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Trapping of resonant radiation in a gas discharge leads to alignment of excited atoms. A general 
expression is derived for the degree of various types of alignment. It is shown that alignment 
enhances the effective lifetime of the excited atoms. This should become manifest when alignment is 
destroyed by a weak magnetic field. 

1. As is well known, for excited atoms to become 
oriented and aligned in a gas it is necessary to use 
excitation with polarized light or at least to have an 
anisotropic distribution of the directions of the exciting 
light beams. In the case of excitation with electron 
impact, an anisotropic electron-velocity distribution is 
necessary. In the positive column of a gas discharge, 
excitation of the atoms is by electrons, and their 
velocity distribution at not too low pressures is prac­
tically isotropic. Nonetheless, effects connected with 
alignment of the excited atoms in a discharge in neon 
and in a mixture of neon with helium at pressures of 
approximately 1 mm Hg have recently been ob-
served [1-3J. A manifestation of alignment is the res­
onant variation of the intensity of the radiation in 
weak magnetic fields. Chalka [4J has proposed to ex­
plain the experimental results by means of two possible 
mechanisms of alignment. Both mechanisms are con­
nected with reabsorption of the photons in the discharge. 
First, the photon distribution in the discharge tube is, 
generally speaking, anisotropic. The radiation at the 
wall is directed mainly perpendicular to the tube axis 
(from the axis to the wall). At the tube axis, the pre­
dominant direction is the direction of the axis. The ex­
cited atoms produced upon absorption of such radiation 
are aligned. The second possible cause of the observed 
effects is the finite width of the spectrum of the exciting 
photons. Because of this, each group of atoms with a 
given velocity direction turns out to be aligned, even if 
there is no integral alignment for all the atoms. Chalka 
called this new type of alignment latent alignment. In the 
case of dragging of the resonant radiation, both types 
of alignment are due to the fact that the volume is finite. 

At a large value of the radiating volume, the photons 
will be anisotropic in direction only in a relatively small 
region near the wall, where the concentration of the ex­
cited atoms is small. The spectral distribution of pho­
tons in the greater part of the volume is much broader 
than the Doppler absorption contour, so that the latent 
alignment will also be small, 

In the present paper we study the degree of align-
ment of atoms in an excited state when the resonant 
radiation is dragged in a finite volume. It is shown that 
the alignment influences the excited-atom effective life­
time due to the dragging. This should be manifest in a 
shortening of the lifetime when the alignment is destroyed 
by a weak magnetic field. According to Holstein [5J, 
the effective lifetime T is of the order of 

1: - koR1:o(nln koR)"', 

where To is the natural lifetime, R is the dimension 
of the vessel, and ko is the coefficient of absorption at 
the center of the Doppler contour (it is assumed that 
koR » 1). As shown later on, owing to alignment, this 
time lengthens by an amount t:.T, with 
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tn / T - 1 /In koR. 

The effective lifetime should change by an amount of 
this order if the alignment is destroyed by a weak mag­
netic field, such that the Zeeman splitting of the excited 
state becomes of the order of the level width. 

2. We start with the equation for the density matrix 
of the excited atoms f mm I, which depends on the coor­
dinates and on the velocity 

dimm' / dt ~ -1imm' (r, v) + 1 Ui/) mm'. (1) 

Here the indices m and m I number the Zeeman sub­
levels of the considered excited state with angular mo­
mentum h, and 'Y is the reCiprocal lifetime of this 
state. The term containing (2"f) takes into account the 
dragging of the radiation [6J: 

(Phmm' ~ S d'v' S d'r' I: K::::" (r - r', v, v')fm,m,' (r', v'). (2) 
mm' 

The kernel K characterizes the probability that an atom 
having a velocity v will be excited at the point r by a 
photon emitted by an atom situated at the point r' and 
having a velocity v'. 

The eigenfunctions $N(V) and the eigenvalues of the 
operator § were obtained in [7J for an unbounded volume: 

(3) 

where v, J, and cp are the spherical coordinates of the 
velocity, Vo = (2kT/M) 1/2 ,c(N) are certain coefficients, 

1e equations for which we::: derived in [7J, <I>~)(v/vo) 
are functions containing the Laguerre polynomials 

L~~Z)/2(v2/~). An explicit expression for these func­

tions is also given in [7J; ~;~(J' cp) is a matrix with 

the indices m and m ' : 

,M 
Here YLM (J, cp) is a spherical function and T~ is an 
irreducible tensor operator. The quantity in the paren­
theses is the Clebsch-Gordan coefficient corresponding 
to the addition of the angular momenta IC and L. By N 
we denote the set of quantum numbers characterizing 
the eigenfunction (n, J, S, parity K, etc.). 

It is convenient to seek the solution of (1) for a 
finite volume in the form of an expansion in the func­
tions ~~v): 

fir, v)~ ~>N(r)~N(v). 
N 

(4) 

The density matrix of the entire ensemble of atoms can 
be obtained by integrating f(r, v) with respect to the 
velocities, in which case a nonzero result is given only 
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by the functions with n = O. For these functions, the 
sum (3) contains only one term with L=O and K=J. 
The number J characterizes the polarization of the 
atoms (J = O-population, J= I-orientation, J = 2-align­
ment). The coefficients of these functions will be des­
ignated 3(;, aIS, and a2S. For h = 1, the coefficients ao 
and a20 are connected with the density matrix fmm ' 
integrated over the velocities in the following manner: 

1 
a. = --_-(f11 + /-1-1 + /00), 

,,'1'l'3 (5) 
1 

a20 =----(f11 + /-1-1- 2/00 ). 
,,'I'l'B 

All the remaining functions for which n '" 0 make no 
contribution to the polarization moments of the entire 
ensemble. It can be stated that these functions corre­
spond to "latent" polarization moments. Using (1) and 
(5), we obtain an equation for the coefficients aN(r): 

where 

KNN,aN' = J d'r' K NN , (r - r')aN' (r'), 

K NN , (r) = J d'v J d'v' L, [~N +(v) lmm' K::::::' (r, v, V')[~N' (v') lm,m", 
mm'm,rn,' 

The calculation of KNN'(r) with the aid of formula 
(20) of [7] leads to the result 

(6) 

(7) 

(8) 

l' (2J + 1)(21' + 1) '('1 (N) (N') J ,', 

KNN'(r) 8" ~Xq~'Xq .. ' D.,_q(n)D.',_q(n)Inn,(lrl). (9) 
q" 

Here D~q(n) is the matrix of rotation from the initial 
system of coordinates to a system in which the z axis 
is directed along the vector r; n is a unit vector along 
r. The function Inn'( I rl) is determined by the expression 

1 00 

Inn' (Ir/)= 1.,1 rl' Joo dx exp {-~(x) I rl- 2x'} Hn(x)Hn' (x), (10) 

where Zo is the mean free path (the reciprocal of the 
absorption coefficient) of the photon at the line center, 
f(x)=(I!Zo)exp(-x2), and itn(x) is a normalized Her­
mite polynomial. The numbers x(N) , are connected 

qllil 

with the coefficients c~rr by the relation 

(11) 

where 

bnL =(-1)(n-L)I',,'i n!I2,,+1 (n~L)! r( n+~+3)]"', (12) 

B.~vv' (J) = 3[ (2il + 1) (2x + 1) (2L + 1) 1'" {~ ~ ~ } 
,. It 'I 

(
X 1 1) ( x L J) (13) 

x _ q _ v v' - q 0 q . 

From (23) of [7] we can obtain the following equation 

for x&~~,: 

where 

(16) 

The indices II and II' run here through the values ±1, 
and the index q takes on the values 0 and ±2. 

It follows from (10) that the dragging operator inter­
relates only states having the same parity of the number 
n. From (11) and (13) we see the following symmetry 
properties of the numbers x: 

(we recall that the parity of L is a quantum number). 
These relations enable us to reduce the system (14) to 
two equations with two unknowns. 

In the case of strong dragging (the only one con­
sidered in the present paper), when koR» 1, all the 
off-diagonal matrix elements KNN' are small, since 
as R -co we have 

J d'r' KNN'(r - r') = (1- "'N)ONN' 

in accordance with the results of [7]. Thus, at koR» 1 
we can replace (6) by the following approximate system 
of equations: 

da. ~ '('1 ~ 
dt"=-y(1-Koo)a.+y ~K'NaN' 

N.,.' 
daN ~ ~ 
'dt= - y(1- K NN ) aN +.yKN.a., 

From (9) follows a simple expression for Komr): 

K.N·(r) = KN.(r) = x!~)YJ .. (n)-1-In.(lrl), 
2n'/t 

where YJS(n) is a spherical function that depends on 
the direction of the vector r. Formula (20) was ob­
tained with allowance for relations (17) and is valid 
only for even values of L +J, for otherwise KON(r) 

(18) 

(19) 

(20) 

== O. It follows from (13) that Xou is nonzero only at 
even values of the sum K+L+J. Thus, KoN(r) differs 
from zero only for those sets of the quantum numbers 
N for which the numbers n, K, L and J are even. In 
the case of strong dragging we can replace KNN'aN' 
in (18) by (I-AN)aN, where AN is the eigenvalue ob­
tained in [7]. All the AN at N'" 0 are of the order of 
unity, and therefore we can neglect the term daN! dt 
in (19), since the interesting characteristic time of 
variation of the population is much larger in the case 
of strong dragging than the natural lifetime y-l. Then 

Calculation of the function KNoao in the case of 
strong dragging is best carried out in the following 
manner: using formulas (20) and (10), and reversing 
the order of integration, we obtain 

(21) 

(N) ~ \' . I ' 
KN.aO= ~Ol: ~ dxe-x'Hn(x) J d3r'a.(r,)e-'T(x)r-r l .1T(x)Y;s(n). (22) 

",. _~ " I r - r' I" 
Here V is the volume of the vessel (we recall that n is 
the unit vector along the direction of r-r'). We shall 
henceforth take the unit length to be the characteristic 
vessel dimension R, and introduce the parameter 

koR = R / I. = a ~ 1, (23) 
We make in (22) the change of variables a exp(-x2)=t; 

(15) then 

~N is the eigenvalue corresponding to the function 
(,ON(v). The normalization condition for the quantities 
x is 
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~ x (N) 1· R (l/ln(alt» te-II.-,'I 
KNOa.=~-Jdt n Jd3r'a.(r')---YJ;(n). (24) 

2,,'/· a 0 l'ln(alt) v Ir-r'I' 

At large a, it would be natural to extend the integral 
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with respect to t to infinity. But the integral with re­
spect to the coordinates in (24) does not tend to zero 
as t - 00. To get around this difficulty, we break up 
ao(r/) into two terms: 

ao(r') "" [ao(r)] + [ao(r') - ao(r)]. (25) 

In that part of (24) which contains the first term, the 
integral with respect to the coordinates r' can be re­
placed by an integral over the region that is external 
with respect to the vessel, taken with the minus sign. 
Indeed, the integral over all of space vanishes if the 
numbers nand J do not vanish simultaneously. 

We can now extend the integral with respect to t to 
infinity and neglect In t in comparison with In O!. We 
then obtain 

(26) 

where 

( 1 S J' Y,s'(n) 1 S '" YJs'(n) IfJS r)=---=-ao(r) dr ---+--=- dr [ao(r)-ao(r)]---. 
1'411 ,., Ir-r'I' )'411 v Ir-r'I' 

The second integral is taken here over the volume of 
the vessel V, and the first over the region V' which 

(27) 

is external with respect to the vessel. The second inte­
gral contains a logarithmic divergence at r = r/, due to 
the first term of the expansion of [ao(r/) -ao(r)] in powers 
of r - r I. This divergence is eliminated by taking the 
integral in the sense of the principal value, i.e., by sepa­
rating the region that is symmetrical with respect to the 
point r, and then letting the dimension of this region ap­
proach zero. At even J, this region makes a zero con­
tribution to the integral with respect to the coordinates 
of formula (24) at arbitrarily large t. 

We recall that in formulas (26) and (27) the quantities 
rand r' are measured in units of R. 

Formula (26) enables us to estimate the order of mag­
nitude of aN. We see that aN behaves with increasing O! 
like 0!-1(YlnO!)n-1. In the calculation of ~JS we used an 
expression given by Holstein[51 for the concentration of 
the excited atoms. For a flat layer of thickness 2R we 
then have 3.0 = c( 1 - e), where ~ = z/R and c is a constant. 

Calculation by means of formula (27) yields 

If (z)=6 (_1)J/2 )'2/+1(/+1)1! [2+ In 1- 6 ] c 
JS 8,0 (I' -1) (I + 2)!! 6 1 + 6 . (28) 

The quantization axis is perpendicular here to the plane 
of the layer. The divergence in this expression on the 
boundaries of the vessel is connected with the fact that 
the transformations used in the derivation of formula 
(26) are not valid near the boundary, in a layer of thick­
ness on the order of several Zo. 

The alignment that is integral with respect to the 
velocities is determined by the coefficient aN at n = 0 
and J = 2. We then have in formula (26) Xoll = l/v'To 
and A= 0.3 for the transition h = 1 - jo = O. The integral 
alignment depends on the dimensions of the vessel and 
on the absorption coefficient ko like (koRY In koRf1 if 
koR» 1. In the central plane of the layer (the alignment 
axis is perpendicular to the plane of the layer) we have 

fft)1 
I 

/ ~ 

I 
o'Sr 

-fJ,S (I fJ,5 

-t1. 

-f 

Dependence of the degree of alignment in a flat layer of thickness 
2R on the coordinate ~ = z/R, fm = -aN(z)/aN(O). 

This dependence can be interpreted easily when the angu­
lar momentum of the excited state is h = 1. Then a20 is 
connected by relation (5) with the density matrix inte­
grated over the velocities. It is seen from the figure that 
near the central plane of the layer, the predominantly 
populatj'ld sublevel is the one with m = 0, and at the layer 
boundary, to the contrary, population of the sublevels 
m = ±1 predominates. When integrated over the layer, 
the population of the level m = 0 predominates. The 
distribution of the alignment in a cylinder has a compli­
cated character [41. Calculations with the aid of formu­
las (26) and (27) yield the follOwing value for the align­
ment on the axis of an infinite cylinder (in the limit of 
strong dragging) for the transition j 1 = 1 - jo = 0: 

a,,(O) = nc[ 4,8a(2n Ina) '1,]-'. 

The alignment axis is in this case directed along the 
cylinder axis. 

(30) 

3. We now proceed to calculate the excited-atom ef­
fective lifetime due to the dragging of thf} resonant 
radiation. Assuming in (18) that 3.0 - e-ti T and substi­
tuting the expression (21) for aN, we obtain for 3.0 
the equation 

[ , \"11"] 1 1 (1- Koo) -1 £..J J:;KONKNO ao = ~ao. (31) 
N".O 

In the zeroth approximation, neglecting the second 
term in the square brackets, we obtain the usual equa­
tion for ao(r), an approximate solution of which was 
obtained by Holstein [51. The corresponding value TH 
of the decay time at koR» 1 is 

(32) 

where A is a numerical coefficient that depends on the 
shape of the vessel. The correction resulting from all 
types of alignment is obtained in first-order perturba­
tion theory: 

(33) 

where the parentheses denote integration over the vol­
ume of the vessel, and 3.0 should be taken to mean Hol­
stein's solution so normalized that (3.0, 3.0) = 1. 

For an approximate calculation of the sum (33), we 
replace AN by the mean value -X- 1 and use the com­
pleteness of the system of the functions (3), and then 
the calculations lead to the following result: 

t>.(·c')= ~~~~' S d'r S a,(r,)d'r, S ao (r,) dJr,1du, LdU$'. (34) 

a,,(O) = -0[ 1,2a(2n In a) '1,]-,. (29) Here 

The dependence of the alignment on z (the distance from 
the central plane of the layer) is shown in the figure. 
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IT (IZ,) IT (u,) , , 
flF= " exp[-IT(u,)p,-IT(u,)p,-u, -u,] 

p, p. 
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{ B(6) [ 
x ~exp 

(u,' + u,') cos' 6 - 2u,u, cos 6 ] -1} 
sin:! e .' 

where Pi = r -ri, e is the angle between the vectors 
P1 and P2, and 

(35) 

B(6)= ~{3 ,E(2i ,+1)(2x+1)i;, i~ i~n~ ~ ~)'P,(COS6)+1}. 
• (36) 

The asymptotic expression of the integral (34) in the 
case of strong dragging (a = koR » 1) can be obtained by 
using the same procedure as in the derivation of for­
mula (26). We then obtain for a flat layer at h = 1 and 
jo = 0: 

(37) 

with A- 1 a number on the order of unity. 

In a magnetic field strong enough to make the distance 
between the Zeeman sublevels of the excited state 
larger than the natural level width, the alignment is 
destroyed. Generally speaking, however, it will not be 
destroyed completely, since alignment may be pre-
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served along an axis coinciding with the direction of 
the magnetic field. Formula (37), nevertheless, gives 
the correct order of magnitude for the change of the 
effective lifetime in a magnetic field. 
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