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Nonlinear effects occurring upon propagation of supersonic waves in a superconductor are 
considered. A kinetic equation for quasiparticle excitations in the field of a strong sound wave is 
derived by a technique similar to the Ke1dysh technique. It is shown that for long-wave sound (the 
wavelength of which is much greater than the electron mean free path) the nonlinearity parameter is 
the ratio of the characteristic electron-wave interaction energy to the Fermi energy. In the case of 
short-wave sound, a momentum nonlinearity occurs and is similar to that known for a normal metal 
and is due to capture of part of the excitations by the sound wave field. Allowance for this 
mechanism may be imporatant, in particular, in studies of the gap anisotropy by acoustic methods. 
A specific nonlinear effect is considered which is manifest in the appearance of a phase gradient of 
the order parameter near a sample in which intense sound is propagating. The possibility of 
observing the effect is appraised. 

INTRODUCTION 

The attenuation of ultrasound in superconductors has 
been studied in a large number of researches. It has 
been shown that one can obtain a series of interesting 
data on the energy spectrum of superconductors by 
studying the sound absorption; in particular, information 
can be obtained on the anisotropy of the energy gap.[1,2] 
However, in all the researches known to us, the sound 
absorption was studied at small amplitude, Le., the 
calculations were made within the framework of small
amplitude sound theory. At the same time, the experi
mentalists at the present date are able to introduce sound 
of rather high intensity (of the order of 1 W/cm2) into a 
crystal. As is well known, [3] appreciable nonlinear ef
fects in the sound absorption can take place in normal 
metals at such intensities. One of the purposes of the 
present research was to study these effects in supercon
ductors_ In addition, we have also studied the acousto
electric effect, which varies greatly in different super
conductors. It consists of the following. A traveling 
wave interacts with the normal 'excitations of the super
conductor and transfers momentum to them, thus creat
ing a current of normal excitations in the crystal. This 
current should be compensated by a current of the con
densate of Cooper pairs, since no volume current can 
exist in a bulky superconductor. At the same time, the 
superconducting current is connected with the gradient 
of the order-parameter phase. Thus, a phase difference 
is developed in the order parameter on the boundaries of 
the superconductor along which the sound travels. This 
phase difference depends on the sound intenSity and can 
be measured, for example, by using the sample along 
which the sound travels as the arm of a superconducting 
interferometer. Thus we can determine directly the 
sound intensity introduced into the crystal. 

This effect exists independently of the relation between 
the sound wavelength 21T/q and the electron mean free 
path 1. However, the damping mechanism is itself dif
ferent for ql» 1 and for ql« 1. In particular, at ql» 1, 
even at low sound intensities, a specific high-frequency 
nonlinearity should appear, analogous. to that known for 
the normal metal.[3] The physical reason for this non
linearity is as follows. At ql» 1, only a small group of 
excitations interact with the sound wave and, conse
quently, determines the magnitude of the absorption. 
This is the group for which the projection of the velocity 
in the direction of sound propagation is close to the sound 
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velocity w. The distribution function of this small group 
can undergo a strong change under the influence of the 
sound wave, and this causes the dependence of the ab
sorption coefficient on the amplitude. At the same time, 
the distribution function of all the other excitations, 
which have other sound velocities, does not undergo 
appreciable change. 

In Sec. 1 we obtain the kinetic equation for the elec
trons in the field of a sufficiently strong sound wave with 
account taken of the motion of the superconducting con
dens ate; in Sec. 2 we calculate the nonlinear absorption 
coefficient at ql» 1, and in Sec. 3 we calculate the cur
rent of excitations and analyze the conditions for its 
measurement in a superconducting interferometer. 

1. KINETIC EQUATIONS IN A SUPERCONDUCTOR 

We begin with the derivation of the kinetic equation 
for the excitations in a superconductor. The kinetic 
equation was derived in a number of researches.[4-S] 
Nevertheless, we consider it is useful to rederive this 
equation for the following reasons. The principal reason 
is that the specifics of our problem require us to con
sider the perturbation of the distribution of quasiparti
cles of the sound wave under conditions when the conden
sate moves. Therefore, we have to introduce the kinetic 
equation with allowance for the motion of the condensate. 
Moreover, it is necessary for us to consider systemati
cally the nonlinear character of the perturbation pro
duced by the sound wave. 

To derive the equation, we use the diagram technique 
of Keldysh.[7] It will be methodologically more conven
ient for us to consider the case of a motionless conden
sate, and then take into account the changes which must 
be made in the theory to account for the motion. 

We shall describe the interaction of the electrons with 
the deformation field of the sound wave by means of a 
deformation potential,[S] assuming the interaction energy 
to be equal tol) 

cDp(r) =A,,(p)u,h(r), (1) 

where Uik is the deformation tensor in the sound wave 
and Aik the tensor of the deformation potential, the com
ponents of which are of the order of several electron 
volts. This expression is valid in the so-called co-mov
ing system of coordinates, Le., in a system connected 
with the crystal lattice that is deformed during the 

Copyright © 1974 The American Institute of PhYsics 517 



propagation of the sound wave. All the subsequent cal
culations will be made in this system. The Stewart
Tolman effect will be neglected because of its relative 
smallness. 

To generalize the Keldysh technique to the case of 
a superconductor, besides the matrix of the ordinary 
Green's functions[7] 

G.P= (G, G+) 
G_ G, 

( 
-i<T1jJ.(x)1jJ,+(x'» i<1jJp+ (x') 1jJ.(x) > ) 
- i<1jJ. (x) 1jJp+ (x') > - i<T1jJ. (x) 1jJp+ (x'» 

(2) 

we introduce the matrix of the anomalous Green's func-
tions 

-<1jJp(x')1jJ.(x» ) 
<T1jJ. (x) 1jJp (x') > . 

Here a and f3 are the spin indices, f and <p are the 
creation and annihilation operators of the electrons, 
x=(r, t), T(T) is the symbol of ordering (or of anti
ordering) in time, the angle brackets denote the aver
aging defined in [7]. In similar fashion, we define the 
matrix +paf3, but with the replacement in (3) of all 
operators <p by f. 

(3) 

We consider the case in which the acoustic field can 
be regarded as classical: 

where vF is the Fermi velocity of the electrons in the 
normal state, and a is the value of the energy gap. In 
this case it is advantageous to carry out a Fourier trans
formation with respect to the difference of the coordi
nates and the time: 

G'~(r, t, e, p) = ~dTd3Re;(W'-PR)/hGa~(r + 1/,R, t + I/,T; r _l/,R, t - '12r). 

(4) 

Assuming the interaction to be independent of the spins, 

p-.' = -I.,P~ I.p = C ~ ~), 
it is easy to obtain the set of Dyson equations for G and 
+F. In our approximation, these equations are diagonal 
in the momentum difference p. The Dyson equations take 
the following form: 

G01(p){;(p) = j + ii:G + i& +P, 

GOI ( - p)+F(p) = ii;T (- p)+P(p) + +;1, (p)G(p), p = (e, pl. 
(5) 

Here 
G,-I(p) = [1/'ihB - (E,(p) - SF) +liro-tD.(r, t)la" 

B=~+v.!.--~~, a,= (01_10); at a. a. lip 

Uz is a matrix which acts on the lower (not spin) indices 
of the Green's functions, Eo(p) is the electron dispersion 
law in a nondeformed normal metal, 2; is the self-energy 
matrix defined in accord with the rules given in [7] , and 
a and + a are the self-energy matrices which contain the 
anomalous functions F and +F. Solution of the set (5) 
for the causal functions Gc';" G11 and +F c == +F 11 in zeroth 
order in the small parameter n/Tpa (where Tp is the 
relaxation time of the electron momentum) can be repre
sented in the form 

G = U 2 [ n. +_~~_] + v ,[ 1 - n_ p + n_. ] ( ) 
C P e _ Ep - is e - Ep + is P e + Ep - is e + Ep + is ' 6 

[ 
ilp 1- n, 

+Pc = - iupvp . + . 
E" - E, --- u; E - Cp + lS 

n_. 1 
e + e, + is ,(7) 
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where 
ep = (s.' -I- Idpl')"', SP =Eo(p) + ID.(., t) - eF, 

U,' = 1/2 (1 + S. I ep ), z;,' = I/, (1 - S. I e.); 

np is some not yet known function which, as we shall 
see, has the meaning of an excitation distribution func
tion. We want to emphasize especially that ~p is the 
total energy of the electron (including the deformation 
component <I>p(r, t) which depends on the coordinates), 
measured from the Fermi level. 

In the derivation of Eqs. (6) and (7), we used the fol
lowing considerations. The order parameter of the sys
tem, equal to the 11 element of the anomalous self
energy matrix +2., is determined from the self-consis
tency equation 

(8) 

where Dc is the causal phonon Green's function. It is 
not difficult to verify that in the integral over w', the 
important w' are -WD (wD is the Debye energy). At the 
same time, in kinetic problems, the important values of 
E are of the order of T or a, i.e., much less than WD. 
Therefore, the order parameter can be assumed to be 
independent of E, i.e., we can set + ad E, p) == a p . Using 
(6) and (7), and also the spectral representation for Gc, 

(9) 

and a similar representation for +Fc, we can obtain the 
following expressions for G± and +F ±: 

G+ = 2l1i[npu,'6(e - e.) + ",'(1- n_.)6(e + e.»), 

G_ = -2niI (1- np)u,'6(e - ep) + u,'n_.6(e + e.»), 

+P+ = 2l1u,v,[np6(e - e,) + (n_.-1)6(e + e.»), 

+L = 2l1u,u.[ (n, -1)6 (e - e.) + n_.Il(e + e.) I. 

(10) 

To determine the function np' it is necessary to ob
tain one more equation, which lias the meaning of a 
kinetic equation. It is easiest to introduce it in the fol
lowing fashion. According to (10), 

1 ~ 

n, = -. S [G+(p)- G_(- p) Ide. 
2ru I) 

We now write down the Dyson equation for G+: 

G,-I(p)G+ = i(~"G+ + ~+G, + d, +/<\ + d+ +F,), 

We combine it with the Hermitian-conjugate equation 

- G.-·'(p)G+ = i(G,~+ + G+~, + P,+tl.+ +P+ +~,). 

It is taken into account here that 

_ "" . (0 1) 
~ = fJx2.JJx , 6,+ = - CJx +L\::lx, crx = 1 0 . 

With account of the Keldysh identity[7] 

~, + ~, + ~+ + ~- = ° 
we have for the sum of the equations 

IiB(p)G+ = ~+G_ - ~_G+ + tl., +F+ + +~,F+ + tl.+ +F, + +tl.+P,. 

Similarly, we have for G_ 

-IiBG_ = ~_G+ - ~+G_ +~, +F_ + +tl.,L + tl._ +p, + +tl._F,. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Replacing p in (16) by -p and adding the equations, we 
obtain 

8(p)G+(p) - B(-p)G_(-p) = (~+G_ - ~_G+)p 
+ (LG+ - ~+G_)_p+ (tl.+ +P_ - tl._ +P+ + +tl.+P_ - +tl._ +F+)p. (17) 
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Here the following properties of F and .s are taken 
into account: 

tl, + ti, + tl+ + tl_ = 0, +tl+ + +tl_ + +tl, + +ti, = 0, 

+F.(-p) =+F.(p), 

F.(-p) =Y,,(p), tl.(-p) = tl.(p), +tl.(-p) = +tl.(p), 

and follow from the Dyson equation and the definitions 
of these quantities. 

Substituting (10) in (17), we obtain the following 
kinetic equation: 

on. S. on. oeD. SP on. 0 
-+v-------=1co11> ot e. or or e. ap (18) 

where v'" 8Ep/ap, and Icoll is the operator of collisions 
with phonons and impurities: 

1co11= 2,:rt ~ 1 CQ I' {(t - np) np_hQ (UpUp~hQ - VpVp_hQ)' [(1 + N_Q) 6 ("p 
" Q 

- "p-hQ + /i")Q) + N Q6(ep - ep_hQ - h')Q)] - np(1- np_t,Q)(UpUp_hQ 
- vpvp_nQ)' [N_Q1I(op - "p-hQ + tHQ)] + (1 + N Q) 11 (cp - Cp_hQ -/iOlQ)] 
+ (1- np)(1- n_p,hQ )(UpVP_hQ + Up_hQVp)' [(1 + N_Q)6(ep + "_p."Q 
+ /i"'Q) + N Q6(p. + <_.+"Q -/i'uQ)] - npn_,+hQ (UpVP_hQ + Up_hQVp)' 

)< [N_QI\(pp + '-p+hQ + iHQ) + (1 + N Q) o(ep + g-p+hQ - /i")Q)l 

~ .. [(21111')'J 2 \ d'Q " _ . ,. + /i N, m j (21t)' fQ (np_hQ np)(upup_nQ - VpVp_hQ) 6(t p - 'r-hQ). 

(19) 
Here NQ is the number of phonons with wave vector Q, 
Ni is the concentration of impurity atoms, fQ is the 
scattering amplitude of the normal electron by an indi
vidual impurity center, and CQ'" Qp,p-tiQ is the matrix 
element of the electron-phonon interaction. We note 
that in the case of a spatially homogeneous situation, a 
similar expression was obtained for the collision inte
gral with phonons with the help of the Keldysh tech
nique[lO] for the case of a semiconductor placed in the 
strong electromagnetic-wave field that causes interband 
transitions. The collision operator for the case of a 
highly nonequilibrium isotropic distribution function of 
the excitations in the superconductor has been obtained 
by Eliashberg. [6] 

The calculation that we carried out is valid in lowest 
order in the parameter ti/Tp.:l. At low temperatures, in 
which we are interested, one usually needs to take into 
account the scattering from impurities, which also de
termines the momentum relaxation time Tp ' and scat
tering from phonons need be considered only in those 
problems in which the inelasticity of the scattering is 
important. To account for the next-order corrections in 
the parameter ti/Tp.:l, the system (5) can be iterated 
with respect to this parameter. In first order in tilT p.:l, 
a set of equations is used which is the nonlinear analog 
of the set (2.6) of the paper of Pokrovskii' and Savvinykh.[9] 
In that paper, the existence of a specific low-tempera
ture attenuation was deduced on the basis of the solution 
of a set of kinetic equations. This attenuation was at
tributed with scattering of sound by impurities. In our 
view, this conclusion is a consequence of a numerical 
error in the expression for the collision term Stgf (see 
[9]). The error is analyzed by us in the Appendix 1. We 
came to the conclusion that no such mechanism exists 
for sound damping in any case in that order in the 
parameter til T.:l which was considered in [9]. 

For the calculation of the acousto-electric current 
referred to in the Introduction, we must take into ac
count the motion of the condensate. It is easiest to do 
this in the following fashion (cL, e.g., [11]). We make 
the following transformations in the Dyson equations (in 
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the coordinate representation) 

F(x, x') = t·(x, x')exp[ip,(x + ,,') Iii], 
;F(x, x') = +j,"«x, x')exp[-ip,(x + ,,') Iii], (20) 

G(x, x') = C(x, x')cxp[ip.(x - x') 117]. 

For simplicity, we assume the electron spectrum Eo(p) 
to be quadratic and isotropic .2) Then, for the condition 
PsVF«.:l, we get the following kinetic equation in place 
of (18): 

an,+ I ~ \ an. aeD. l; an. 
at v-+v. ------+T 011=0 (21) e or Ot' E ilp C , 

an1 the energy Ep = lOp +Ps . v, where Vs = Psi m, enters 
in Icoll in the arguments of the Ii functions. As a con
sequence of this, the colliSion integral Icoll vanishe,.s 
for the function no(Ep) '" no(Ep + ps . v), where no = [eEl T 
+ lr 1 is the equilibrium distribution function. 

The current density in the system can be obtained by 
letting the current density operator act on G+. As a re
sult we have 

(22) 
P." 

2. THE SOUND ABSORPTION COEFFICIENT 

As is shown below in Appendix II, and also by Pok
rovski'i and Savvinykh[9], the sound absorption coefficient 
r s of a superconductor can be expressed in terms of 
the nonequilibrium distribution function of the quasi
particles: 

r.=(p""u')-' ~ <~np~) , 
....... e. ax " 
'." 

(23) 

where ()7) denotes averaging over the wave coordinate 
7)=qx-wt, p is the density of the crystal, and u the lat
tice displacement vector. 

It is easy to see from the equations of elasticity theory 
with account of the deformation interaction, from the 
condition of electric neutrality, and also from the kinetic 
equation, that the higher harmonics of the effective po
tential are of order q, I EF in comparison with the funda
mental. Inasmuch as this quantity is practically always 
small, we shall neglect terms of this order. We can thus 
assume that 

eD. (r, t) = Qlpo cos 1'], 

r ~ (A,(p)v,e,), S. S· ( . ) () d1'] (24) 
'=q ...... pw'(v) ~ -SIll1'] no 1']~. 

p,O _~ 

Here "'" q/ q, and e is the sound polarization vector. 
Thus, for the calculation of the absorption one should 
solve the kinetic equation (18). We shall assume that 
the dominant scattering mechanism is scattering from 
impurities. We divide the distribution function into two 
parts and separate the part nf:( lOp). This part is aver
aged over the constant energy surface: np(r, t) 
"'nf:(Ep(r,t))+np(r,t). If we assume the function nE to 
be an equilibrium one, then, as can easily be established, 
no corrections to the gap are necessitated by the non
equilibrium character of the distribution function. Ac
tually, for an isotropiC spectrum, we have in place of 
( 18)3) 

If we neglect the sound velocity w in comparison with 
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the electron velocity at the Fermi surface vF, the solu
tion of Eq. (25) will be odd in ~p. Therefore, the part 
np of the distribution function does not make a contribu
tion to the value of the energy gap, at least, with accu
racy to within the small parameter (W/VF)2. 

We now discuss the validity of the neglect of the dif
ference between the function nE and the equilibrium 
function Ilo. We have two types of corrections to Ilo
corrections having the period of the sound wave and 
corrections which do not depend on time. We begin with 
the discussion of the former. They are calculated various 
ways, depending on the sound frequency. As an example, 
we consider the simplest case of low sound frequencies 
and assume that the acoustic oscillations are adiabatic. 
This means that the sound propagation in the conductor 
is accompanied by a lowering of the alternating contri
bution T' to the temperature T, which is proportional 
to ei((q· r)-wt) and is equal to (see [12J) 
• 

T' W2~. 
-=-dIVU T Cp , 

(26) 

where {3 is the coefficient of thermal expansion of the 
conductor and Ep is its specific heat (for constant elas
tic stresses). Then the alternative correction to the 
gap will take the form 

A' = T~ W2~ divu. 
aT c. 

In the kinetic equation (25), this contribution appears in 
the combination 

(27) 

Direct estimates show that such a correction, which is 
due to the change in ~, is negligible. For high frequen-

of the energy gap on the temperature at Tc-T «Tc), we 
find that heating is unimportant if the following condition 
is satisfied: 

(28) 

A more rigorous quantitative calculation, based on the 
kinetic equation, confirms these estimates. 

At helium temperatures, we can assume that T~h 
-10-6_10-7 sec. With account of this, we find that at 
(Tc-T)/T-1 the heating is important at sound intensi
ties of 104_105 W/cm2 in a metal and 102 W/cm2 in a 
superconducting semiconductor. Thus there exists a re
gion of temperatures and sound intensities in which the 
heating of the excitations by the sound wave field is un
important; however, as we shall see, other nonlinearity 
mechanisms are important. We note that at low tempera
tures T« T c, and also for Tc - T « T c, the heating can 
turn out to be significant; however, we shall not consider 
here the region of very low temperatures or tempera
tures lying in the immediate vicinity of T c (bounded by 
the condition (28)). Thus, we shall assume that ~ does 
not change in the presence of a sound wave. 

We now turn to calculation of the absorption. At 
ql « 1, the principal term on the left side of (25) is the 
third term. In this case, we have, for an isotropic 
electron spectrum, 

, aID. ano 
n =WTn-.-slgn£.-. ax ae. (29) 

It is si~nificant that the only nonlinearity parameter here 
is <l>pJ/ EF, which is always small. The absorption coeffi
cient in this case is completely described by linear the
ory and is obtained in [9,13l • 

cies, the estimate is made differently, similar to what In the opposite limiting case, ql» 1, the term that 
we do below in the estimate for stationary corrections to contains the sound velocity on the left side of (25) is 
the distribution function. However, even for such a situa- not important. In this case, the kinetic equation differs 
tion, the effect turns out to be small in the most interest- from the corresponding equation for the normal metal 
ing cases. In the case of non-adiabatic sound oscillations, only in the form of the function nO( E) on the right side. 
the alternating contribution to the temperature is even As is known, the small group of electrons which belong 
smaller than that determined by Eq. (26). to the "waist" of the Fermi surface w =qaE/ap makes 

We now estimate the stationary corrections to the the contribution to the absorption here. 

distribution function, which are connected with heating In the linear case, the result is identical with the re-
of normal excitations. For this purpose, we use the suit obtained by Bardeen, Cooper and Schrieffer,[14J who 
following consideration. The sound-wave energy absorbed regarded sound absorption as the process of the absorp
per unit volume and per unit time is of the order of r sS, tion of sound quanta by normal excitations. Here the 
where S is the sound intensity. This energy is redis- absorption coefficient was directly connected with the 
tributed among the normal excitations, the number of value of the gap, averaged over the waist of the Fermi 
which is of the order of NoT/EF for T-Tc (No is the surface. If the sound intensity is so great that the con-
electron concentration). The energy received by the ex- dition 
citations is relaxed by the acoustic phonons, and for 
each collision act, the energy of the individual excita
tion changes by an amount of the order of the energy 
itself, and the component of the momentum changes by 
an amount of the order of PF (T /liwD)2. Actually, it fol
lows from the shape of the phonon distribution function 
that the important phonons are those having wave vec
tors Q - T /liw, whence, with allowance for the energy 
conservation law for electron-phonon collisions, 
Ep+liQ-Ep-liwQ=O, the estimate given above follows. 
Therefore, the energy relaxation time is connected 
with the momentum relaxation time on phonons Tph by 

P 
the relation TE - T~h(T)(T ;l1wD)3. Comparing the mean 
energy obtained by the excitations 'from the sound wave 
with the characteristic energies T and Tc-T (the sec
ond quantity is connected with the essential dependence 
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(OoTn = qTn(lDpO I m)'h (30) 

is satisfied, the distribution function of the quasiparticles 
near the waist is strongly perturbed by the sound wave. 
In other words, a group of quasiparticles is trapped in 
the potential wave of the sound-wave field. The forma
tion of such a group leads to a specific nonlinearity, 
which was studied previously for the case of normal 
conductors. [3J 

The problem as applied to a superconductor is solved 
quantitatively in the following way. Inasmuch as the 
higher harmonics of the potential of the wave do not de
velop (as we have already noted) because of the small
ness of the parameter ~/ EF, the entire nonlinear part 
of the problem reduces to the solution of the kinetic 
equation (25), which is itself a linear partial differential 
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equation and, upon neglect of terms of the order W/VF 
in comparison with those considered, takes the form 

v .!!!!.'_ drii an' -I- sign ~ n' ~ (lJ , wan, (31) 
• a'l dll iJvx 0001:" P (lDpOlm)'/ i'Je ' 

where Vx = vx/(<I>po/m)1/2 , wo=q(<I>po/m)1/2, and (<I>po/m)1/2 
are the characteristic frequency of oscillations in the 
well and the velocity of motion of the captured electrons, 
respectively; ~p= <l>p/<I>po. The solution of this equation 
can be obtained by the method of characteristics, by im
posing on the distribution function of the untrapped 
quasipartic1es the condition of periodicity in the wave 
coordinate, and by imposing on the distribution func
tion of the trapped quasiparticles the condition of specu
lar reflection from the walls of the potential wells. In 
the general case, the solution is obtained in [31 and has 
a rather complicated form. However, in the case of a 
strong nonlinearity (wo Tn» 1), it can be expanded in 
powers of (woTnrl and the contribution to the absorp
tion is made by a term of the order (woTn)-l. 

In this case, the distribution function of the quasi
particles is of the form (see [31) 

'(- )- signs"+S"u ( ') ('~(1'j,rJ') 1),1,( ')d' n V,,1'j --ry-- ,g'1 ---- '" 1'j,1'j 1'j 
_u"T" ~,(0,2,,), 

(32a) 
'I 

for the untrapped quasipartic1es and 

1 sign f, [S" , n'(v,,1'j)~-2--'I(--) U,gljJ(1'j,1'j,)d1'j 
(Oc T n'1.i 'Ylt! 112 

n, 
(32b) 

for the trapped quasiparticles. Here g(1j) = (2( 6 -4> (1jW1", 

6 = ~ ?x + <t>( 1j) is the dimensionless energy of one-dimen
sional motion, Vo is the right side of Eq. (31), 

v 

ljJ(x,y)~ S g(1'j)d1'j. 

Substituting (32a) and (32b) in the expression for the 
absorption coefficient (24), we can obtain the following 
result (cf. [31): 

;,: ~ 1.1 < qT ~~~e:~;~) 'I, e} -I- 1 ) [< (A"e,v.) ' exp (ti~T) +1 ) ] -t , (33) 

where r so is the linear absorption coefficient (see, for 
example, [21). m-1 = o2Eo(p)/o~ (the derivative is taken at 
the point W=qoE/Op), the angle brackets denote averag
ing over the waist of the Fermi surface4) qOE/Op=w. This 
ratio is equal to 1/qTn{<I>po/m)1/2 in order of magnitude. 

In Eq. (33) there are integrals over the waist of the 
Fermi surface which, with account of the inequality 
w«vF, is almost identical with the line qOE/op=O. 
If a p » T , and the anisotropy of the gap is sufficiently 
large, then a contribution is made to the integrals only 
by the region in the vicinity of the points where ap has 
a minimum. There are at least two such points (if the 
sound is propagated along an axis of high symmetry, their 
number can be greater). In this case, the ratio Tn/-fffi 
can be determined at these points, for example, from an 
analysis of the nonlinear absorption coefficient for a 
known deformation potential. 

It is important to note that the ratio of the nonlinear 
absorption coefficients in the superconductor and in the 
normal metal can be different from the ratio of the 
linear coefficients. Namely, 
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rr" ~,< (AIk(p)v,e.),-.ri-1 ) [«A"(p),,,e.)'> ]-', 
nO . e + 

(34) 

while the following expression for the relation of the 
nonlinear absorption coefficients in the superconducting 
and normal states can be obtained from Eqs. (31), (32), 
and (24): 

.G. ~ < (A"(p),,,e.)," m",_2_)[< (A"(p),,,e.)," m'I')] -'. (35) 
r n Tn eMT + l' Tn 

3. THE ACOUSTO·ELECTRIC CURRENT 

For the calculation of the constant current, it is na
tural to seek the solution of the kinetic equation (21) in 
the form 

np ~ n,(ep -I- pv.) -I- n.', (36) 

where np is the nonequilibrium contribution associated 
with the sound. In the approximation linear in the small 
parameter pvs/ a, one can obtain from (22) the following 
expression for the current: 

where 
. _ e ~ , , Jrrr - - v<np - n_p >1] 

2 
po 

is the sound drag current (the brackets indicate averag
ing over the wave coordinate), and 

j, ~ e ~ { v,[Zlp'n, -I- vp'(1- no)]-I- v(pv.) an,} (37) 
... iYE! 

is the condensate current, which can be represented in 
the form 

where 
NsIN, ~ 1- S c1c'(x' -I- (M2T) ,)'/, dx, 

o 

NS and No are the number of "superconducting" elec
trons and the total number of electrons, respectively. 
The acousto-electric current can be calculated from 
Eq. (21), neglecting the motion of the condensate. We 
shall calculate the current without solving Eq. (21) ,5) 

for which purpose we multiply it by the velocity of the 
electron v and sum over the constant energy surface. 
By definition, 

~, llf,I L , 
.::.,. vJ,.,{np JiI(e - Ep)~-- vnp Il(e - ep), 

po TIl" f.. 
(38) 

and the electric current is expressed in terms of the re
maining terms of the kinetic equation. The 'Only term 
that does vanish at the accuracy of interest to us after 
averaging over the period of the wave is 

~ < alDp 6p an') 
- v ---_ I5(E-ep). or ep op n 

p 

(39) 

As a result, 

. s~ d e ~ sp < aID an') 
J",~e eT"e'::"'V- -.--- 6(e-e,) 

A 1<01 p,a e p iJr up 'I 

(40) 

~ -e ~ T,,(e)m-' (n' ~ID > sign t 
pO" jr , Ii 

Inasmuch as the important electrons are those close to 
the Fermi surface, one can take the transport relaxation 
time outside the summation sign, as a result of which 
we obtain a relation, similar to the Weinreich relation[161, 
between the acousto-electric current, the absorption co-
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FIG. 1 

efficient, and the sound intensity: 

j,,= !tnfnS N,-Ns = !tnr.S FT(~), 
w N, w T 

(41) 

where J.l.n is the electron mobility in the normal state, 

( Ll ) S· e an, / Soo an, FT - = -de de-
T (e' - t;'),/. ae de 

~ . 
(42) 

_~( alT+1)S· x+MT h-'(-=-+ Ll ) 
- 4 e [x(x+2MT)],/' c 2 2T' , 

A graph of the function FT is shown in Fig. 1. It is seen 
that at A/T »1 we have FT(A/T)-(1TA/2T)1/2 (see the 
dashed curve). 

We have calculated the current of the normal excita
tions. Inasmuch as the total current in the volume of a 
bulk superconductor should be equal to zero, we have 
the following expression for PS: 

_ -r:"FT (MT) 'S 
PS-- wNs C. (43) 

Integrating this equation over the length of the crystal, 
with account of the relation rSS = -as! ax, we obtain the 
following expression for the phase difference at the 
boundaries of the sample: 

It;rpl=1 2SL ~drl = 2-r:"FT(MT) (So-Sc). (44) 
, n nwNs 

In conclusion, we shall give some numerical esti
mates. In a pure superconductor, one can assume 
Ttr-lO-S sec. Near the phase transition we have 
NS-No ' 2(Tc -T)/Tc). Setting (Sin-Sout}-1 W/cm2 and 
No -1022 cm-S, we have, in order of magnitude 

10-' [W 
LlqJ --S --2]' 1\ cm 

T,-T 
1\=---. 

L 

If we assume that the phase difference can be measured 
with a superconducting interferometer accurate to 1% 
and that the temperature of the sample can be maintained 
near T c with the same accuracy, then we can measure 
the sound intensity from 10- 3 to one W/cm2 by such a 
method.6 ) We note that the absolute value of the sound 
intensity that is propagated along the metal is measured 
here directly, something very difficult to do by other 
methods. In superconducting semiconductors, the elec
tron concentration is considerably less (down to 101s 
cm- 3 ); however, the scattering from impurities in them 
is considerably greater, and Ttr is also much less. 
Inasmuch as the ratio Ttr/No enters iIlto the expression 
for Acp, estimates for superconducting semiconductors 
can turn out to be either more or less favorable, depend
ing on the specific materials. 

APPENDIX I 

We shall show how the kinetic equation is obtained in 
first order in n/TA. For this purpose, we carry out a 
Bogolyubov transformation on the electron operators: 
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It is then easy to obtain the following relation: 
G+ = (u.'~+(p) - v.'~_(-p) - iUpvp[+FT+(p) +FT+(p) n, 

G_ = (-u.'~_(p) +v.'~+(-p) -iupvp[+FT+(p) +FT+(p)n, (A.2) 
+F + = u.'FT - v.'FT + uv[~+ (p) - ~_( -p)], 

where 
~PO(ti' t.') = -i(T,apO(ti) apo+ (t.'», 

fJ--p"«(, t.') = (T,ap.(-tda_p,(t.'» 

+g-p" (ti, t.') = (T,a p• + (ti) a:':p, (t,') >. 
(A.3) 

The integral f dE !J' +/21Ti has the meaning of the number 
of electrons. We therefore define: 

W+ = 2ninpl\(e - ep), ~_ = -2ni(1 - np)l\(e - ep). (A.4) 

The anomalous correlators FT ± vanish in zeroth order 
in n/TA. In first order in this parameter, we determine 
these functions from the following considerations. In 
the derivation of the kinetic equation, we had to inte
grate over E in the limits 0, +00. Inasmuch as 

• 00 + 

Sde+FT+(e)=,,+ST+(-r:)I,_o- S FTi:(l:) dl:, 
o 

setting the correlator at the equal times to be +FT+ =-y* 
(the minus sif,n is chosen so that the signs correspond 
to those of (9 ) we define the function + ST+ by the expres-
sion 

where P denotes the principal value. We now repeat the 
calculations (11)-(16), and substitute the values of the 
Green's functions in the form (A.2) with account of (A.3) 
and (A.4). Integrating the difference G+(p)-Gj-p) with 
respect to E in the limits (0, 00), we get the following 
kinetic equation 

( iJ ;p i) allJ;p a )' t; ( a a llJ iJ ) 
at +v-,;;.- r7r ~ 0.:--;:- iJp np--;: vTr-8;"ap Reyp (A.6) 

1 1;1 1 t; 
+--(n, - (np»+--sign~ Rey. = O. 

Tn B Tn E 

A second equation connecting np and yP can be ob
tained by combining the Dyson equations for +F+ and 
+F _. Subtracting the equation for +F _(-p) from the 
equation for +F +(p), and using the symmetry properties 
of the functions, and also the spectral representation 
for +F c in terms of +F + and +F _, we can obtain 

(in~ - 2~) +F+ - iRe +t;,[G+(p) - G_(-p) J 
ilt 

i 
= 2[+:\+ (G_(p) - G+ (-p)) - +:\- (G+ (p) - G_ (-p» (A.7) 

+ +F _("2:_ (-p) -"2:+(p» - +F + ("2:+ (-p) -"2:_ (p» J. 

Substituting the expressions (A.2)-(A.4) in (A.7) and 
integrating in the range (-00, 00) with respect to E, we 
get the following equation, after cumbersome but essen
tially straightforward transformations, 

( , rI . ) '" oy'" in e ( Ll' ) in. • t;,. d,-·-28, 1p+lh-,.---;:-=--c- 1+, +-slgn.-n. 
(){ rJt.; Tn 1161 e 'Tn e 

.( ~ .• -~(1-2n+), n+ = np+n_p 
28,. 2 

(A.8) 

Here the condition n/ TA« 1 has been taken into ac
count, and the only collision terms which are written out 
are those important for the calculation of the sound ab
sorption. The collision terms are identical with the col
lision terms obtained in (9J in the form of Eq. (2.8). 
However, the second collision term in (A.6) differs from 
the first component of Eq. (5.10) of that paper by the 
coefficient Yz. Expressing the corrections to the excita
tion distribution function np in terms of the function 
yP with the help of Eq. (A.6), it is easy to establish the 
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fact that the corrections to the electron distribution 
function 

'" t, =<a,+a,) = u,'n, + v,'(l- n-,H- -fie 1, 
E 

are absent in the order li/Ta considered by us. Thus, 
if we are interested in quantities that are expressed in 
terms of the electron distribution function (for example, 
the sound absorption and the acousto-electric current), 
then we can use the kinetic equation (18) for the calcula
tion of these quantities, at any rate accurate to first or
der in li/Ta. 

We note that in first order in li/ Ta there are also 
corrections to the self-consistency equation, which are 
easily obtained by expressing +Fo in terms of +F _ and 
+F+ with the help of the spectral representation, and then 
substituting the expressions (A.2)-(A.4) for the latter 
functions. However, these corrections are not important 
for the calculation of the sound absorption, since they 
vanish as a consequence of the condition of electric 
neutrality in the sound wave. 

APPENDIX II 

We obtain an expression for the nonlinear sound ab
sorption coefficient in a superconductor in terms of 
the electron Green's function. 

Let the oscillation in the sound wave consist, with 
sufficient accuracy, of a single harmonic. We then de
fine the damping coefficient as a quantity proportional 
to the imaginary part of the pole of the retarded phonon 
Green's function. It can be shown, in a manner similar 
to that used in [7J, that Dr(w, q) safisfies the Dyson 
equation 

(A.9) 

where llr = llc + IL; llc and ll_ are the components of 
the polarization matrix 

II = (II, 12+ ) 
II_ 11, ' 

for the calculation of which the diagram technique of 
Keldysh is suitable. [7J Assuming the imaginary part 
of the pole to be much smaller than the real part, we 
obtain for the coefficient of sound power absorption 

r = q ReII e • (A.lO) 

As follows from Eq. (1), the vertex that describes the 
interaction of electrons with the sound wave can be 
represented in the form 

where 

We calculate the quantity 

S d'p S de I --. -All Gc(p,p-hq). 
(2nh)' 2m 

(A.l1) 

The function Gdp, p-liq) can be represented in the form 
of the sum of the graphs of Fig. 2. The numbers in 
parentheses denote the number of the corresponding ma
trix indices used in the Keldysh technique. It is seen 
that the quantity (A.l1) is equal to 
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+ 

(/): fiq 

~+ 
P ,p-lig p-"q 

(t) :nq 

~+ 
p p ,-fiq p-hq 

FIG. 2 

(2), fiq ., 
~+ 

, P p-liq p-nq 
(2) 11i~ 

~ 
, ,p-ny p-flq 

Inasmuch as Re(llc +ll+) = %(ll+-ll_) =-Rellr, we have 

r - R S d'p S de IqW p , 

- e (2nh)' 2ni pro2u' G,(p,p-liq). (A.12) 

It follows from the spectral representation for the 
causal Green's function that 

de 1 S de S-G,(p p -liq)=- -.[G+(p,p -liq)+G_(p,p -liq)] 
2ni' 2 2rn 

S de 
= -G+(p,p-liq). 

2ni 
(A.13) 

In the classical case, we have 

(A.14) 

which is identical with Eq. (23) of the text. 

l)It is assumed that the contribution from longitudinal electric fields, 
which arise when sound propagates in a conductor, is included in the 
potential <l>p(r) (these fields are determined from the condition of 
electric neutrality [6,9]). It can be verified that, neglecting small terms 
of the order w!vF, which lie within the limits of accuracy of our calcu
lation, the contribution from longitudinal fields to <l>p(r) is "in phase" 
with the direct deformation contribution. 

2)The case of an arbitrary spectrum Eo (p) can be considered in similar 
fashion. 

3) At ql ~ I, the introduction of a relaxation time can be justified for any 
spectrum Eo(p); [3] Tn is the relaxation time in the normal state. 

olin fact, in the calculation of r, the averaging is also carried out over 
the longitudinal momentum within the limit of width of the waist. 
This averaging, however, is not important if the anistropy of the gap 
is not anomalously large, so that the condition 

iJIlp/al}."g;TVF/wA, ql, (sp/<Il po )';' 

is satisfied, where ~ is the angle between the direction of the vector p 
and the plane Px = O. 

5)We have chosen this method of calculation of the current because it 
allows us to introduce the transport relaxation time in a case in which 
the distribution function depends essentially on the angles. This method 
was first proposed by Kagan. [15] 

6)It is assumed, however, that the sound intensity here satisfies the con
dition (28). 
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