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The first viscosity coefficient and also the dispersion and absorption coefficients for first and second 
sounds in helium II at temperatures < 1.7°K, when the phonon-roton quasiparticle gas can be 
regarded as perfect, are calculated. The phonon part of the momentum dependence of energy of 
elementary excitations is assumed to be in the form E= cp (1 +"(p2 _lip'),[B) where € is the energy, 
p the phonon momentum, y=2.6X 1037, 8=2.5 X 1075 CGSE. The existence in the roton part of the 
curve of a roton sound momentum P, =Po+/Lc, where Po= 1.9 cm- I, /L=0.16m He' is the roton 
mass. The kinetic equation for quasiparticles is obtained by a method first developed by Landau and 
Khalatnikov[1) and developed further by Khalatnikov and Chernikova. [2) A comparison of the 
theory with the experiments is carried out. 

INTRODUCTION 

The viscosity and the dispersion of sound in liquid 
He4 below the A Roint was first calculated by Landau 
and Khalatnikov 1l and by Khalatnikov and Chernikova[2l. 
It was assumed in these papers that the phonon section 
of the energy spectrum is given by 

e = cp(1-1'P'), 

where ')I' was estimated by Landau and Khalatnikov 
at 2.Bx 1037 cgs esu (p is the phonon momentum). The 
energy and momentum conservation laws allow for 

( 1) 

such a spectrum only collinear three-phonon processes, 
which add nothing to the kinetic phenomena. As a re­
sult, only four- and five-phonon processes had been 
considered. It turned out that the cross section for 
small-angle elastic scattering of a phonon by a phonon 
is anomalously large. This process therefore ensures 
rapid establishment of energy equilibrium for phonons 
moving in a specified direction. 

It was shown that at temperatures <1.2'K the five­
phonon process ensures establishment of equilibrium 
with respect to the number of phonons in a given direc­
tion, and the distribution function for such phonons is 

n(e) = [e'M -1]-'. 

At temperatures >1.2"K, the five-phonon process time 
becomes comparable with the phonon-roton scattering 
time, and the distribution function takes the form 

n(e) = [e"Hl/hT -1]-'. 

(2) 

(3) 

The chemical potential a and the temperature T in (2) 
and (3) are functions of the direction: a = a(cos e), 
T = T(cos e). 

Equilibrium in a roton gas is ensured by large­
angle roton-roton scattering, and therefore rotons are 
described by Boltzmann functions 

N(t%')=exp [ - t%'-p~;:-V') r ; (4) 

here rf is the roton energy, P is the roton momentum, 
and vn and Vs are the velocities of the normal and 
superfluid components. 

Landau and Khalatnikov obtained next[1l from the 
kinetic equation the nonequilibrium distribution, and 
then the viscosity coefficient, while Khalatnikov and 
Chernikova[2l added to the kinetic equation the equations 
for the conservation of the mass and of the superfluid 
motion, and obtained the dispersion and the absorption 
coefficient of sound from the condition of compatibility 
of these equations. 
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Recent papers[3-6l point to the possible existence of 
positive dispersion in the phonon part of the dispersion 
curve. Nonparallel three-phonon processes are then 
possible. We shall show below that the fastest process 
which establishes equilibrium both with respect to en­
ergy and with respect to the number of phonons. The 
fact that the roton has acoustic momentum will be taken 
into account in the roton part of the dispersion curve[7l. 

According to JackIe and Kehr[3l there exists a limit­
ing momentum Pc such that 

oe I _ ;::e:c. 
8p P';;;P c 

Taking the phonon part of the spectrum in the form[8l 

e = cp(1 + 1P' -Ilp'), 

we obtain Pc [3l: 

p, = (31/ 51l)'I' '" 0.2 A-', T, = 3.86° K. 

( 5) 

(6a) 

An important role is played in kinetic phenomena by 
thermal phonons of energy 

pc =xkT, (6b) 

where x is an integer. Therefore, starting with a certain 
temperature, the thermal-phonon momentum will exceed 
the limiting momentum Pc at a fixed x. Since the dis­
persion is normal at p >Pc, the equilibrium with respect 
to energy is established in this section by small-angle 
elastic scattering of the phonons by phonons. Calculation 
shows that we can use in the estimates the relaxation 
time calculated for this process by Khalatnikov[9l: 

_1_ = 4,15(u + 1)2 (l:!) 1 (1+ 147~), x:'l> 1; 
t ph 192n'1' cp' nc x 

u=~~=284 (7) c up ., 

since the replacement of the spectrum (1) by (6) intro­
duces in (7) an inessential factor on the order of unity. 

We note in conclusion that it follows from momentum 
and energy conservation that a three-phonon process in 
which one of the phonons has normal dispersion is im­
possible. Therefore the phonon momenta in the three­
phonon processes should satisfy the inequality p~ Pc 
or, taking (6a) and (6b) into account, 

xT..;; 3.8. (8) 

The values of x that enter in (8) will be shown later on. 

INTERACTION OF EXCITATIONS 

1. Absorption and Em ission of Phonons by Phonons 
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The interaction Hamiltonian for this process[l) takes 
the form 

1 , 1 0 (C') 'J + ' v,=-vp v+-- - p, po=p p. 
2 3! op p 

(9) 

The matrix elements for the Fourier components of the 
density Pp are 

(10) 

Cp, cp 
v'=r;pP., w=T' 

Calculating the absorption and decay cross sections, we 
obtain 

rdp,lIp,llp, ± p,1 (u + 1)' 
da(p"p,)= Ii 6(E(lp,I)±E(lp,I)-e(lp,±p,I», 

p (11) 

where the plus sign corresponds to absorption and the 
minus sign to decay. We consider the case I P11 » I Pli , 
and then the two cross sections are equal. 

The relaxation time for the parallel three-phonon 
process will be calculated apprOXimately, assuming 
only the distribution functions for the phonons with the 
largest momenta to be perturbed[ll. Then 

1 1 C S [( cpo ) ] -I 7.::- "" 7.:' "" (2nli)J da(p"p,) exp kT -1 dp, 

(u+1)'~(2) r,(~)5 (12) 
2n1i'p c 

~(2) = 1.63. 

In the integral (12), the main contribution is made by 
phonons with momenta P2 = 2kT / c, and the condition 
I P11 » I lhl is satisfied, since we shall assume below 
that only phonons with momenta Pl = 6kT / c are per­
turbed. The extension of the integration in (13) to in­
finity means neglect of terms -exp(-Tc/T)- e- 6 « 1 at 
a temperature T < 0.6"K. 

It is easy to verify that the "induced" three-phonon 
process is forbidden for thermal phonons, since the 
energy deficit is larger than the line width. Indeed, 

t>E,= le(lp,i)+e(ll',l) -dlp,+P21)1 ""cp,2,p.'. 

The line width is equal to 

r = iii 2"~'(P2)' 

Substituting Pl=6kT/c and P;r=2kT/c, we obtain 

t>E, > iii 2't(p.). 

Landau and Khalatnikov[ll have shown that the four­
phonon collision integral converges without allowance 
for dispersion, and therefore the reversal of the sign 
of y' in (1) reduces to the appearance of a three-phonon 
collision integral, the exact form of which we can write 
out, because the relaxation times for this process are 

1 1., 1 
---3yp"<t:-
l' 't1-+~ 1"1_2 

and equilibrium has been established. 

2. Absorption and Emission of Phonons by Rotons 

Just as in [11, the phonon-roton interaction energy is 
equal to 
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1 (dt> Po uPo Po' OIL) , :J6 h =-(Pv+vP)+ -+----- p 
p r 2 op IL iip 21L' op 

1 [ , , (1 {)Po Po aIL) 1 OIL (P' '+ 'P") (13) - -- (Pfl +p P) -----;-- +-- -p P -. 
2 IL ilp W up 21L' op 

The matrix element is 

1 , {p, (IP" P,' aIL) 
(:J6phr)PPiPjP = -2 (2P +p)v" + ,'--"--~-)- Pi' 

l_l up ~ft- (P 

1 [ , , (1', iJlL 1 ilit)-,- '1 ilft , ) ,1 --- (lpl+!P-rpl) - --,-+--;-- '-, -(p-+li +pl-) ,Po, 
2 il' iip il iJp 2ft' rJp 2 

(14) 
Estimates show that the term with (Jt:./ap in (14) can 

be neglected. The cross section for the absorption of a 
phonon by a roton is expressed, accurate to terms p/p, 
in the form 

2n 2 ( 2P(P-Po)COSOI-P'cuS2 6) 
do (p, P) = 7""" (:J6phr) p,P;p+po pc - 2 . 

~c ft 
(15) 

CALCULATION OF THE VISCOSITY COEFFICIENT 

As already noted, all the changes introduced by the 
considered spectrum consist in the appearance of addi­
tional collision integrals in the right-hand side of the 
kinetic equation. We now write out these integrals. 

The three-phonon collision integrals 

1,(n,)= -- '(2-;,cll ) , {Sda(p,. ,0,) [n,n,(I!. + 1)- n.(n, + 1) (n, + 1) ldr, 

.,. J (!a(p,. p,) r n, (n, + I) (n. + 1) - n,>' , (n, -!- I, l""'_}' 

where ni = [exp( €i/kT) - 1 r 1 , can be reduced to the form 

1, (n,) = _ 108~P2 (cos 6) (u + 1) 2~ (4)yP,Jn, (~)' . (16) 
nli'p c 

We have used here the approximation[ll 1>T/T = {3P2(COS 8), 
where P2(cos 8) is a Legendre polynomial. 

In exactly the same way, we write out the collision 
integral for the absorption and emission of a phonon by 
a roton, recognizing that in the presence of a velocity 
gradient the deviation of the roton distribution function 
from equilibrium will be much less than the deviation 
of the phonon function, so that the roton distribution 
functions can be assumed to be at equilibriumC1J : 

ce-'IT S~ [ (P P) 2 ] 

1phr(n)= -fin(p) (2nh)' exp - ;ftTo da(p,P)dP, 

e. (17) 
fin(p) = -no (no + 1) (0; - pcp I kT). 

Here Pc = Po + JJ.c is the acoustic momentum of the 
roton. The lower limit of integration in (17) is the 
acoustic momentum Pc, but rotons with momenta Po 
:5 P:5 Pc can also emit and absorb phonons with mo­
menta PPh?: PPh, where PPh is the minimal momentum 
at which this process is possible. For rotons with mo­
menta P '" Po, the phonon momentum is PPh'" 2JJ.c, and 
these processes can be neglected because of the addi­
tional factor -exp(-2 JJ.c2/T)-exp(-S.S/T). 

Writing down the kinetic equation for the phonons in a 
spherical coordinate system with polar axis directed 
along the macroscopic velocity vector u 

cp du 
n,(n, + 1)--cos 6sin e cos rp =Iph(n)+ [,(n) 

kT dx 
(1S) 

and integrating (IS) over all the energies of the phonons 
moving in a given direction, we obtain an equation for 
the determination of the unknown quantity {3: 
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4,," ~=_ ~ (~+_1_) 
15 Ox 'tph <~2 ' (19) 

where I/Tph and I/T1-2 are respectively the rates of 
large-angle phonon-phonon scattering and the absorption 
of a phonon by a phonon: 

3·13!(u+l)' (kT)' 
Ilr = . -

ph 5. 2" (2,,) "h7p'e e ' 

I , _ 108· G!6(4n(6) (u+ 1)'1 (kT)7 
1 Tl_Z- hJ. - . 

" p e 

In the integration of (18) over all the energies, the 
principal role was played by phonons with momenta PI 
= 6kT/ c, and therefore the inequality (8) is satisfied in 
the region T <0.6"K. Obtaining {3 and then /in from (19), 
we get the viscosity coefficient by comparing the two 
expressions for the momentum z-component trans­
ferred in the x direction: 

ax< = 'lph- !.~ = - (2"h) -, S peon cos 8 sin 0 cos 'l'P' dp dO. 

This yields the viscosity coefficient at T < 0.6"K: 

16,,' (kT) '. ( 1 1) -1 1.03 . 10-' 
'1ph= 75c"h' ~+T = T'(1+247T')' 

ph 1 .... 2 • 

(20) 

At temperatures T >0.6"K it is necessary to take 
the phonon-roton interactions into account. Proceeding 
as before, we obtain 

~~=_~(~+_1_+_5_) 
ax 15 'tph 'tphr 'tph'r ' 

_1 = 2· 7!Np [p,(kTle)2 ]2[~+~(~)' + 14A (.!..:.) + A'] , 
'tphr "e h'p 1;) 3.52 Ile 75 W 

p' [a'!!. 1 ( ap,),] 
A = P,c v+-; ap ; (21) 

here 1/ T ph r is the rate of elastic scattering of a phonon 
by a roton, and was obtained in [1] under the condition 
Pph < 21lc. 

Inasmuch as the principal role in the elastic scatter­
ing of phonons by rotons is played by phonons with mo­
menta p-(7-8) kT/c, this condition is violated at 
T ~ 1.1 "K. In this case resonant scattering is possible 
at small angles between the colliding particles (cos Ores 
= (2 IlC/p)1/2). As already noted above, however, the 
cross section of such a process contains an additional 
factor -exp(-2 Ilc 2/T) (after averaging over the phonon 
energies), and this effect can be neglected, assuming 
that the expression for l/7ph r is valid also at small 
angles. The rate of absorption of phonons by the 
rotons 1/ Tph r is equal to 

_1_ '" 8P,"kT exp( - !!.jT) (T) 
, 1" ., g, 

'phr ."""CP 

where ~c = ~o + c2/2, ~c is the roton energy at the 
acoustic point, and g(T) is a slowly varying function 
with an approximate value 2. 

When (18) was integrated over all the rotons we have 
put P - Po '" p and cos2 0", cos 0, so that the angle 0 be­
tween the phonon and the roton is 

cosO~2IlcI3(P-PQ) ""/3. 

The viscosity coefficient at 0.6"K < T < 1.2"K is 

16,,'(kT)' 1 1 5 _1 eMT 

'lph= _, 3 (-+-+-,) = 1.9 ·10-'_,_,. 'l'(T). (22) 
7;:,e h 'ph 'phr '[phr T 

A plot of rp(T) is shown in Fig. 1. 
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FIG. 3. Temperature dependence of the first-viscosity coefficient. 
The upper curve was obtained by Landau and Khalatnikov [1) and the 
lower in the present paper; the crosses mark the experimental data of 
Zinov'eva [10). 

At T > 1.2 it is necessary to take the chemical po­
tential a into account in the expressions for /in. Inte­
grating the kinetic equation over all the energies and 
over all the phonons, we obtain the following system: 

au 4,," ( a ) 1 1 --_ = --~ - +(a-5~)-, , 
Ox 1;) 8 'phr 'phr 

(23) 

We took into account the fact that in this region I/Tph 
«1/Tph r. Here 1/72-3 = akT 12/3NEh is the rate of 
the five-phonon process, a= 3.4x 10 ,and Nph 
= 21;(3)411(kT/211'nc)3. Solving the system (23), we obtain 

(24) 

The function l/J(T) has the dimension [sec-I] and its plot 
is shown in Fig. 2. 

Figure 3 shows the dependence of the viscosity coeffi­
cient on the temperature. The roton viscosity was as­
sumed equal to 1.53x 10-5 poise. The temperature de­
pendence of ~ was taken into account by the interpo­
lation formula [11] 

'" (T) = 8.70 - 0.0289 T'. 

The formation of a "shoulder" at temperatures 
0.5-0.6"K is due to the contribution from the anom­
alous phonons (inequality (8)). 
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DISPERSION AND ABSORPTION OF SOUND 

1. Temperature Region Below 0.6°K 

It is easy to show, taking the inequality PI» P2 into 
account, that the three-phonon collision integral reduces 
to the expression 

1 ( kT )' S J,(p)ep'd,n '" - ,;_, [v(cosEl)-v,-v,lkT -c- . (25) 

Formula (23) was obtained using the expression for 6n 
from [2J 

on, (OS , ) IIn=- -, -p +8V(COSO) . 
as ilp 

Expression (23) corresponds exactly to the form of the 
four-phonon collision integral, so that we must make in 
all the equations obtained in [2J the substitution 

':h~ + ~ ( ~Ph+ ,~J ::,. 
At low frequencies, WT< 1, the modified formulas 

take the form 

21'3 00', 
CG::.=-'---, 

,J C 

3 ( . )" 00', p" a j =-- u-rJ. ~--' 
'0 c p' 

Cl'I and Cl'2 are the absorption coefficients of the first 
and second sound in the hydrodynamic regime. The 
velocities of the first and second sound do not depend 
on T in this limit, and therefore remain unchanged. 

At high frequencies, WT» 1, we have 

3 p { 1 + 4,,1'1,' } u =U +- u+1 'c'-:ln 
I " 8 () 1 +["' (2 k""! r I' ' p ->Y n 1. C '00, 

(26) 

(27) 

3 Pn{ [ 5 (kT)']} ct'=4"(u+1)'p arctg(2w,)+arctg 70lT':3y 2n-c- .(28) 

Expression (28) was first proposed by Maris and 
Massey[4J, but with a different relaxation time Tph. 

2. Temperature Range from 0.6 to 1.20 K 

We express the collision integral Jphr in the form 

Iph~ = - (2nli) -3C S dOPh~(P, P)[n(p)N (P) (N(P + p) + 1) 

-(n(p)+ 1) (N(P + p) + l)N(P) IdP = (2nli)-'c 

x S dophr(p,P)n,(p)N,(P)cp[v(cosO)+T/+W,cos8)ldP. (29) 

The deviation 6N(P) was taken in the form[2J 

ON,(ofC, To' ) 6N=- -p -fC--PW,cosH , 
offj ill' T 

W, = IV n -v.I. 
Comparing the expression 

v(cos 8) + To' + W. cos 8 

in (29) with the expression in the integral for elastic 
phonon-roton scattering obtained in [2J: 

v(cos 0) -Vo + W.coso + ~(vo + T,'), 

we note that the sum of integrals in the right-hand side 
of the kinetic equation 

Slphr8p2dp / S::'e2p'dP + S.lPhr'Sp2 dP/ S~:'82p'dP' 
reduces to the form 

585 

-~[v(cos 0)- Vo + cos ow, + ~'(v, + T,'»), 
'phr 

1 ( 1 5) 15 --= -+--II ,~ , 

Tphr 'phr Tphr 4n 
5, " 3kT 

~'=~+(1-~)~, ~=-,., 
T phI ~lC 
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(30) 

Thus, allowance for the integral J ph r consists of re­
placing the time T ph r by the time Tph r and the para­
meter {3 by {3'. 

We now write down the new formulas in this temper­
ature region. At low temperatures when W Tph r « 1, 
WTph « 1, and 0.6"K < T < 0.9"K we have 

ct, = W''tph';.£.:!>h {~ ___ 1 __ + _1_ (3u + 1 + II S!.t\ • 
c p 1::; 1 + 'Ph';lTph 6p' C) (31) 

+ ~6' ( SPh)'( 1-~)'} 
:.: C pnc' , 

+_1 (1-~)}. W C (32) 

The velocities UI and U2 remain unchanged. 

At high frequencies, when WTphr» 1, WTph» 1, and 
0.6"K:5: T:5: 0.9"K we obtain 

(32') 

and the absorption coefficient is independent of Tph r 
and {3'. 

For second sound, in the case WTphr»{3'CpWCr 
and 0.6"K:5: T:5: 0.9"K we get 

1 ~'Cph/Cr 
ct"=---

- 2 11'00 Tph"; 

andO.9"K<T<1.2"K and WTphr«1 

(33) 

a, = _(~l,2:)h; ~[~+ (3u +1)'] 
c p 15 ~' , 

(34) 

while for Cl'2 the correct formula is (23) with the first 
term equal to 2/15 (since T"hr< Tph at T >0.9"K). At 
high frequencies, formulas (32) and (33) are valid. 

3. Temperature Region Above 1.2°K 

It can be shown, in exactly the same manner, that in 
this region all the equations remain the same as in [2J 
(with allowance for the replacement of Tph r by Tph r 
and of (3 by (3'), and the time T2 -3 is transformed as 
follows: 

111 1 
--~-"'--+--
l' 2 .... 3 't"'3_2 '&3 ..... 2 25Tphr" 

The sound absorption coefficients in the low-frequency 
region W T ph r «1 take the form 

" W"phrPn [ 2 1. ,] 
ct,=--- -+-(3u+1) 

c I' 1;) 6~ , 
(35) 

W'C',';hrP. Pnr { 2 1 p. pc' ( 1'8 )'..L 1 ( ,8 )'} (X,=---, --- -::-+-;---, 1--" '"7 1-3- ,(36) 
u" p p 1" 2 p. n p.C 6B C 

where 

Since the absorption of first sound is determined 
mainly by the second viscosity (the second terms in 
formulas (31), (34), and (35», while the absorption of 
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second sound is determined by the thermal conductivity 
(second terms in formulas (32) and (36», the difference 
between the first-sound absorption coefficients calcu­
lated in this paper and by Khalatnikov and Chernikova[2] 
is more noticeable than the difference between the 
second-sound absorption coefficients. 

Estimates show that the decrease of the first-sound 
absorption coefficient in comparison with the data 
of [2] amounts to -15% at T < 1.2"K. Owing to the 
inequality (8), a step analogous to that of Fig. 3 ap­
pears at T,., 0.6"K. The difference from the previ­
ously derived formulas in the T > 1.2"K region is less 
noticeable (,.,10%). In the high-frequency regime (WT 

»1), the difference between the formula is not notice­
able, since the time T enters under the logarithm sign. 
The difference between the second-sound absorption 
coefficients is most strongly pronounced in the high­
frequency region. 

In conclusion, the author is deeply grateful to 1. M. 
Khalatnikov for suggesting the problem and for useful 
discussions. 
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