x'A'--F(<p,t.)+x'A(--) ], 

1-1. 1-x' 1-x' 

<p=arcsin S, ( 1-6' 'I. 
x=arcsin --) , 

1-x' 
x 

1.=s ' (3b) 

l; is the root of the equation 

. x(1-X')"'(3+10x') 
arcSIn X= 3+8x2-8x' ' 

E( cp ,A), F( cp ,A), E( A), and K( A) are elliptic integrals. 

For numerical estimates it is important to approxi
mate the function n(k2 ) by a sufficiently simple expres
sion. Calculating with the aid of (3a) and (3b) the value 
of C2: 

1-s' (117 '+ 119 5' 219 , 79) 
c,= ~'(4s'-1) 384 ~ 768 - 1536 6 - 3072 ( 4) 

and using the asymptotic form of n(k2) as k2 - 1, we 
find that the function n(k2) can be apprOximated with a 
high degree of accuracy (as shown by a comparison with 
numerical calculations of Darwin [6], the discrepancy is 
not more than 0.001) by the expression 

n(k') ""6+ (c,-1) k'+ (c,+'j,) k'+ ('j,-4s--3c,-2c,)k' 
+ (3s-3+2c,+c,) k'- (1-k') 'In (1-k') +'j,k'( 1-vk')' (5) 
x In(1-vk') -'j,k'(1-v) [(1-k')v+(2-k')ln(1-v)], 

where II is the root of the equation 

X+'/2x'+ln (1-x) =6(ln 4+'/,-6s-3c,-c,). 

We denote by Mo the drop angular momentum start
ing with which the Jacobi ellipSOids become stable. Its 
value is 

Ilf,'= :5 (4~)'" /(6) Cm"/' p-'I" 

It is convenient to introduce the parameter u = M/Mo, 
which characterizes the deviation of the angular mo
mentum of the drop from the critical value Mo. In the 
region of values 1 < u < 1.293, the Jacobi ellipSoids are 
stable. 

(6) 
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Puttin~ k=tanh 1) and a second relation for the Jacobi 
ellipsoid 6], we obtain 

(2cth'l-th'l)'ch'I,'l [F( '1.')-(1+ 1-n' )E(' 1.') 
n(1-n')'I' rp, 1-cth''ln' rp, (7) 

+ n(1-n')'10 ]=(1-S')'I,/(S)U', 
eh '1 (1-cth' 'In') 

where rp'=sin- 1 n and X'=(tanh 1))/n. 

The angular velocity n of the drop is then equal to 

(1 ') 'I, 
Q=(4"pG)'''r(S)uch'I''l~. 

h-ch' '1 
(8) 

Formulas (3a), (3b), (5), (7), and (8) give a parametric 
representation of the dependence of AI k, and n on u, 
and consequently of the components Qa{3 on m, p, and M. 

we can easily obtain 

where 

f' (dE('l) )A-'('l)d'l=- 8" t 
d'l 5 ' 

'" 
(14) 

3 (4,,)'1. , ,[ f(s)u'(1-n')'I'ch'l'n E=- - Gml,p" 
10 :, 1+ch''l 

2(1-n')'I, 
nch'Io'l F(rp',1.')], 

In the case (u - 1) « 1, the integration in (14) can be 
carried out in terms of elementary functions 

'1' 
u=1+--=1+(u -1)e-p, 

~ (s) 0 , (15) 
24 ( " ) 'I. 

p= 25 G f(s)~(s) (1- s')G'm'I'p'I''''5,449G'm'I'p'I,c-', Uo=u(t=O). 

Substituting (15) in (12), we obtain the dependence of the 
Choosing a spherical coordinate system in which intensity of the gravitational radiation of the drop on the 

nx = sin B cos rp, ny = sin Bsin rp, nz = cos B, we obtain from time at (u -1)« 1. 
(1) the instantaneous distribution of the radiation: 

dl(t)/dQ=A[cos' 8+'/, sin' 8 sin'(wt+2rp) l. 

12" ( 3 )'1. (i-n'),/. A= - - G'm"I, p'I,/,(S) u' sh'2'l Ch~/, 'l..c'-----c-:---cc: 
25c' 4" (1+ch''l)'' 

(9) 

w = 2n is the frequency of the gravitational radiation. 

Averaging (9) over the period of the revolution of the 
drop, we obtain 

d1/dQ='/,A (1 +6 cos' 8+cos' 8). (10) 

Consequently, the maximum intensity of the gravitational 
radiation is directed along the rotation axis, and the 
minimum is in a perpendicular direction. For the time
averaged radiation intensity, their ratio is equal to 8. 

The total radiation intensity is obtained by integrat
ing (9) with respect to dn: 

l(t)=l='/,,,A. (11) 

We are particularly interested in the case when 
(u -1) «1. Then the Jacobi ellipsoid differs insignifi
cantly from the ellipsoid of revolution. Using the method 
of expanding the corresponding expressions in powers 
of 1), we have at (u -1)« 1 

1=1= 8" A=~ (~)'I' G'm"I'p'I'f'(;)~(s) (1-6')'/'(u-1) 
5 25c' 4" (12) 

""1.403G'c-'m"I'p'I'(u-1), 

where 

~ (S) = 9216s'( 46'-1) rm, 1'-' (S) =28806'+616s'-1412s'+7546'-339. 

The frequency of the gravitational radiation is deter
mined in this case by the formula 

w=(4"pGf(S) ),"(1-S')'I'[1-'Y(S) (u-J)], 

'Y (6) =3r (S) [432s'+368 (s'-1) s'-8s'+113]. 
(13) 

The emission of gravitational waves from the drop 
leads to a decrease in the energy E and in the angular 
momentum M of the drop with time, and consequently 
also a decrease of the parameter 1). Using the obvious 
relation 

-dE/dt=I='/,,,A, 
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We can regard white dwarfs and neutron stars, which 
are at present identified with pulsars, as rapidly rotating 
drops of a gravitating liquid. At the characteristic neu
tron-star parameters m = mG and p= 4x 1014 g/cm3, as
suming M= 1.0296Mo, we have 1= 1053 erg/sec. At the 
given value of the angular momentum, the shape of the 
triaxial ellipsoid is stable. The frequency of the gravi
tational radiation is equal to 1764 Hz, which corre
sponds to a drop-revolution period T = 0.001 sec, which 
is smaller by a factor 30 than the periods of the pres
ently known pulsars. Choosing the distance from the 
earth to be 2 x 1022 cm, we obtain a gravitational
energy flux on earth 4 x 107 erg/sec-cm2. Using 
(15), we find that after approximately 2.3 sec the radi
ation intensity drops to 1030 erg/sec. 

In the case of a white dwarf, choosing p = 108 g/ cm3 , 
m = mQ, and M = 1.0296, we obtain I'" 1042 erg/sec, a 
radiation frequency 0.88 Hz, and a radiation intensity 
that decreases by a factor 10 after 10 years. 

It appears that one cannot exclude the possibility that 
some of the presently known pulsars have an average 
density of less than 1014 g/cm3 (-1011_1212 g/cm3). They 
can in this case perfectly well assume a stable form of 
a triaxial ellipsoid. 
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