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The motion of a quantum particle in a one-dimensional random potential·of the white-noise type is 
considered. The asymptotic density-density and current-current. correlation functions are found for 
high particle energies (ETB ~~) and large scales k -I N / B' w- I NTB, where / Band TB are the 
Boltzmann mean free path and time. The following results have been obtained: (a) Anderson 
localization occurs in the system, i. e., particles emitted at a point Xo do not spread out along a 
straight line as (-00 but are distributed near a point Xo with a density p~(x-xJ that decreases for 
Ix - x ~> / B; (b) the conductivity for w-O is of the form (7=. - i wa, which is typical of a dielectric 
(a N /1 is the "polarizability"), and the initial term of the expansion of the dissipative part is 
Re(7N(wTB)2In~wTBI. These results are in complete agreement with Mott's concepts. It is shown 
that the localization case can be regarded as a spontaneous violation of translational invariance and 
in particular, owing to property (a), translation ally noninvariant averages can be introduced which 
are similar to the Bogolyubov quasiaverages. 

Mott and, subsequently, other authors (see the re­
view[1 J) have put forward the idea, according to which 
the one-electron states in disordered systems can be 
of two types: localized and delocalized. The spectral 
regions corresponding to the localized states are then, 
to a certain extent, analogous to the forbidden bands in 
crystals: if the Fermi level EF falls in this region, 
then the system behaves as a dielectric as T - O. The 
acceptance of Mott's idea raises a number of questions 
about the physical properties and the mathematical 
description of the system in the region of the localized 
states. In particular, it is not quite clear how we can 
reconcile the existence of localized states with the 
spatial (macroscopic) homogeneity of the system. 

From the mathematical standpoint the elucidation of 
these problems requires the analysis of the Schrodinger 
equation for a random potential, which is a difficult 
problem. Only in the one-dimensional case do we have 
any general approach to the problem, and is therefore 
the case which has been most thoroughly investigated 
thus far. It has been shown (see Mott's[1J and Hal-
perin 's [2J reviews) that the eigenfunctions for the one­
dimensional random potential are localized at all ener­
gies. These results are however incomplete, since they 
do not allow final conclusions to be drawn about the 
behavior of the conductivity and the space-time correla­
tion functions. 

At the same time, if we accept Mott's idea, then it 
follows from these results that the conductivity in the 
one-dimensional random potential should vanish at all 
energies. This conclusion appears to be paradoxical, 
since at high energies the scattering probability and 
the wavelength tend to zero ({32 -0, AE - 0), so that 
the following conditions obtain: 

(I) 

(lB is the Boltzmann mean free path and ro = c-1 is the 
mean distance between the scattering centers). In the 
three-dimensional case, the kinetic equation is applica­
ble under the conditions (I), and it seems strange that 
this is not the case in the one-dimensional case (the 
one-dimensional kinetic equation clearly leads to a 
finite conductivity). 

It is clear from the foregoing that apart from the 
consideration of the individual ¢-functions, which has 
been carried out in the above-cited papers (see[1,2]), 
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the computation of the correlation functions and the 
conductivity, especially for high energies where the 
conditions (I) are fulfilled, is also of interest. This is 
done in the present paper (for the model with a white­
noise type of potential). The results obtained corrob­
orate fully Mott's idea and, as seems to us, they 
clarify a number of questions connected with the idea. 

Notice that the problem of the computation of the 
conducti vity (for the same model) has been considered 
by Halperin[3 l, who expressed the conductivity in terms 
of the solutions of a system of partial differential equa­
tions. These equations were solved for AE «lB in a 
recent paper by Bychkov[4 J 1). He found the dominant 
term of the expansion of the conductivity for w - 0 to 
ha ve the form Re a ~ AI I wi, but it can be shown that 
in this term (which COincides exactly with the real part 
of our expression (49b )), the integral giving the con­
stant A vanishes, so that it is necessary to seek the 
next term of the expansion, which leads to our formula 
(63). (In the equations of[4], certain terms of order 
r 2 = (AE/lBf2 are retained, owing to which one can 
obtain A 7! 0, but this is connected with the fact that not 
all the terms of order r 2 are taken into account there.) 

1. THE CHOICE OF THE IMPORTANT 
DIAGRAMS AND THE DERIVATION OF THE 
BASIC EQUATIONS 

1. Determination of the principal quantities 

The motion of a quantum particle of mass m and 
charge e in a one-dimensional random potential V(x) 
is considered. We shall be interested in the correlation 
functions for the density and current operators defined 
as 

~ i ~ ~ 
i' (x) = Il (x - x), j' (x) = -{pj' (x) + i'(x) pl. 

2m 
(1 ) 

Here x and p are the coordinate and momentum opera­
tors; the unified notation ja( x) (a = 0, 1) has been in­
troduced for convenience only (the problem is nonrela­
ti vistic). Another definition of the operators (1) in 
terms of their matrix elements (Ii = 1 and 'Pn(x) are 
the wave functions of the states In») is 

< iii' (x) 12>= <p,' (x) <P2 (x), < ilj' (x) 12> 

i {a a} =- <p,(x)-<p;(x)-<p,'(X)-<P2(X) . 
2m ax ax 

(1' ) 

The potential V(x) is assumed to be time independ-
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ent, which implies the neglect of transitions induced by 
the interaction with the thermostat. Energy is then 
conserved and the distribution function f( E) can be 
arbitrary (not necessarily a Fermi distribution). The 
physical averages are given by the formula 

<A>=noS t(E)Mv{Sp(6EA)}dE, (2) 

where the symbol My{ ... } denotes averaging over the 
realizations of the random potential, 0E is the density 
matrix of the microcanonical distribution: 

where 
2n7i±'(x-x') =Mv{<x'IG±lx>(xIG'lx'>}, (lla) 

2nTi±'(x-x')=Mv{( ~-~) (~,-~), 
!ix, !ix, iJx, !ix, 

x (x,'IG±lx,><x,IG'lx,'>} I "~','~' (llb) 
:l:2=:l:I'=X' 

« x I G I x') is the coordinate re presentation for (10». 
These expressions will be used below. 

liE = .E In>6(E-E n ) (nl=_1_{ __ 1___ 1 } (3) 
{oj 2ni E - H - iO E - H + iO 2. Formulation of the problem 

(En and In) are the eigenvalues and eigenfunctions of 
the Hamiltonian H = i?/2m + Y(x) for the given realiza­
tion of Y(x», and no is the particle density (for 
normalization to one particle no = L -\ where L is the 
length of the system), f( E) being normalized by the 
condition 

S f(E)N(E)dE= 1, where N(E)=Mv{Sp(j'(X)OE)} 

is the density of states. 

We shall consider two forms of correlation functions, 
the Fourier transforms of which we shall denote by 
Jj~(w, k) and n~(w, k)(a = 0,1) and define by the 
equalities .. ~ f eiW'M V{Sp(OE;"(X, t)j" (x» }dt = S iiE"(W, k) eih('-")dk/2n, (4) 

. 
M,{Sp(OE;"(x)6Hw'i"(x'»}= S TiE" (w', k)eik ('-")dk/2n, (5 ) 

In the definitions (4) and (5), the ja( x, t) are the Heisen­
berg operators (1) for the moment of time t, w is a 
complex frequency (1m w > 0), and w' is a real fre­
quency. The functions (4) and (5) are connected by the 
relations 

'"'"( k) 'S~TiE"(OJ"k) d ' 
JJR W. = l I 0.) 

(d (d 
(Imw>O), (6) 

(7) 

The functions (6) are, according to (4), the Fourier 
transforms of the retarded correlation functions, while 
the spectral densities (7) are connected with the re­
sponse functions by the dynamic susceptibility X( w, k) 
(the density-external potential response function) and 
by the conductivity a( w, k) (the current-external field 
response function). The expression for the latter has 
the form 

o(w, k) = ie'noSS f(E)- t{E -:- w') 1, fh'{w', k)dE dw', 
w-w CD 

Reo{w', k)= ne'noS f(E)- f~~+ w') jj'(w', k)dE, 

(8) 

(8' ) 

In particular, for a Fermi distribution, we have as 

T - ° 
o(w,k) =e'n,ifE'(w,k), 

Reo(w',k) =ne'nJiE'(w,"), E=EF' 

The functions introduced can, according to the second 
equality in (3), be expressed in terms of the averages 
of the product of two Green's functions, Let us denote 
by G± and G' the Green functions for the energies E 
and E + w: 

(9 ) 

G± = {E-H±iO)-', G' = (E+w -H)-', (10) 

We obtain in accordance with (3) and the definitions (4) 
and (5) 
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As can be seen from the above-cited formulas, the 
sought functions can be considered separately for each 
energy shell, whose energy E will then be a parameter 
of the problem (in the Fermi case the role of E is 
played by EF). Let us introduce the system of units 

n=E=2m=1, (12) 

in which the units of length, energy, and time will re­
spectively be the de Broglie wavelength AE 
= fi( 2mE rl/ 2 , the energy E, and the time filE, while all 
the quantities having the dimensions of length, energy, 
and time will be dimensionless ratios in these units. 
Starting from this point, the system of units (12) will, 
unless otherwise stipulated, be used everywhere. 

To concretize the problem, we must specify the 
statistical distribution of the potential Y(x). We shall 
consider a model in which Y(x) is a Gaussian random 
function with the correlators 

Mv{V(x)} =0, Af,.{V(x)V(x')} =I-'R(x-x'), (13) 

The model (13) for a value of the parameter l equal to 

1=1/cvo', vo=SV{x--xi)dx, (14) 

describes a system of randomly distributed scattering 
centers (c is the concentration of the centers and 
Y( x - Xi) is the potential of a single center) when the 
range of action of each center is much less 1 and Vo 
« 1 (the condition of applicability of the Born approxi­
mation). For other cases where the model (13) is ap­
plicable, see Halperin's paper(3l. 

Under the indicated assumptions, the quantity l can 
be arbitrary (depending on the concentration c), but we 
shall restrict ourselves to the case 

I» 1, (15) 

which corresponds exactly to the conditions (I). In ac­
cordance with what we said in the introductory part of 
the article, we shall be interested in the correlation 
functions for w ~ k ~ r\ i.e., strictly speaking, in the 
asymptotic limit when w - 0, k - 0, and l _00, but 
the quantities 11 = 4wl and K = 4kl tend to finite limits 
(the factor 4 has been introduced for convenience): 

w-O, "-0, 1- 00 , 4OJI-v, 4"I-x. (16) 

Of particular interest here is the case 11 « 1; in the 
opposite case, when 11 » 1, the results should corre­
spond to those obtained from the one-dimensional 
kinetic equation. 

3. Description of the diagrammatic technique 
and the choice of the important diagrams 

The expressions (11) allow a diagra~matic repre­
sentation on the basis of the well-known perturbation­
theory series expansion of the Green functions. The 
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unperturbed Green functions (henceforth denoted by GF) 
have the form 

(x.IGo±lx,) = +i"/zexp {±ilx,-x.j}, ) 

(x.jG,'lx,)""-i·'/'exp{i(1+w/Z)lx,-x.j}, Imw>O, Iwl «1. (17 

The unaveraged diagram consists of two electron lines 
going from the point x' to the point x. Each line con­
sists of segments (x', Xl)"'" (Xi, xi+l), ... , ( xn , x); 
the segments represent the GF (17), while the points 
xi represent the factors V(xi)' As a result of the 
averaging, these factors group together in pairs, each 
pair being associated with a correlator from (13). In 
the diagrams, correlators will be represented by wavy 
lines, while the GF (17) will be represented by ordinary 
or double continuous lines (the retarded GF, G' and G+, 
by ordinary, and the advanced GF, G-, by double lines). 
An example of such a diagram for the average 
MV{( x' I G-I x) (x I G' I x')} is shown in Fig. 1. Notice 
that the unfolding of the drawing along the vertical axis 
was done only for the sake of clarity and does not carry 
any semantic weight. 

The most important feature is the use of "ordered" 
diagrams, in which the scattering points Xi (over which 
the integration is performed) are ordered along a 
straight line in a definite manner with respect to each 
other and the fixed points x' and x. In the general case 
an ordered diagram corresponds to an integral over the 
variables Xi varying in a region of the form 

In such diagrams the coordinate x plays a role similar 
to that of time. If we move along a diagram, say from 
right to left, then we can associate with each interval 
between neighboring vertices an intermediate state 
defined by the number pair (g, g'), where g and g' are 
the numbers of the G-- and G' -lines in this interval. 
For example, to the diagram in Fig. 1 corresponds the 
sequence (2.2), (4.4), (4.4), (2.2), (1.1), (3.3), (3.3), (2.2), 
(2,2). On going through each vertex (the points x' and 
x are included in the number of vertices), the numbers 
g and g' undergo definite changes Dog and Dog' which 
are uniquely determined by the type of vertex (e.g., for 
the diagram e in Fig. 2, Dog = Dog' = +2). 

The ordered diagrams are convenient in that each 
has a definite order for the passage to the limit (16). 
To see this, we use the fact that the differences Xi - Xj 
do not change sign in the integration over the region 
(18), so that the GF (17) are factorable .. For example, 
if Xi < X2, then (XII G~ IX2) = (7'2dI2e-1Xl(7'2dI2eIX2. 
Let us now transfer the first factor to the vertex Xl and 
the second to the vertex X2, and let us perform a simi­
lar operation with respect to all the G~- and G~-lines 
of the diagram, thereby transferring the dependence on 

b 
a l...:~~---___ ~ c 

~--------..I , ... --------____ >" 
I ' I 

: : ~~==F==9'_"": 

.x, .vz"r' oX] X",.x .Z'J .1'6' ,x7 as 
FIG. I. An example of the diagram for the average of <x'IG-lx> 

<xIG'lx'>' The diagram pertains to important diagrams of the type r +_ 
and has a left-hand (a), a central (b), and a right-hand (c) part of the form 
Rio ZlOand R, (see the text), respectively. 
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the Xi'S from the lines to the vertices (this operation is 
similar to the transition to the interaction representa­
tion in time-dependent perturbation theory). 

Figures 2 and 3 show the vertices having the 
property that Dog = Dog', together with the correspond­
ing factors. Notice that in the limit w - 0, these 
factors are equal to the constants ± (4lf\ whereas to 
vertices with Dog '" Dog' (not shown in the figures) there 
correspond in this case additional factors of the form 
exp{i(Dog - Ag')x}. This difference turns out to be im­
portant for order-of-magnitude estimates for the dia­
grams when passing to the limit (16). 

For such estimates, we set w = k = 0 in the integral 
and simultaneously replace the limits ± 00 in (18) by 
± L. Then the estimate for such an integral yields for 
L - 00 the estimate for the original diagram, since the 
integrals are cut off at L ~ w -\ k -1. To the vertices 
shown in Figs. 2 and 3 correspond the factors ±( 4lf\ 
and for the diagrams containing only these vertices we 
have the estimate rrLrL (the extraneous factor Lis 
connected with the integration with respect to dx when 
computing the Fourier transform (11 )). Such diagrams 
gi ve contributions of the form 

ifEa(w,k) -If(4wl,4kl) -If(v,x). (19 ) 

To the vertices for which Dog'" Ag' correspond at 
w = 0 the factors ~ exp (±2ixj), the integrals of which 
converge at the upper limit, and for diagrams contain­
ing such vertices the power of L for L - 00 will be 
less than, or equal to, the power of (4Zfl; they will, 
upon passage to the limit (16), give contributions of the 
form Z-nf(v, K) with n = 0,1, ... , which are small 
compared to (19). 

It is easy to see that the same contributions are made 
by all the diagrams for the second term in (11), Le., 
for the average of the product of the retarded GF, G' 
and G+. In fact, in such diagrams only the interaction 
vertices a, b, and c in Figs. 2 have the limit ±(4Zfl 
for w - O. But in diagrams containing only such 
vertices, to the points x' and x correspond the factors 
±2ix . . e , so that the maXImum order of magmtude of the 

diagrams will be ZOf( v, K). 

Thus, in the approximation (19), only the diagrams 
containing no other vertices except those shown in Figs. 
2 and 3 are important. Such diagrams may be divided 
into four classes, the sums of the contributions of which 

ala) b(b') c(c') d 

FIG. 2. The types of interaction vertices that form the important dia­
grams. The vertices a', b', and c' not shown in the figure differ from the 
vertices a, b, and c by having double lines in place of the ordinary lines. 
To the vertices correspond the following factors: -1/41(a, a', b, b', c, c'), 
+ 1/41 (d), + exp(iwxi)/41 (e), and + exp(-iwxi)/41 (f). 

T-, ! 

--'x' 
~ 

Ft ,"!, 

~~~ 
"';.=--i 

I 
d 

FIG. 3. The types of incoming and outgoing vertices in the import­
ant diagrams. At the top are indicated the types of r ++ for the diagrams 
containing the given vertex. To the vertices correspond the following fac­
tors: Yzexp {-iwx' /2 }(a), Yzexp {iwx' /2 }(b), Yzexp {iwx/2 }(c), and 
Yzexp{-iwx/2 }(d). 
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(without the factors of Y2 pertaining to the points x' and 
x) we shall denote by r H. The left subscript ± indi­
cates the type of x' vertex in Fig. 3, a) and b) (or ac­
cording as tog = t.g ' = ~1), while the right subscript 
indicates the type of x vertex in Fig. 3, c) and d), or 
according as tog = tog ' = ±1. For the quantities (lla) 
we have 

2J[f;E' (w; X - x') ~ 1/4 {l'++ (x - x') + L_ (x - x') -
+f+_(x-x') +f_.(x-x')}. 

(20a) 

In computing (llb), we must imagine that each of the 
points x' and x has split up into two close points, dif­
ferentiate the contributions according to (lIb), and then 
let the points merge. In our approximation, each dif­
ferentiation yields a factor of ±i, and we obtain 

2J[fjE' (w, x - x') ~ f ++(x - x') + f __ (x - x') 
-f+_(x-x') -I'_+(x-x'). 

4. Derivation of the basic equations 

(20b) 

Let us distinguish the left-hand, right-hand, and 
central parts of the selected diagrams as the parts of 
the diagrams lying to the left of x', to the right of x, 
and between x' and x, respectively (for x' < x), Since 
for the vertices of Fig. 2, t.g = tog' = 0, ±2, in the in­
termediate states of the left-hand and right-hand parts 
g = g' = 2n, while in the central part g = g' = 2n + 1 
(n=0,1,2, ... ). 

The contribution of each diagram is an integral over 
the region (18), an integral which breaks up into a 
product of three integrals over (Xl, ... , Xl), 
(xZ+b ... ,xc), and (xc +1, ... ,xr ), which we shall re­
spectively call the contributions of the left-hand, 
central, and right-hand parts. Let us denote by Rm(x) 
the sum of the contributions of all the right-hand parts 
that have at the boundary with the central part (i.e. 
immediately to the right of the point x) the state 
g = g' = 2m, by Rm'(x /) the analogous sum of the con­
tributions of the left-hand parts, and by Zm'm(x /, x) 
the sum of the contributions made by the central parts 
with left and right boundary states g = g' = 2m' + 1 and 
g = g' = 2m + 1. 

The right-hand parts of the diagrams can be con­
structed by successively joining all the possible 
vertices in Fig. 2 to the right of already constructed 
right-hand parts. In doing this, in order not to obtain 
diagrams with electron loops, diagrams that bear no 
relation to the original diagrams, we must take account 
of only those possibilities for which the segments of the 
G~- and G~-lines are joined up into two continuous elec­
tron lines going from x' tox. For this purpose we can 
number the lines on the boundary of the right-hand part 
by assigning No.1 to the segment corresponding to the 
first entry of the electron line into the right-hand part, 
No.2 to the first emergence from it, No.3 to the sec­
ond entry, and so forth from 1 to 2m. In constructing 
the diagrams, we should take account of the fact that the 
angles at the vertices in Fig. 2 can be formed by only 
the segments of the Go-lines with consecutive numbers, 
e.g., 2l - 1 and 21. 

The process of constructing the diagrams of the 
right-hand part is schematically illustrated in Fig. 4 
(we illustrate the addition of only the vertices d, e, and 
f in Fig. 2 and not of all the vertices in the figure). To 
this process corresponds also the equation for Rm( x) 
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----'-+-I--t-+ ... 

,--
Zm-! '­

Zm---

FIG. 4. Schematic representation of the process of constructing the 
right-hand parts and the equation for Rm(x). The right-hand parts are 
represented by the rectangles; the dashed curves indicate the shape of 
the electron lines inside the right-hand and central parts. For each of the 
the two electron lines G' and G- are shown four segments with consecu­
tive entry and exit of the electron line into and from the right-hand part: 
the initial pair I and 2, the two intermediate segments 21- I, 21 and 
2n - I, 2n, and the last lines 2m - I. 2m. Summation over all the possi­
ble ways of selecting I, n, etc., and over all the possible ways of joining 
up the vertices a, a', b. b', c', and d in Fig. 2. not shown here, is implied. 

(the integral and the corresponding differential equa­
tion) having the form 

dRm 1 {'R iox+ 'R -'ox 2m'R} -Tx=Te m 11I-1 e m m+t e - m· (21) 

A similar procedure for constructing the central parts 
yields the equation 

d 1 ., 1 2 iox' dx Z.,m ~ 2- tWZ .. m + 4l{m e Z.,m-. 

+ (m + 1)' e-iwxZ.,m+1 - (m' + (m + 1)')Z_m} 
(22) 

(the dot stands for the index m', which plays the role 
of a parameter in (22)). 

The terms with tom = ±1 on the right-hand sides of 
(21) and (22) correspond to the joining of the diagrams 
e and f in Fig. 2, while the terms with t.m = 0 corre­
spond to the sum of the terms contributed by the dia­
grams a--d in Fig. 2 (in the order (a, a / ) + (b, b / ) 
+ (c, c / ) + d): 

{ 2m(2m--1) } 
-2m'Rm~ -2.2m-2----2---2,m(m+l)+(2m)' R"" 

{ (2m + 1)2m 
-(m'+(m+1)')Z.,m= -2·(2m+1)-2- 2 

- 2 ' m' - (2m + 1)' }Z_,m_ 

It is easy to see that for the diagrams with the 
central part Zm/m, the left-hand and right-hand parts 
will have the forms (Rm /, Rm ), (Rm', Rm +1), (Rm'+l' 
Rm ), and (Rm /+1, Rm +1) for the types r .. , L-, L., 
and r __ , respectively, Therefore 

(f++ f+_) ~ ~ ~ (Rm.Zm.mRm; Rm.Zm'mRm+l) (23) 
r _+ r __ m'=o m=O \ llm'+1Zm'mllm; llm'+lZm'mllm+l 

(the arguments x' and x have been dropped). 

In an infinite system the quantities Rm(x) have the 
form Rm = eiwmxRm, where we have for Rm from 
(21) the equations 

ivRm + m{Rm+ 1 + Rm-. - 2Rm} ~ 0 (m ~ 1, 2, ... ); Ro ~ 1. (24) 

On account of (23), the quantities (20a) and (20b) depend 
bilinearly on the quantities 

(25) 

Let us perform in the bilinear expression the summa­
tion over m ' and introduce the notation 
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1 ~ ~ 

Qm"(W, k) = 4i ~ S eik('-"'e+,wm'Zm'm(X', x)e-,wm'x'Pm,". 
m'~O. (26) 

From (22) and the condition Zm'm(x, x + 0) = 0m'm, 
we obtain for (26) the equations 

iv (m + '/,)Qm" + (m + 1)'{Qm+, - Qm"}- m'{Qm" - Q:_,}- ixQm" + Pm" = O. 
(27 ) 

The sought-for quantities can be expressed in terms of 
(25) and (26) in the form 

11<=0 

(the term with -k takes account of the contribution from 
the region x < x'). We recall that 

v = 4wl, x = 4kl. 

Thus, the summation of the most important diagrams 
has been reduced to the solution of the Eqs. (24) and 
(27) and the substitution of the solutions into (28). 

2. ASYMPTOTIC SOLUTION OF THE 
EQUATIONS 

1. I nterpretation of the equations 

Before proceeding to the solution of the equations, 
let us consider their interpretation. Let us denote by 
~JE the solutions of the Schrodinger equation I/J" + (E 
- V(x))1/J = 0, by zE = I/JEII/JE their logarithmic deriva­
tives, and by A~ the running-wave amplitudes, which 
are determined from the equalities 

1/JE=A++A-; 1/JE'=ikE (A+-A-), 

where kE = E'/2. 

Let us define the coefficient rE of reflection to the 
right by the formula 

AE+ ikE-ZE 
rE=-=---. 

A E -- ikE + ZE 
(29) 

By comparing the diagrams for rE with the above­
considered diagrams for the right-hand parts, we can 
see that the Rm's have the meaning of averages: 

(30) 

The Eqs. (21) and (24) can be written in the form of the 
relations 

a {a a} -a Mv{f(p.)l+Mv ivpx-a-f(px)+(1-px)'~(pxf(px» =0, 
x ~ a~ 

ivMv<f(P)}+Mv{ (1-p') :~ }=O 

(31) 

(31' ) 

for the averages of an arbitrary analytiC function of the 
quantities (30). In fact, substituting f(p) = pm into (31) 
and (31'), we obtain the Eqs. (21) and (24). Equation 
(31) is an approximate Fokker-Planck equation, which, 
for 1 » 1, is valid for intervals of the type 

1 « i3.x « I. (32) 
There are in the present problem exact Fokker-Planck 
type of equations that depend on two variables (thus, the 
first Halperin equation(3] is an equation for the distribu­
tion function of the quantities ZE and ZE+W). The ap­
proximate equations for the intervals (32) can also be 
derived (besides the diagrammatic method used by us) 
from the exact Fokker-Planck equations by expanding 
the latter in powers of the small parameter r'. 

2. Solution of (24) 

We shall, taking (31') into account, seek the solution 
of (24) in the form of a contour integral, where the 
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weight function w(p) should satisfy the equation conju­
gate to (31'), i.e., 

Rm = J w(p)pmdp, ivw - «1- p)'w)' = O. 

Solving the equation for w(p) and selecting the contour 
and its parametrization, we can represent the solution 
in the following form: 

Rm = - iVJ ds e'" ( s: 1 ) :, - iv j ds e'" (1 + S-I) -m (33) 

(other representations are possible). It is not difficult 
to verify (through integration by parts) that (33) is in­
deed a solution to (24). Notice that Rm = 1 when v = 0, 
i.e., MV{ I rE 12m} = 1. So we have 

(34) 

where IJ E is the random angle (which is real when 
1m E = 0). Therefore 

" 
pE,.=exp[i(OE+O-O,,)]=exp(i6), Rm= 21n_~ exp(im6)p(6)dll, (35) 

where p( 0) = B E+w - BE. This function can be found 
from (33). Let us denote by 

(36) 
111.=0 

the generating function of the quantities Rm; then the 
function p( 0) is equal to 

p(ll) = Re9!!(e-ib ) -1. (37) 

From (33), we can obtain for the function (36) the 
explicit representation 

9!!(~)= 1~~ (1-~FC~~ )), F(z)=ze-'Ei(z) (38) 

( Ei ( z) is an exponential integral function), and it can be 
verified that (37) satisfies all the necessary require­
ments. 

The expression (33) is irregular with respect to the 
passage to the limits m ~ 0() and v - O. It is easy to 
see that for v « 1 and m » 1, (33) depends asymp­
totically on mv, i.e., it has a definite limit when 

m ->- 00, v ->- 0, p = -imv ->- to a finite limit. (39) 

In fact, for v « 1 and m » 1, large m are important 
in the interval (33) and, replacing (1 + s-')-m by 
exp{ -m/ s}, we obtain 

Rm (v) ->- R (p) = p f e-P' e- I/ • ds = 2p'J'K1 (2P"') (40) 
o 

(Kd x) is the modified Bessel function). 

The asymptotic form of (40) can be found directly 
from Eq. (24) by taking the limit as prescribed by (39). 
Replacing the differences by deri vati ves, we obtain 

rffR. rffR 
ivRm+m-=O,l.e.,R(p)-p-, =0. (41) 

dm' dp 

The function (40) is a solution to Eq. (41) provided 
R( 0) = 1 and R( O()) = 0 (which follow from the limits of 
Rm for v ~ 0 and m ~ O()). Indeed, 

R(p)-1 + p(lnp + 2C-1), R(p) = O(p"exp(- p"», P--> 00, (42) 
P~l 

where C = 0.5772 .... is the Euler constant. 

3. Asymptotic solution of (27) 

It is not possible to solve (27) in closed form. Thus, 
for the generating functions Q(?;) (connected with the 
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Qm's in the same way as (36) is connected with the 
Rm 's) we have the equation 

iV(~ dQa +..!.-Qa)+(1-~}~{~~[(1-~}Qa]}-ixQa+.9'a=0 
d~ 2 d~ d~ (43) 

(.9' aU;) are the generating functions for (25) and can be 
found from (38)). This equation is of a more complex 
type than the hypergeometric equation (four singular 
points: 1; = 0,1; = "", and the two-fold degenerate point 
1; = 1), and its solutions cannot be obtained even in the 
form of contour integrals. 

At the same time, the asymptotic forms of the Qm's 
for m » 1 and II « 1 can be obtained in the form Q~ 

= Qa( -imll), where Qa( p) are solutions to the equations 

- pQa(p}+~ (p, dQa) _ ixQa(p}+pa(p}= 0, (44) 
dp dp 

the inhomogeneous terms being equal, according to (25) 
and (40), to 

P'(p} =R(p}, Pl(p} =-dR,,/dm=ivR'(p}. (45) 

Equations (44) are obtained by passage to the limit (39) 
from (27). To them must be added the boundary condi­
tions Q( 00) = 0 and the condition for p - O. To find the 
latter condition, we must solve Eqs. (27) for Qm 
- Qm -1, neglecting in (27) the terms ~II; these solu­
tions are applicable when mil « 1, and their asymptotic 
forms for m » 1, expressed in terms of p = -illm, are 
matched with the asymptotic forms of dQ(p)/dp, which 
yields the conditions: 

dQ' d 
--r', -Q'(p}-r'lnp as p-+O.I 

dp dp 

The solutions of (44) for K = 0 have the form 
QO(p, x =O} = -R'(p) - -lnp as p -+- 0, 

-N -N 
Q'(p, x = O} = --[lnpR(p) + 2CR(p) - R' (p) J - -(lnp)' 

~ 2 
as. p -+- O. 

(46a) 

(46b) 

In fact, using the fact that the function R( p) satisfies 
Eq. (41), we can easily verify that the expressions (46) 
are solutions to (44) (at K = 0). The addition to (46) of 
solutions of the form Cp-lR(p) to the corresponding 
homogeneous equation violates the condition for p - 0, 
so that the solutions (46) are unique. 

The explicit solution of the Eqs. (44) for K '" 0 is, if 
at all possible, complicated. We shall consider only the 
asymptotic form of QO( p, K) for K« 1. The function 
QO(p, K) is regular with respect to K for K - 0 every­
where except in the vicinity of the point p = 0; in the 
latter region, however, the effect of small K amounts 
to the replacement of In p in the asymptotic form (46a) 
by (iKrl (piK - 1). Choosing po such that I Po I « 1, but 
I K In Po I « 1, we can write with sufficient accuracy for 
what follows: 

{ -R'(p), p;o'p, ) 
Q'(p,x~1}'" (ix)-'(1-P"), poS;,p" p,~1, Ixlllnp,I~1. (47 

4. Computation of the dominant terms of the 
expansion as II -+ 0 

Let us now consider the behavior of the quantities 
(28) for II - O. The dominant terms of the correspond­
ing expansions are determined by the behavior of the 
Pm's and Qm's for m » 1 and can be found with the 
aid of the above-obtained asymptotic forms (45)-(47). 

In fact, let us consider the sum of the terms (28) for 
m ~ M. Let us choose M» 1 (but Mil « 1), then we 
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can replace the sum by an integral and use the asymp­
totic forms (45)-(47). We arrive then at the integrals 

41 Spa(-ivm)Qa(-ivm)dm. (48) 

The integrals (48) may be regarded as integrals along 
the straight lines p = -illm (M:S m ~ 00) in the plane 
of the complex variable p. Since I 11M I « 1, the lower 
limit can be replaced by zero (the integrals then con­
verge, which can be seen from (42) and (45)-(47)). 
Further, the integrand is analytic in the right-hand 
half-plane Re p > 0, so that the integration contour can 
be shifted to the real axis. On doing this, we obtain for 
the quantities (28) the expressions 

_ 41 w 

Z"ij'(UJ,k)=_iVJ R(p){Q'(p,x}+Q'(p,-x)}dp, (49a) 

_ W d 
2"ij' (UJ,O) = 41(+ iv} S R' (p) [InpR(p}+ 2CR(p}-R'(p} ]L. (49b) 

, p 

(We are considering (49b) for only k = 0.) 

Solving (27) in the region m I 1'1 « 1 (with allowance 
for the matching with (46)), we can show that as II - 0 
and for a fixed m, the quantities Pm and Qm have the 
following orders of magnitude: P~ = 0 ( 1), P~) 

=O(lIln II), Q~ =0(1), and Q~ =0(1' ln2 11), so that 
the sum of any finite number of terms from (28) will 
have a higher order of smallness as II - 0 than (49). 
Thus, the expressions (49) give the dominant terms of 
the expansions as I' - 0 for the res pecti ve quantities. 

Let us first consider (49a). We write the integral in 
(49a) in the form 

- N1 ~ N 

S - 2Rfl'dp + 2 He S ~ dp = 1 + 2He S e" I" " e'" P d (-In p) (50) 
'x 

Po II () 

(the expression (47) has been used and the second inte­
gral to the right has been integrated by parts, the 
dQuble substitution cancelling out exactly the depend­
ence on Po of the first integral (on account of the choice 
of Po)). Further, since I' = 4wl, the factor in front of 
the integral is equal to (-iw rl. If the Fourier trans­
form of a retarded function has the form -A/iw, then 
the limit of this function as t - "" is equal to A, so that 
in view of (4) we obtain 

limMv (Sp(oEj'(.r,t)i'(x,»}=poo(r-x,), (51) 

where, according to (50), the function p 00 (x) is such 
that 

(52) 

Let us now consider (49b). The integral can also be 
evaluated: 

-8 I K,(x){ xK,(x} [In ; +c] + K,(x)} ~ = -2(,,'-C'), (53) 

Therefore, (49b) assumes the form 

fj'(UJ) =-iUJa, a = 32(,,'-CS)I''''' 3161'. (54) 

5. Computation of Rea as w -+ 0 

According to (9) and (10), Eq. (54) gives the reactive 
part of the conductivity as w - O. To compute the dis­
sipati ve part, we must find the next terms of the ex­
pansion of ]')1( w). To do this in the discrete representa­
tion of (28) is not very convenient (although it is pOSSi­
ble). It is better to go over to integrals, using the ap-
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paratus of generating functions. For this purpose, let 
us substitute into (28) the integral representation for 
Pin = Rin - Rin+1 that follows from (33) and sum over 
m under the integral sign. We obtain (the second inte­
gral is obtained from the first by integration by parts) 

211fj'(CiJ)=8Z(-iV) je i"'B(8)d8=8ZJ (e i"-1).!!!...d8, 
o 0 ds 

where we have introduced for the function B(s) the 
notation: 

(55) 

(56) 

From (43), we obtain for this function the equation: 

d ( dB) l d' 1 1 - 8(8+1}- +iv 8-«8+1)B)+-B 
~ ~ ~ 2 

+ ive-i.(.+1) Ei(iv(s + 1)) = 0 
(57) 

(the expression for the generating function !1' l(?; ) fol­
lowing from (38) has been used). Equation (57) should 
be solved under the conditions B(s) = 0 (l/s) as 
s - "" and the condition of regularity of B (s) as 
s - O. 

To the asymptotic forms of Ql as m - "" corre­
spond the asymptotic forms of (5~ as s - "". Let us 
therefore introduce the variable u = -ivs and rewrite 
(57) in the form 

~(u' dB)_u~(nB)+iv{_~(udB) 
dn du du du du 

dB 1} , 
+ud;+2:B + ive-"e" Ei(- u+ iv)=O. 

(58) 

In order to determine the asymptotic forms with the 
aid of (58), we must find the boundary condition as 
u - O. For this purpose, let us use the already men­
tioned procedure for matching the asymptotic forms. 
To wit, we solve (57) in the region I vs I « 1, where the 
terms enclosed in the square brackets can be neglected, 
and use the expansion of Ei(z) "" In (-z) + C for I z I 
« 1. We obtain 

dB {C-1 In[(-iv)(s+1)] In(S+1)} f I I 
~ ~ - iv --+ + or vs < 1. 
ds 8+1 s+1 8(s+1) j (59) 

(Notice that there is no point in integrating (59): the 
unknown quantity B( 0) will come in.) 

Expanding (59) with respect to s» 1 and expressing 
the result in terms of the variable u = -ivs, we obtain 

dB . {lnu+C-1} (. {d [lnu+C-1] ~--IV + IV)' -
du u du u 

+~ln(~)] + ... 
u2 -w 

(60) 

This is the expression for the expansion of the boundary 
condition as u - 0 for Eq. (58). It can be seen from 
(60) that the expansion of B(u) should have the form 

B(u) =ivB,(u) + (iv)'ln (-iv)B(u) + (iv)'B,(u) + ... , (61a) 

yielding as u - 0 the expression 

!!!!..~_(lnu+C-1), :!:!!.,-+_~ dB, ~2-C ... (61b) 
du u du u" du u' 

Substituting the expansion (60) into (58) and exeanding 
the nonhomogeneous term, we can find B1(u), B(u), and 
B2(U). In particular, B(u) = u-1. 

Let us now split the second integral in (55) into two: 
over the region 0 S s S So and over So S s < 0() , where 
So » 1, but I v I So « 1. Let us make a change of vari­
abIes u = -ills in the regi9n s 2" So and use (60); in the 
region s < so, let us set elliS - 1 "" illS and use (59). 
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Evaluating the integral over the region s < So explicitly 
and expreSSing its asymptotic form for So » 1 in terms 
of Uo = -ills 0, we obtain 

211 - ~ dB" ~ du 
-ii, (v) = - iv f--(e- U -1)du - (iv)'ln( - iv) f (e- u -1)-m ~ ~ 

Uo ~ 

~dB 
+ (iV)2 f --;i-(e-u -1)du + ... + ivuo(ln Uo + C - 2) 

- (iv)'ln (-i~) (C - 2 -In uo)+(iv)'(C - 2)ln uo + v'ln'( -iv). (62) 

Here we can set Uo = 0 (as can be seen from (61), the 
divergences of the integrals are exactly cancelled out 
by the terms with In uo). 

The first integral in (62) converges and yields pre­
cisely the dominant term of (49b) found earlier; the 
second integral is equal to In Uo + C - 1, and we obtain 

- 8Z 
jjg'(CiJ) = - iCiJa + -v'{!n'(- iV) + (2C - 3)ln(- iV) + constH o(v'). 

211 (63) 

The expansion of Re (J can be obtained from the second 
term if we take account of the fact that 

In (-iv) =In JvJ +i(Argv-1I/2). 

3. DISCUSSION OF THE RESULTS 

Let us now consider the meaning of the results ob­
tained in the light of the Mott concept. Let us begin 
with the expression (51). 

The function standing under the "limit" sign on the 
left-hand side of (51) has the meaning of a transition 
probability. In fact, we can write 

<F, (;,)F,(;» = no f dE f(E) fJ F, (x)F,(xo)Mv {Sp (6Ei' (x, t)i'(xo))}dx dxo. 

(64) 
(;(t is a Heisenberg coordinate operator for the moment 
of time t, and F l( x) and F z( x) are arbitrary functions), 
whereas the classical transition probability WE (xo; 
x; t) is given by the equality 

<F,(x,)F,(x» =no f dEf(E)N(E) fJ F,(x)F,(xo)WE (xo,x; t)dxdxo (65) 

(true, it is possible to ascribe to the function in (64) the 
meaning of transition probability at energy E only for 
scales much larger than AE, but our functions are in 
fact asymptotic forms for scales of order l » 1). 

Thus, the relation (51) implies that the particles 
emitted at t = 0 from the point xo do not, as t - o(), 
spread out along a straight line, but remain localized in 
the vicinity of Xo. The function PO() (x - xo) gives the 
density distribution in this limiting state. This concep­
tion of localization can be traced to Anderson[5J (this 
paper was entitled: "The Absence of Diffusion in 
Certain Disordered Lattices"). From the mathematical 
standpoint, the property (51) implies the absence of 
ergodicity in the energy shell. If we introduce the xo­
dependent averages defined by the formula 

- 1 -
<AUx;,E) = N(E) ~~Mv{Sp(6Ei'(X,t)A)}, (66) 

then, on account of the identity J jO(x)dx = 1, we obtain 
for the averages (2) the expression 

<A)=nofdEf(E)N(E) fC4I1xo,E)dxo, (67) 

which gives the expansion of the averages (2) in terms 
of the ergodic components. 

It is natural to assume that the property (51) with 
P"" (x) '" 0 is also typical in the general case for ener­
gies pertaining to the region of localized states, 
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whereas to the de localized bands should correspond the 
case poo(x) = O. In three-dimensional systems, transi­
tions between bands of both types can occur at certain 
energies. Since (51) corresponds to the spontaneous 
violation of translational invariance, these transitions 
are similar to second-order phase transitions, which 
are also connected with spontaneous symmetry break­
ing. In particular, the averages (66) are similar to the 
Bogolyubov quasi-averages. 

It can be shown that (54) follows from (51), with 

ex - S x'poo (x) dx. 

The function a ;; -iwa is typical for a dielectric and a 
may be regarded as the "polarizability" of the localized 
state (to the extent that we can at all speak of one­
dimensional electrodynamics). Notice in connection 
with (63) that Mott[l] adduced arguments to show that 
Re a ~ w2• These arguments have only logarithmic ac­
curacy, and the function Re a ~ w2 ln2 1 wi is not at 
variance with them. 

From the form of the summed diagrams, it is easy 
to understand why the kinetic equation is inapplicable 
in the one-dimensional case. This inapplicability is 
connected with the fact that in the present case the 
wave properties of the particles are important at AE 
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- 0 too. Let us consider, for example, the scattering 
of a wave propagating from left to right by three scat­
tering centers 1, 2, and 3, such that Xl < X2 < X3. Let 
the particle-wave, after reaching the center 2, split up 
into two particle-waves propagating along the paths 
2-1-3- "left" and 2- 3-1-2 - "left" (to each change in 
di'tection corresponds a scattering event). Then it is 
easy to see that the two waves reflected to the left will 
have a nonzero phase difference for any distances be­
tween the centers, i.e., the effects of the scattering by 
such sets of three (and more complicated configura­
tions) scattering centers will be integrated. 

1)1 am grateful to Yu. A. Bychkov for making his work available to me 
before publication. 
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