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The dynamics of long-wave magnetization fluctuations above the Curie point is usually described by 
the Van Hove diffusion equation. The accuracy of this description is discussed. It is shown that in 
reality the diffusion coefficient is a function of the energy wand momentum k. The major 
corrections to the static diffusion coefficient Do are calculated for small values of k and w. These 
corrections are due to the presence, in the perturbation-theory expansion for the diffusion coefficient, 
of intermediate states which contain two diffusion poles, i.e., of two "quasipartic1es" or "diffusions." 
The possibility of applying the results to other systems and in particular to a liquid-gas system near 
the critical point or to helium above the A point is discussed. The effect of the corrections computed 
on diffusion is considered. It is shown that the diffusion law is of the form 
(r2 ) = 6 (D ot + A + B t -1/2) and the temperature dependences of A and B are determined. 

1. INTRODUCTION 

In this paper we investigate the dynamics of long
wavelength fluctuations in a Heisenberg ferromagnet in 
the critical region, above the Curie temperature. We 
elucidate the question of the consistency of the pattern of 
diffusion of the magnetization and the question of the role 
of corrections to the diffusion. We confine ourselves to 
the case of zero external magnetic field, neglect the 
magnetic dipole forces' ) , and consider for simplicity the 
case of cubic symmetry. Under these conditions, the 
dynamics of the critical phenomena are described by the 
Halperin-Hohenberg scaling lawD.J, according to which 
the dynamic susceptibility has the form 

X(k,O)=X(k)F(: '],,:")' 

X(k)=_l_f(!!....) . 
k 2- n X (1) 

Here X(k) is the static susceptibility, T = (T - Tc)Tc' , 
K is the inverse static correlation length: Rc = K-' = aT-V, 
a is of the order of the lattice constant, v '" 2/3 and z is 
the dynamic critical index. For ferromagnets, this index 
is not independent but is expressed in terms of the 
Fisher parameter 1) : z = (5 - W/2. This relation was 
obtained inD.J and, as shown in J, arises from the law 
of conservation of the total spin. 

In the region of large momenta (k ~ K), the theory 
makes no prediction about the form of the function F; 
tts only assertion is essentially that the characteristic 
energy has the form w(k) = Tc TVZ~(k/K) and w(k) 00 kZ 
for k » K. On the other hand, in the limit of very long 
wavelengths, the dynamics of the magnetization fluctua
tions are described by the van Hove macroscopic dif
fusion equation [3J 

aM / at =D. V'M. 

by virtue of which, for k - 0, 

X(k,O) = x(O)Dok' / (-iO) + D.k'). 

Comparison of this formula with (1) leads to 

(2) 

(3) 

(3a) 

where d ~ 1. Below we shall write the second argument 
of the function F in (1) in the form w/DoK2. 

An experimental verification of dynamic scaling by 
means of neutron scattering was performed for iron and 
nickel by Minkiewicz, Collins, et al.[4,sJ, and led to some
what unexpected results. In the region of large k (k » K) 
good agreement with the scaling law was observed, viz" 
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the index z was found to be equal to 2.46 ± 0.25 for nickel 
and 2.7 ± 0.3 for iron (we recall that in three -dimen
sional systems 1) « 1, and so z ~ 2.5). At the same time, 
in the hydrodynamic region (small k) the temperature 
dependence of the diffusion coefficient was found to differ 
sharply from the T'/3 law: for nickel Do ex TO.51 ± 0.05, 
and for iron Do ex TO.14 ± 0.04. In addition, the measure
ments were performed in practice at fairly large mo
mentum transfers (k ::; K/2), and therefore the above 
discrepancy may be due to the approximate character 
of the formula (3), which was used to treat the experi
mental data. In this connection, the question arises of 
calculating corrections to the expression (3). It is to 
this question that the present paper is devoted. 

Lying at the basis of the corresponding calculations 
is an idea widely used in high-energy physics (see, e.g., 
the works of Gribov[6,7J): if the one-particle Green func
tion has a pole lying near the real axis, then allowance 
for this pole in the diagrams of the perturbation-theory 
series leads to closely positioned branch points, all such 
adjacent singular points having a "pole" origin. 

In our case the "bare" pole is the diffusion pole in 
the expression (3). As we shall see, the singularities 
generated by this in the "hydrodynamic" regime (small 
k and w) make a comparatively small contribution to 
X(J~, w), and this can be taken into account easily. Out
side the hydrodynamic regime, the contribution of these 
singularities is large and the simple diffusion picture 
ceases to be valid. Actually, for small k and w we are 
concerned with an analog of the cutoff technique, and the 
actual small parameter is not the weakness of the inter
action but the smallness of the corresponding phase
space volumes of the intermediate states. It should be 
noted here that the "cutoffs" under consideration lie at 
purely imaginary energies, this being due to the purely 
imaginary position of the pole in (3) or, in other words, 
to the purely imaginary energies of the quaSi-particles 
in the intermediate states (for convenience, these quasi
particles may be called "diffusons"). 

The theory under consideration is a variant of the 
mode-mode coupling theory, differing principally in the 

, form of the bare vertices from that proposed by 
: Kawasaki [8J. We shall use the vertex parts from static 
. scaling theory, which were introduced in papers by Mig
dal [9J and Polyakov[lOJ , whereas Kawasaki used the coef
ficients of the Mori expansion [llJ . 

The use of the static vertices can be justified by 
means of analytic continuation of the temperature dia-
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grams of the perturbation-theory series. It should be 
noted that the continued temperature diagrams have 
already been used previously by Polyakov U2] to prove 
dynamic scaling. However, the character of the principal 
singularity of the Green function and the consequences 
stemming from this character were not analyzed in U2] . 

To conclude this Section, we note that the results we 
have obtained depend only to a slight degree on the spe
cific properties of the Heisenberg ferromagnet and are 
therefore applicable, in particular, to the diffusion of 
density in a liquid-gas system near the critical point and 
in helium above the X-point, if the role of the distant 
sound poles is neglected. 

2. THE DYNAMIC DIFFUSION COEFFICIENT 

Thus, we are interested in the dynamic susceptibility 
of a cubic Heisenberg ferromagnet in zero magnetic 
field above the Curie temperature. This susceptibility 
is related to the retarded spin Green function by the 
equality 

X(k, w) = (gfto)'vo-'G(k, w), 

where V 0 is the volume of the unit cell and 

(4) 

As is well known (cf., e.g., the papers of Vaks, Larkin 
d P 'k' U3 14.1) tho G f ti . th l' an 1 m ' , 1S reen unc on 1S e ana ytlc con-

tinuation of the temperature spin Green function from the 
upper half of the imaginary axis on to the real axis. To I 
realize the program formulated in the Introduction, it . 
seems necessary, at first sight, to write an expression 
for G(k, w) in terms of its irreducible part: 

G(k, w) = ~(k, w) 1[1 - j1k~(k, w) 1 (5) 

(Vk is the Fourier transform of the exchange integral), 
and then investigate L(k, w) by means of the diagram 
technique developed in (13 ,14.1 with allowance for the fac t 
that the internal renormalized interaction V(k, w) = Vk 
+ VkG(k, w)Vk (cf.(13]) has the diffusion pole of (3). How
ever, up to now it has not been possible, starting from 
the temperature diagrams, to extract from L(k, w) the 
part responsible for the diffusion and the correction 
terms. In addition, as is well known (cf., e.g., the paper 
by Kadanoff and Martin [15]), there exists a simple ex
pression for the diffusion coefficient: 

(6) 

where Lk = dSk/dt, and <PL L-k(w) is the Kubo function of 
the operators Lk and L...,k. ~e recall that the Kubo func
tion of operators A and B is related to the corresponding 
generalized susceptibilities by the equality 

The question arises as to whether it is possible in 
formula (6) to remove the constraint associated with 
taking the limit k, w - 0, and thereby introduce a dynam
ical diffusion coefficient D(k, w). Recently, Schwabl and 
Michel U6] have proposed a general method for deriving 
hydrodynamic equations. Using their procedure (see the 
Appendix), one can obtain an expression for the dynamic 
susceptibility in the form 
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G(k. w) 
G(k,O)D(k, w)k' 

-iw + D(k, w)k' • 

D(k. co)k' = <D'~iL:k G-'(k. O){1 + <DS~L'.k (CO)G-l (k. 0n-'. (8) 

These formulas are general in character. It must be 
emphasized that the expression for D(k, w) differs from 
that obtained from (6) by removing the passage to the 
limit. Formula (6) is a particular case of the expression 
for the damping coefficient of a macroscopic quantity in 
terms of the kinetic coefficients, based on the assump
tion of linearity of the relaxational forces (cf. the book 
by Landau and Lifshitz U7]). Formula (8) is exact and 
takes into account the nonlinear character of these forces. 
In the case of purely exchange interaction, Lk 0: k; the 
Kubo function in the denominator vanishes at k = 0 and 
we arrive at the expression (6). However, in studying 
the dispersion of the diffusion coeffiCient, i.e., its de
pendence on k and w, we cannot, generally speaking, 
neglect this function in the denominator. 

The function XLL(w) is completely analogous in its 
properties to an ordinary susceptibility: its real part is 
an even function of w and its imaginary part is an odd 
function of w, and XLL(O) 10. Furthermore, if we rep
resent XLJ1 in the form of a sum over intermediate states 
(cf., e.g., 8]), then ImXLL coincides wi th the so-called 
absorptive part of this function, i.e., the part which con
tains an energy B-function in the summand. The prop
erties of the function XSL(W) are different, this being 
connected with the different behavior of the operators S 
and L under time reversal: the absorptive part of XSL 
is real and is an even function of w, and the dispersive 
part is odd and imaginary; in addition, XSL(O) = 0 and 
XSL(w) = - XLS(w). All these properties are easily ob
tained from the expansions over the intermediate states. 

Using the usual expression for the exchange inter
action energy, it is not difficult to obtain the formulas 

2T 2 00 

X',~T~:k = (a 6'Y)- ~ dt e'''[ ~ }J (kk,) (kk,) 
o klks 

X i < [(St+k.'2S1:'k,+k2l,. (S~k,-k2St,-k2)ol >. (9a) 

a2TeYed . t 1 "'(k 
XS~L~J.: = -6-~ te1W VW L.J kl)~'~<J.I1· 

o k, 

X i < [S~ (t). (S~'-k'2S1:'k'-kI2)OI>. (9b) 

In writing these expressions, we have confined ourselves 
to the lowest terms of the expansion in powers of ka and 
have put V'k,Vk, "" -k,Tca2y, where y - 1. In the follow
ing, we shall be interested in the correction terms of 
order (kRC)2 and (kRC)3; we shall consistently neglect the 
(ka)2 and (ka)3 corrections, since Rc » a. The functions 
(9a) and (9b) are the analytic continuations on to the real 
axis of the corresponding Matsubara functions, for which 
we can use a diagram technique U3 ,14]. The appropriate 
diagrams are depicted in Fig. 1, where the solid lines 
are the renormalized interaction V(k, w), the empty 
circles are the bare vertices, and the shaded circles are 
the exact vertices. The properties of these vertices are 
discussed below. 

Near Tc , the effective interaction V(k, w) can be re
placed by V~G(k, w), since in this region 

(10) 

where A - 1 and T « 1, and therefore G(k, 0) » T~' 0: V~l. 
In the following, we shall include the factors Vo in the 
vertices and associate G(k, w) with the solid lines. 
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X LL =)QJZX + x::::t3ZX + .•. 

FIG.l 

The diagrams of Fig. 1b for XSL start from an ex
ternal solid line, and therefore XSL(k, w) = G(k, w)R(k, 
w), where R is the set of all diagrams that cannot be 
separated into two parts by cutting one line. Further, 
among the diagrams for XLL are some which contain one 
solid line in an intermediate state; we shall call them 
single-particle diagrams. Clearly, the set of all diagrams 
standing to the right of a Single-particle state is equal 
to R(k, w), while those to the left, correspondingly, are 
equal to XLSG-1• We have already noted that XLS = - XSL' 
and XSL(k, 0) = O. Therefore, taking (7) into account, we 
obtain for D(k, w) the equation 

D(k w)k'~{C-'(k O)K(k w)+ R'(k,w)D(k,w)k' } 
, '.' iw[-iw+D(k,w)k'] 

{ R(k,w)D(k,w)k' }-' 
x l- iOl [-iw+D(k,w)k'] ' (11) 

where K(k, w) = (iwt1[N(k, w) - N(k, 0) 1 and N is the set 
of all diagrams for XLL without poles. This equation is 
valid both for k ~ K and for k « K. In the limit k - 0, 
the terms with R in (11) vanish, since R a:: k2• For k to, 
R needs to be taken into account only if this quantity has 
an order of magnitude corresponding to the scaling law: 

(k)' (k' w) R(k,w)~iOl - r -'-D ' , 
x x oX 

where the factor iw allows for the facts that R(k, 0) = 0 
and that the dispersive part of R is imaginary. We cannot 
ascertain accurately the order of magnitude of R. A 
calculation of R in the self-consistent field approx
imation U3 ,141 for non -zero discrete imaginary fre
quencies gives the estimate 

R - ( :, ) ka ~ ( ~,)' , 

where Ko is the quantity K in this theory. We therefore 
believe that R ~ (k/K)2 Ka in the critical region also, and 
we shall neglect this quantity in the following treatment. 
Thus, we assume that 

D(k,w) ~k-'C-'(k,O)K(k,w). (12) 

3. CORRECTIONS TO THE DIFFUSION 
COEFFICIENT 

Thus, we must investigate the non-single-particle 
diagrams of Fig. 1a and, in accordance with the program 
outlined in the Introduction, determine the behavior of 
D(k, w) in the region of small k and w, i.e., when k « K 

and w « DoK2. As we shall see, in this region the main 
role is played by two-particle intermediate states, and 
we shall begin with these. From the diagrams without 
poles in Fig. la, we choose any diagram containing at 
least one two-particle intermediate state. The corre
sponding contribution to XLL can be written in the form 

1\ (') (k' ) (T )'( k)' T'v, :l; S d 1 1\ A(l) (10 . . .) XLL ,lW n = a c"'( a 2(2.n)J WIWZ qT Wi+WZ,W ,q, too, HUt! l(Oz 

xC (q+ ~ ,iW,) C( -q+ ~ ,iw,)A("(k,q,iw"iw"iW), (13) 
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where the factor 1/2 takes into account the indistin
guishability of the particles in the intermediate state, 
and A(l) and A(2) are the parts standing to the right and 
to the left of the selected state in the vector vertices 
describing the creation and annihilation of two particles. 
It should be emphasized that A (1,2) can themselves have 
two-particle intermediate states. We have included all 
factors of order unity, apart from those written out ex
plicitly, in the definition of the vertices. 

From the point of view of the energy dependence, the 
vertices A(l) and A(2) are three-point functions, and, as 
such, are analytic functions of all three frequencies w, 
Wi and w2 ' in each of which they have a cut along the real 
axis; they have no other singularities in the physical 
region of the variables Wi jl- and w. These properties of 
the three-point functions, and also of vertices with a 
larger number of points, are discussed in a paper by the 
author U9J . Using these properties, it is not difficult to 
perform the summation over Wi and W2 and the analytic 
continuation in w. As a result, we obtain 

Ilx~2 (k, w + ill)~(ai'1)'(ka)'-v-, -S dq"!"J dx, dx, 
2(2n)' n'· 

x 8h (~2; X') [sh ( ;; ) sh ( ;~) (x, + x, _ w _ ill) ] -, 

x "',."'" [ c(-~ +q,x,)c( ~ -q,X,)A(!)(k,q,W,X"X,)A(')(k,q,x"X',w)]. 

(14) 

Here ~x denotes the discontinuity at the cut: 

"'x!(x) = [f(x + ill) - !(x - ill) 1/2i, 

and, in particular, ~xG(k, x) = 1m G(k, x). The combi
nation of hyperbolic sines is the statistic.u, weight of the 
intermediate state, written symmetrically (there is a 
formula of the type (14) in the Appendix of the paper U9J ). 
Near Tc , all the interesting dynamic phenomena develop 
in the region of energies that are small compared with 
the temperature, and in the following we shall therefore 
replace the hyperbolic sines by their arguments. We can 
separate out from the vertices A (1,2) a static part 
A(1,2)(k, q) = A(1,2)(k, q, 0, 0, 0) and a dynamic correction 
which vanishes at zero energy. First we shall consider 
the contribution to 6X(2) due to the static vertices. 
Choosing the two-parhihe partitions in all possible ways, 
separating out the static vertices each time, and com
bining all the expressions thus obtained, we arrive at a 
formula differing from (14) by the replacement of A (1) 
and A (2) by the exact static vertices. As a result, the 
corresponding contribution to K is found to be equal to 

6K,(k,w+ill)=(aT,1)'(ka)' T,v, .SdqA,(kq)A,(q,k) 
(2n)'! , 

1 S dx, dx, ( k ) ( k ) x , (+ 'Il) ImC -2 +q,x, ImC -2 -q,x, . (15) 
3t XtXz X t Xz - OJ - l 

Clearly, the quantities A2 can be represented in the 
form of the aggregate of the diagrams of the static 
theory C9 ,10J , the sum of which should give the vector 
vertex of static scaling theory. On the other hand, the 
static Green functions G(k, 0) "do not know" the direc
tion of the momentum; in other words, the lines corre
sponding to them in the diagrams do not possess direc
tion. Therefore, the aggregate of diagrams for A2(k, q) 

. describes both the creation of two particles, with mo
menta k/2 + q and k/2 - q, and the scattering of a par
ticle with momentum k/2 + q by a static vector field with 
transfer of momentum k to this field. But for such a 
scattering process, in the limit k - 0 the Ward identity 
holds2): 
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8G-' / 8q ~ a'T,cA,(O, q). (16) 

Here we have separated out the dimensional factor a2T 
•• • • -1 c, 

smce m our normallzation G has the dimensions of 
energy, and A2 of momentum; the constant c ~ 1 is also 
connected with the normalization and its value is unim
portant for what follows. 

First we shall estimate the contribution of the part 
K under consideration to the static diffusion coefficient. 
Substituting (16) into (15), and taking into account (12) 
and (1) and the fact that ImG(q, w) is an odd function of 
the energy, we obtain 

fJD" ~ CT, (:~)3 J dq (aG-~~q, 0) )' G'(q, 0) 

x ! J ~ [1mF (~ , D~x' ) r Go-'(O,O), (17) 

where C ~ 1. In this expression, the integrals over x 
and q converge well. In fact, for small x, ImF ~ x, and 
for large x, ImF falls off, since Jdxx-l ImF = 7T. There
fore, the integral over x converges. Furthermore, for 
q » K the function ImF does not depend on the temper
ature, i.e., on K and Do: for such q we are effectively at 
the Curie point itself. This means thl!t for large q the 
integral over x is proportional to q-5\1-1))/2. This de
crease of this integral with increasing q ensures the 
good convergence of the integral over q, since for large 

q we shall have G(q, 0) ~ q~(2-1)). As a result, for oD02 
we obtain the estimate 

T' 
6D - -' (xa) ,-" a' 

02 Do ' (18) 

which agrees with the expression (3a) for the diffusion 
coefficient in the dynamic scaling theory. It is interesting 
to note that, if it were possible to neglect all contribu
tions to K apart from (15) and calculate the latter by 
means of (16) and (3), in the limit k, w = 0 we would 
obtain an expression for the diffusion coefficient Do sat
isfying the scaling hypothesis (3a). 

We now study the expression (15) for finite but small 
k and w. As is well known [9 ,10] , as functions of the 
momenta Pi all the quantities of the static theory have 
. l' t' t th . t 2 2 2 smgu arl Ies a e pom s Pi = -n K ,where n are in-

tegers, with n 2: 1, and therefore, for I pi I «K2 , they 
can be expanded in a series in powers of Pi/K2. This 
means that, for w = 0, 

( k' 
6D(k,0)~6Do l+a", + ... ), (19) 

where a ~ 1 is a coefficient which cannot be calculated 
at the present time. 

We proceed to analyze the energy dependence of o~. 
I~ order to understand the essence of the problem, we 
fIrst substitute expression (3) into (15). Then the inte
grals over Xl and ~ are easily taken and we obtain 

6K,(k,w)~(aT,"()'(ka)' T,vo . 
(2n) 3 

X f d A,(k,q)A,(q,k)G(q+kl2,O)G(-q+kl2,O) 
q 2Doq' + Dok'/2 - iw (20) 

It is clear from the form of the denominator that OK2 has 
a singular point w = -iDok2/2 in the w plane; a cut runs 
downwards from this point to -ioo along the imaginary 
axis (cf. Fig. 2). Furthermore, according to (16) and (1), 
for small q we shall have A2(0, q) ex c1)q. To conserve 
the static -scaling properties, it is necessary that 

A,(k, q) ~ (xa) -"(C,q + C,k). (21) 
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iDorz 
--2-

- iDoliz 

FIG. 2 

for small k and q. This form of A2 leads to the following 
expression for OK2 in the region of small k and w: 

6K,(k, w) ~ 6K,,{1 + a' k: +' ~~+ A [-c,,(!!.-.)' 
x Dox x 

x [~_~]'" +...!..C'(~-~) 'I']} -
2x' Dox' 2' 2x' Dox' . (22) 

Here a', {3 and A are constants of order unity, and A> O. 
In this expression there are terms of two types. First 
of all there are the regular terms proportional to k2 and 
w. Their appearance is associated with the integration in 
(20) over the region of large momenta q ~ K, and there
fore the coefficients a' and (3 should change if, instead of 
(3), we substitute the exact formula (1) into (15). Next 
there are singular terms which are of order k3 for 
k2 ~ w. Their appearance is associated with the inte
gration over the region of small momenta, and OKa2A is 
expressed in terms of the static diffusion coefficient Do, 
the static susceptibility G(O, 0) and K: 

(23) 

We now show that formulas (22) and (23) determine 
the behavior of the function K(k, w) at small k and w. 
We first analyze the. role of the many-particle intermed
iate states, beginning with states containing an even num
ber of intermediate particles. Proceeding as above, it is 
not difficult to write for the n-particle intemediate state 
a formula containing the right and left exact static vector 
vertices: 

(ka)' f oK" = --i - dq, ... dq"A" (k!j,) A" (!J;k) 0 (q, + q, + ... +!In - k) 

1 f dx, ... dx" 1m G(q,x,) ... 1m G (q"x,,) 
x-

n" x, .... ,-,(:r,+x,+ ... +x,,-w-i6)· (24) 

The vertices An are symmetric functions of the mo
menta of the intermediate particles. The character of 
their dependence on qi and k can be determined by start
ing from the same considerations as for A2. For k = 0, 
generalized Ward identities analogous to (16) hold for 
An; by virtue of these, An can be expressed in terms of 
a sum of derivatives of the ordinary n-particle vertices 
r n of static scaling theory. A "dimensional" estimate 
exists for the latter [9 ,10] : r n ex q?-n(l + 1))/2 and there-

. 1 
fore the vertex An behaves at small qi and k like a pro-

d f 1-n( 1 + 1))/2. . uct 0 K WIth a llnear combination of the 
momenta qi and k, and for large qi falls off like 
2-n(1 + 1))/2 . qm ' where qm IS the largest of the momenta 

qi' This behavior of the vertices ensures the convergence 
of the expression (24). As a result, for w, k - 0, the 
estimate obtained for the contribution to Do corresponds 
to the scaling law (3a). Furthermore, an expansion in 
powers of k2/K2 and iw;boK2 arises from the region of 
large qi in (24), while the region of small qi leads to the 
appearance of an irregular term having the form 

( k' iW) ( k' iW) 
P3n/2-z. 2'--' -, --- , 

x: Doy. nx- Dox2 (25) 
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in which the factor in front of the square root is a poly
nomial of order 3n/2 - 2, the coefficients of which are 
completely determined by the behavior of the vertices 
An in the region of small momenta and by the quantities 
G(O, 0), in complete agreement with (22) and (23). Fur
thermore, in (25) the singularity in w is situated at the 
point Wn = -iDok2/n, from which a cut runs to -ioo • This 
position of the singularity is analogous to the well-known 
formula for the so-called Reggeon branch points in the 
theory of complex angular momenta[6,7], and is estab
lished in the same way. Thus, the greater is n, the 
nearer to the real axis is the singularity. In other words, 
the singularities cover the pole of (3) which generated 
them and bunch up toward the coordinate origin. 

In the region of k and w under consideration, all these 
singularities are small c orrec tions, and therefore the 
phenomena associated with them (the drift of the pole 
toward the new cut, and so on[6,7]) are of no special 
interest. However, in the region w ~ DoK2 and k ~ K, the 
picture becomes very complicated and scarcely amenable 
to detailed analysis at the present time (cf. [6,7]). 

It is necessary now to discuss the consequences of 
taking into account the energy dependence of the vertices. 
First of all, we note that the total contribution of the two
particle states can be written in unitary form U2 ,19]: 

, 6K (k ) (T )' (k " T,u, SiS '" 'Ol , , Ol = a ,1 a)" (2n) " dq n' dx, dx,A,+ (k, q, X" X" Ol) x,x, 

1m G(k/2 + q, x,) 1m G(k/2 - q, x,) 
X 'x,+x,-Ol-i6 A,(k,q,x'"X,,",), (26) 

where A2 is the exact vector vertex and A; differs from 
A2 in the signs of the imaginary parts of the energies. 
The discontinuity of this expression in w reduces to the 
replacement of the denominator by a a-function and has 
the form of the usual unitarity condition with a temper
ature statistical weight of the intermediate state [l9] • 

The expression (22) follows from (26) when two condi
tions are fulfilled: first, the vertex A2 should depend on 
x, 2/DoK2 and W/DoK2 or, in other words, should have a 
form corresponding to the dynamic scaling law, and, 
secondly, the integration in (26) should be performed 
over the "scaling" region, Le., the main contribution to 
the integral should be given by q :s K and X, ,2 ;s DoK2. 

The first of these conditions is natural; it is neces
sary for the consistency of the entire concept of dynamic 
scaling U2]. Earlier, in the calculation of aK with static 
vertices, we saw that the second condition holds. Clearly, 
for its fulfilment it is now sufficient that the vertex A2 
not be an increaSing function of Xi in the region 
x' ,2 ~ DoK2. The following consideration convinces one 
that this is indeed the case: if the integration region 
x' ,2 » DoK2 were important in (26), then it would be 
possible to have a dynamic scaling theory with the crit
ical index z expressed in terms of the static index 'I). In 
the case of intermediate states with n > 2, no such simple 
unitary expression for aKn with An and An exists (this 
question is analyzed in detail in [:lo ). However, all that 
has been said about two-particle states can be carried 
over to n > 2, if we make use of a somewhat different 
form of the unitarity condition [12] , in which the vertex 
standing to the left is not exact. We shall not consider 
this question in more detail. 

We turn now to the question of the states with odd n. 
In the static theory, there are no odd vertices [21] 3). 

There should therefore be an energy selection rule, by 
virtue of which the odd vertices vanish in the limit of 
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zero energies. We shall assume that the odd vertices 
consist of a series of terms, each of which is a product 
of Wi/DoK2 with a function of the energies Wi that is finite 
at zero. Using the example of the three-point function, it 
is not difficult to show that such a selection rule is com
patible with the ~eneral analytic structure of the vertex 
as analyzed in u9 , whereas even powers of Wi are not 
permissible. As a result, we obtain the following ex
pression for the irregular contribution to K from the 
odd states: 

( k' jOl) (k' jOl) 
P(3n+tl/' -:-;, 15' In ---y -D-----;- . 

x cY. rn.. uK (27) 

where the factor in front of the logarithm is a polynomial 
of order (3n + 1)/2. With regard to the regular contri
bution, we can repeat word-for-word what was said above 
about the even states. 

The formulas (25) and (27) permit a simple inter
pretation. The pole of (3) lies on the imaginary axis. 
If we replace iw by w, the "diffusons" become ordinary 
quasi-particles. After this, the singular terms can be 
calculated simply with the aid of the unitarity conditions 
describing the decay of one particle into n particles. 
Then the residue Dq2 of the Green function and the factor 
l/x arising from the temperature statistical weight can
cel, so that these conditions have the form corresponding 
to zero temperature~O]. As a result, the power de
pendence in (25) and (27) is determined by the phase
space volume and by the structure of the vertices, and 
the logarithm in (27) is determined by the requirement 
of analyticity. 

We now give the final expression for the dynamic 
diffusion coefficient for small k and w: 

{ k' iOl 
D(k,Ol)=D, l+a--+~--

x- D,x' (28) 

We also give a formula for the quantity determining the 
neutron-scattering cross section: 

ImG(k,Ol) G(k,O)Do{1+ak'/x') 
---~ "" ----,---

Ol' (1 - 2pk'Ix') + D,'k" (1 +2ak'/x') (29) 

Here, we have neglected for simplicity the small 
corrections arising from the irregular term in (28). We 
emphasize again that lying at the basis of formular (28) 
and (29) are the static and dynamiC scaling laws and the 
assumption that all Singularities at small k and ware 
due to the existence of the diffusion pole in (3). There
fore, these formulas depend only weakly on the specific 
properties of a Heisenberg ferromagnet and will be valid 
for any system in which the nearest singularity to the 
point w = 0 is a diffusion pole, if for Do we substitute the 
appropriate expression for the diffusion coefficient. 
Therefore, in particular, (28) and (29) should be valid for 
the diffusion of density in a liquid-gas system near the 
critical point and in liquid helium above the A-point, if 
we neglect the influence of more distant sound poles; the 
latter, incidentally, require a more detailed analysis. 

It remains to consider one further question-the 
influence of the calculated corrections on the time cor
relation of the fluctuations. Defining the latter in the 
usual way: G(k, t) = (SZ(t)SZk(O), we obtain for Dok2 > 1: 

k -
"( ) T S dOl G k,t =- -e-iw'lmG(k,(,,) 

n "' 

{( k') k" ""TG(k,O) 1+~-;; exp(-D,k') [1+(a+[l) ::]t 
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2'AG,' D k't ) } + exp (--02- + .... 
(Do'x,'t) '/0 

(30) 

In this expression the first term takes account of the 
renormalization, due to the regular terms in (28), of the 
diffusion pole, and the second describes the contribution 
of the two-diffusion branch. Allowance for the subse
quent branches leads to the appearance of terms pro
portional to exp{ -Dok2 tjn}. This means that for large t 
the asymptotic form of G is determined by the branches 
with n ~ Dok2 t. The branches, however, have almost no 
effect on the diffusion law (r2) = 6Dot. Indeed, it follows 
from (30) that 

{ ~+~ 'AG' 
<r'> ~ S dr r'C(r, t) / S dr C(r, t) ~ 6 Dot -7 + x'(D:'t)'" +".J, 

d 
~, = G-' (k, O)dk"G(k,O) I,·~o '" -1. (31) 

Thus, the principal correction to the diffusion law 
arises from the regular terms; the correction from the 
first branch is small, and that from the subsequent 
branches is still smaller. An important consequence of 
this formula is the fact that extrapolation of the quantity 
(r2) to the point t = 0 gives information on the regular 
corrections to the diffusion. This result, obviously, is 
valid for any system. It would be very interesting to dis
cover such corrections experimentally. 

APPENDIX 

Using the method of the paper by Schwabl and 
Michel (16] , we now give a general derivation of the 
formulas for the dynamic susceptibilities. First of all, 
we discuss the quantities for which these formulas hold. 
These are always operators which are either conserved 
or almost conserved in the limit k - O. In our case, the 
operator is Si, since Li ~ k; when the magnetic dipole 

forces are taken into account, Si is almost conserved. 
There are other operators with the same momentum k 
that are not conserved, e.g., Sq + kS~q' Their time de-

rivative at k =0 is non-zero. The method of the paper(16] 
makes it possible to write general formulas for the dy
namic susceptibilities of conserved or almost conserved 
quantities. Schwabl and Michel were interested only in 
the limit k - 0, w - 0, and made an assumption equiv
alent to that of linearity of the generalized forces. We 
now obtain formulas free from these restrictions. Any 
system is characterized by a complete set of operators, 
so that any operator can be expanded as a series in this 
set. For the derivation we use the Mori expansion (11 ,8] , 

but the final answer is practically independent of the 
choice of expansion. Following Mori, we define a scalar 
product of operators: 

'IT 

(Ll" Bk +) = S dT(;1, (T) Bk + (0) >= XAH (k, w = 0) = XABk, (A.l) 

By means of this expression it is easy to construct a 
complete set of orthogonal operators Akj, such that 
(Ak') = O. The Mori expansion for Aki has the form 
(thJ dot denotes time-differentiation): 

Aki = - i ~ c,/'A kj , 

J 

(A.2) 

We note that the operators Akj and the coefficients c~ 
depend on the temperature. Integrating the equality IJ 

iqA,,,(t), A,,+(O)]> ~ Cnk<[A •. (t) , Ak/(O)]> 
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over time from t > 0 to infinity and going over to Fourier 
components, we obtain 

(A.3) 

where <PZj is the Kubo function. 

We now denote the set of indices referring to con
served quantities by the labell, and those referring to 
non-conserved quantities by 2. After this, (A.3) can be 
rewritten in the form 

(w - CII) Ill" - c"lll" ~ 0, 

From (A.4a) and (A.4c) , we obtain 
1 

(0) - CIt)<D u - C12--CZt$tt = ixu 
W -C22 

and from (A.4d) it follows that 

(A.4a) 

(A.4b) 

(A.4c) 

(A.4d) 

(A.5) 

(A.6) 

Substituting (A.6) into (A.5), we arrive at the expression 

[w - Cllk + irll(kw) ] Ill" (k, w) = iXII(k), 

r,,(k, w)~c"klll22(k, w)x,,-'(k)[l-ic21'Ill,,(k, w)x"-'(k)]-'C,,k. (A.7) 

Up to this point, infinite matrices appear in r ll • But the 
expansion (A.2) for AkI can be written thus: 

(A.8) 

where dk is the analog of the divergence of the flux for 
the conserved quantities. Using this definition and the 
symmetry property (A.2) of the Cij' we arrive after 
simple transformations at the formula 

1 1 
I'll (k, 'u) = <Ddkd_ k (k, w) X (k) 1- <lJ (k w)x 1 (k)' (A.9) 

11 Ak1d_k J 11 

It should be remembered that, generally speaking, the 
quantities occurring in this expression are matrices, and 
the order of the factors is therefore important. Using 
the formula (7) relating the Kubo function and the sus
ceptibility, we finally obtain 

X,,(k, w) ~[w-cllk+irll(k, W)]-'[-Cll k + irll(k, w)]x,,(k).(A.I0) 

In the paper (16] , the last factor in (A.9) was replaced by 
unity. 

We note that the expansion method used affected only 
the choice of the matrix c~. But this matrix is easily 
determined, starting from physical considerations, and 
its choice is practically fixed by the choice of conserved 
operators in the Mori expansion. In the case treated in 
the main text, ck = O. From (A.9) follows the condition 

11 f d . for the exis tence of hydrodynamic or so t mo es, VIZ., 

the smallness of r 11 (k, w) in the limitk, w -0. 

!lit can be shown that neglect of these forces is legitimate in the region 
in which 41TX ~ I, i.e., not too close to the Curie temperature. 

2)It is necessary for the existence of this identity that the contribution 
from closed loops containing a vector vertex be equal to zero, and this 
is indeed the case, since such loops change sign on change of sign of the 
momentum of integration. 

3)This is connected with the fact that the spin operator changes sign under 
time reversal. 
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