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The transition probability in a two-level system ("atom") in the presence of a term intersection point 
(Landau case) is considered when the intersection is due to interaction between the atom and 
ensemble of many particles. An expression for the transition probability is obtained and extends the 
Landau result to the case of multi particle interaction. Concrete calculations are carried out for 
monopole-dipole and dipole-dipole interactions when the transition is induced by rotation of the 
perturbing field. In both cases the transition probability can be expressed in terms of functions 
describing fluctuations of the perturbing particle field and is essentially nonbinary. For low densities 
the result is identical to that of the binary calculations, and for hig/! densities it tends to a constant 
which in general is independent of the density and corresponds to the case of complete "mixing" of 
the atomic terms. 

The concept of term crossing is usually used to 
compute the transition probability during the collision 
of two slow ~articles, which we shall, for brevity, call 
"atoms" [1-3 . This probability is further used to com­
pute the scattering cross section, obtained by either 
summing over the momenta of the colliding atoms, or 
by simply integrating over the impact parameter 
21Tpdp, since the motion of the atoms is quasiclassi­
cal[2,3J. Implicit in such a procedure is the assumption 
that the collisions are two-body (binary) collisions, and 
it is thereby assumed (although often without explicitly 
saying so) that a sphere of radius equal to the effective 
interaction range Reff contains a small number of 
partic les, i.e., the condition 

NR~ff "" g< 1 (1 ) 

(N is the particle density) is satisfied. 

An attempt is made in this paper to take into account 
the nonbinary (many - partic Ie) nature of the co llision 
between slow atoms. This formulation should obviously 
correspond to any value of the parameter g in (1). Such 
a situation can be realized in a sufficiently dense gas, 
or in a plasma when Reff significantly exceeds the 
atomic radius ao. The latter indicates that we are inter­
ested in the cases of small (compared to the energy of 
the atom) energy transfer, e.g., in transitions between 
adjacent levels 1) (see l2,3J). As to the value of Reff, we 
shall assume that it is determined by the point of 
crossing of the corresponding terms. 

It is a priori clear that the concept of (binary) colli­
sion cross section is inapplicable when the condition (1) 
is violated, and it makes sense to speak of only a transi­
tion probability averaged over an ensemble of perturb­
ing particles. 

Let us consider the transition between two electron 
terms oJ amplitudes a1 and a2 induced by the pertur­
bation V(t). The Schrodinger equation has the form L1 ,2J 

ilidat / dt ~ U.(t)a, + V(t,) a" 

ilida, / dt ~ (Ii"'o + U,(t) )a, + V(t)at. 
(2) 

Here Wo is the term spacing in the absence of interac­
tion, U1,2 is the effective potential energy (including 
the diagonal matrix elements Vu and vd, and V(t) is 
the nondiagonal matrix element of the perturbation in­
ducing the transition. 

Since we shall, in what follows, be interested mainly 
in the nonbinary aspect of the interaction, in solving the 
system (2), we shall restrict ourselves to the case of 
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sufficiently small V(t) (the Landau case: see[ll). Then 
the transition probability w (obtainable from (2) under 
the initial conditions a1 ( - "") = 1 and az( - "") = 0) has 
the form 

1 ~ 

W~la2(+oo)I'~1l2-IJ dtV(t) 

xexP{iwot-illi S[U,(t')- U,(t')]dt' }J. (3 ) 

The nature of the interactions U1,2(t) and V(t) has 
thus far not been specified. In the conventional binary 
approach, U1,2 and V are assumed to be parametrically 
dependent on the distance R( t) between the atoms. In 
our case U 1, 2 and V are functions of the coordinates 
Ri(t) of all the J!" perturbing particles, which we shall 
assume to be enclosed in a sphere of volume ~. Thus, 
the potentials U 1 2 and V should, in the case being 
conSidered, be d~termined by a point in the 6J!"­
dimensional phase space. 

Let us now state the main assumption about the 
existence of term intersection, to wit: we shall assume 
that the dominant contribution to the integral (3) is 
made by that region R1, R2, ... ,RH , of phase space 
where the phase of the exponent in (3) is stationary: 

UdHdtk),···, R.!.(tk )] - U,[R,(tk),···, R.v.(tk )] ~ nw.. (4) 
The condition (4) is essentially an expression of the 

Franck-Condon principle for a "molecule" with J!" 
nuclei, to which is equivalent, in the present case, a 
gas of interacting particles. 

In the binary case the subsequent calculation of (3) 
usually consists in the expansion of the exponent in a 
series around the stationary-phase point tk defined by 
(4). Such a procedure leads to the Landau formula [1,2J: 

4nIV(t.) I' (5) 
w ~ IdUtldt _ dU,ldtlt_t •. 

To obtain the total transition probability, we should 
sum (5) over all the points tk, taking into account the 
stochastic nature of the perturbation. In the binary case 
there is a simple connection between tk and the impact 
parameter p, and this allows us to reduce the summa­
tion over tk to integration over p and comparati vely 
simply obtain the transition cross section. In the case 
of the many-particle interaction tk is an extremely 
complicated function in the phase space R1, ... RJV", and 
therefore to aVOid a direct summation over tk, we 
must average over the corresponding ensemble, using 
the assumption that a random process is a stationary 
process. 
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The transition to averaging over the ensemble is 
accomplished in (3) with the aid of the general formulas 
of correlation theory (see, for example,[41, Sec. 36). 
As a result, we obtain for the transition probability per 
unit time W the expression 

W ~ S d,;e'·"1D (-r), 

where <1>(7) is the correlation function (the symbol 
( ... > denotes averaging over the ensemble): 

(6) 

1 < { .' I!>(T)~fi2 V(O)V(T)exp --it [[U,(t)-U,(t)]dt}). (7) 

The quantity W is the analog of the collision rate which 
figures in the conventional binary theory. 

In essence, (6) and (7) contain information about the 
evolution of the system for an arbitrary rate of change 
of the perturbation2). The extraction of any explicit 
analytic results in the general case is however made 
difficult by the presence in (7) of the ensemble averag­
ing, which is feasible only in certain particular cases. 
One of such cases is the slow-collision case of interest 
to us. 

In fact, if U1,2(t) and V(7) vary sufficiently slowly, 
then the correlation function <1>(7), (7), can be expanded 
in a series in 7, which after substitution into (6) yields 
(in the first nonvanishing order): 

W = 2; <V' (0) B {n",. - U,[R,(O), ... ,R.,.(O)) + U, [R,(O), ... , R ... (O)]}). 

(8 ) 

The result (8) solves the formulated problem in general 
form. Those regions of the coordinate space 
R 1( 0), ... , R~c (0) which correspond to the term­
crossing condition (4) are automatically separated out 
when (8) is averaged over this space. It is also not 
difficult to connect the result (8) with the Landau 
formula (5). Indeed, by replacing in (8) the ensemble 
average by the time average, we can verify that the 
presence of the o-function leads to the appearance of 
the stationary-phase points tk defined in (4). Then, 
using the relation o[f(t)] = I df/dt li1=tko(t - tk), we 
arri ve at (5 )3). Thus, the formula (8) is a natural 
generalization of (5) to the case of many-particle inter­
actions. 

Let us now consider concrete examples of the appli­
cation of the result (8). 

BINARY INTERACTION 

Let us begin with the case of the binary (spherically­
symmetric) interaction UI ,2(R) and V(R), which is 
realized when the condition (1) is fulfilled. Let the 
probability for atoms separated by a distance R be 
given by the distribution function f(R)dR = 4ITR2f(R)dR. 
Then, we have from (8): 

W = 16n' V'(Ro)Ro'f(Ro). 

Ii IdU,ldR - dU,ldRlR~R' ' 
u, (Ro) - U, (Ro) ~ Ii",o. 

(9) 

If as f( R) we use the nearest-neighbor distribution 
law (f( R) = N exp ( - % ITNR 3 )), then for the power inter­
action law: UI (R) - U2(R) = nCk/Rk, V(R) = nCm/Rm , 
we obtain from (9) that 

c ' W=8n'N m 
C1l.kR~m-It-3 I 

_(C,)'I> Ro - -
wo 

(10 ) 

(the exponent in f( T) coincides with the parameter (1) 
and is therefore unimportant in the binary region 
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(g « 1)). It can be seen from (10) that the contribution 
to W from the individual particles is additive (W ex N). 

MONOPOLE-DIPOLE INTERACTION 

Let the potentials UI ,2 be determined by the interac­
tion of the dipole moment d of the atom with the elec­
tric field F produced by the surrounding charged parti­
cles (e.g., by the ions of a plasma)4): 

U, (0) - u.(O) = - <1, 2[ dF(O) [1, 2) = n~[ F(O) [ 
e 

=n. ~I ~ eRi(O) \. (11) 
e i~' m(O) 

The transitions to another state are usually induced 
in the binary case by the effects of the rotation of the 
internuclear axis [2,3 J. Similar effects are produced in 
the case under consideration by the rotation of the 
many-particle field F(t). The angular velocity n of 
such a rotation is given by the expression[6 J: 

Q(O) = IFJ.(O) 1 I IF(O) I, 

where Fl(O) is the component of the field derivative 
vector F( 0) in the direction perpendicular to F( 0). 

(12 ) 

The interaction of the orbital angular momentum L 
of the atom with the rotation of the field has the form 

V(O) =1i(1IUl(O) 12) ==lilIF.l(O) I/IF(O) I· (13) 

After substituting (11) and (13) into (8), we can con­
veniently carry out the averaging in two stages: we 
first average Fi( 0) at a fixed value of the ionic field 
F( 0) == I F I and then integrate over all F with the 
Holtsmark distribution function JIJ( F). This allows us 
to use at the first stage of the averaging the Chandrasek­
har-von Neumann results[7] for the quantity {F1}av F 
(the symbol { ... }av F denotes averaging at fixed F). 
Then we obtain for the mean square angular velocity 
{n2(OHav F the expression 

(Q'(O)} =~ ,G(~)-I(~) (14) 
avF 8 WF ~'I'JIJ(~) . 

Here wF = /XvoN 1/3 (A = 2IT(1'15 r~/3,;;; 2.603 and Vo is 
the most probable velocity) is the characteristic scale 
of the rate of change of the ionic field, (3 = F / F 0, where 
Fa = AeN2/ 3 is the "normal" Holtsmark field, JIJ({3) is 
the Holtsmark function[8], and G({3) and I({3) are the 
Chandrasekhar-von Neumann functions [7 J. 

Using (14) in the averaging of (8), we obtain 

W= 45n l' "',' G(e"'olaFo)-I(ewolaFo) (15) 
4 aFole (e"'olaFo)'/. . 

The result (15) has an essentially nonbinary character, 
which is manifested in the nonlinear dependence of W 
on the ion density N. Let us investigate the nature of 
the behavior of W at high and low densities. Using the 
expansion of the functions G( x) and I( x) for small and 
large values of the argumentl6,7], we have 

! 15 y2;" a'f·v • a'f'v ' a 
--'i.'I'Nl,--0-=4n'Nl'--0- -Fo":::"'o 

W ~ 4 (r)'~' O,)~I' e t 

101'vo'la, aFole> "'0. 

(16 ) 

For 01 F 01 e «wo, (16) coincides, as it should be, with 
the result of the binary theory (10) (in which we should 
set k = 2, m = 1, Ck = C2 == 01, and Cm = C I == voY). For 
OIF 0/ e » wo, the function W takes on, as follows from 
(16), a constant value which, in general, does not depend 
on the density, a result which is explained by the fact 
that the two terms get highly mixed up, starting from 
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a certain density N* ~ (wo/a)312, and the effect be­
comes insensitive to further growth of N. 

The obtained results can be generalized without dif­
ficulty to the case of a more complicated dependence of 
U1,2 on F (e.g., U1,2 ex: FP, where p = 2,3, ... ). The 
basic qualitative laws of the phenomenon are preserved 
when this is done and we shall therefore not discuss 
such cases here. 

As a simple physical example of the application of 
the results, let us consider transitions between the 
Zeeman sublevels of the hydrogen atom during colli­
sions with slow ions in a dense plasma. This effect de­
termines the polarization of the spectral line (3] . The 
existence of the point of crossing of the terms is easily 
verified with the aid of the following arguments; con­
sider the magnetic field B and the eleCtric field F, 
which separately give rise to Zeeman (~WZ) and Stark 
(~WS) splittings; let us, for clarity of argument, con­
sider the level with the principal quantum number 
n = 2 without allowance for spin and the case of parallel 
Band F; then, if ~wZ » ~wS, the components with the 
magnetic quantum numbers m = ±1 are split, while the 
components with m = 0 are unperturbed; on the con­
trary, if ~wZ «~wS, then the components with m = 0 
are split, while the components with m = ±1 are 
"mixed;" hence it is clear that as we gradually go from 
a Zeeman to a Stark term structure (by gradually in­
creasing the field F), a point of intersection of the 
m = ±1 terms with the m = 0 terms is bound to arise 
when ~WZ ~ ~wS. It is precisely this sort of situation 
that can be realized for the example being conSidered, 
in which the fie Id F is produced by slow plasma ions. 
Notice that the transition between the m = ± 1 and 
m = 0 states is induced here by the rotation of the field 
F. 

Let us estimate the order of magnitude of the density 
N at which the role of the many-particle effects is im­
portant. Assuming (see (15» 

UlO~~UlZ~ 10-' a.u., aFo/e~~Uls ",N'I'(a-i), 

we have N* ~ 10-6 a.u. ~ 1018 cm-3. In fact, the value 
of N'" can even be considerably smaller if we allow for 
the fact that the Stark constant a increases with 
n (ex:n2 ). 

Let us verify the consistency of the approximations 
considered. The condition that the effect of the pertur­
bation should be slow implies that the characteristic 
ionic field frequency N1/3VO should be small compared 
to Wo; NJ./3VO « W00 On the other hand, in order for the 
"many-particle" crossing point to exist, Wo should be 
comparable to the Spark splitting a N2/ 3 (for still higher 
densities Wo ~ aNzi3 ; see (16». The consistency of the 
two conditions requires the fulfilment of the inequality 
N 1I3a/vo» 1. As is well known from the theory of line 
broadening in a plasma[4-6], this inequality is usually 
satisfied for ions. 

From the experimental point of view, the foregOing 
example is interesting in at least two respects. First, 
by measuring in a magnetic field B the polarization of 
the line under investigation, we can, according to (16), 
observe the disappearance of the density dependence of 
the effect at N > N*; so that knowing B, we can deter­
mine N"', and vice versa. Secondly, since when 
N » N"', the quantity W ex: v~ ex: T, the computed effect 
can be used to determine the ion temperature. 
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DIPOLE-DIPOLE INTERACTION 

In the case of the dipole-dipole interaction the poten­
tial VI, 2 has the form 

[Jl - Uz ~ {<i, 21 dO (0) Ii, 2) ,= ED (0) = E I ~ (diR.) I~;- d,R.' ,. 
n ~ , 

- (17) 
As was done above, we shall assume that the inter­

action V( 0) is connected with the angular velocity n D 
of the rotation of the vector D; 

~~D(O) ~ ID.c(O) I I ID(O) I, F(O) ~1l1DQD(O). (18) 

Substituting (17) and (18) into (8) and averaging first 
over Oi(O) at a fixed value of 1 DI "" D, we obtain 

W =2 '< (D.c'(O)}'PD Ii[ - D(O)l). (19) 
nlD D'(O) Ulo e 

The remaining averaging over D requires knowledge 
of the distribution function of the fields produced by the 
dipole moments A(D). Such a distribution function was 
computed by Holtsmark[8] for randomly oriented 
dipoles di of equal magnitude do. Let us cite this func­
tion, in view of its Simplicity (and in view of the fact 
that it is not well known); 

4 z'dz ) 
A(D)dD~-;;:(1+z')" (20 

where z = D/Do (Do = 4.54Ndo is the "normal" field of 
the dipoles). 

As to the quantity {ni(O)}av D, it has thus far not 
been computed and we shall therefore restrict our­
selves to writing it in dimensionless variables. Per­
forming the necessary integrations, we obtain 

Woo D'.!!!..i:..P(~)-~[ UloeDo]' (21) 
1 eDo eDo n (EDo)' + Ulo' • 

Here WD ~ V ON 1/3 is the characteristic scale of the 
rate of change of the field D and P(x) is a function 
characterizing the rate of fluctuations in D. 

The result (21), like (15), has a fundamentally non­
binary character connected with the presence of the 
functions P( x) and A( x) that describe the fluctuations 
in the collective microfield. Although the explicit form 
of the function P(x) has thus far not been found, it can 
be asserted that in the limit of low densities when 
EdoN « wo, the result (21) should go over into the 
binary result (10) (for k = 3 and m = 1, Ck = C3 =0 Edo 
and Cm = C1 == vo'YD); on the other hand, for high densi­
ties when EdoN» wo, the probability (21) should tend 
to a constant corresponding to complete mixing of the 
terms. These results, like those obtained above, can 
easily be generalized to the case VI - V 2 a: DP (p > 1). 

The above-considered example bears a relation to a 
number of physical effects. For example, as in the 
previous case, it is possible to observe the effects of 
the depolarization of the Zeeman sublevels of an atom 
in a gas of dipole molecules. Another effect of direct 
interest is the transition between the fine-structure 
sublevels of an excited atom in its own gas. 

The result of the binary theory for suc h transitions, 
obtained by the crossing-point method (seeP]), coin­
cides with the binary limit of (21). For high densities 
(here allowance for resonance transfer of excitation is, 
strictly speaking, necessary), the formula (21) allows 
us to estimate the magnitude N* of the density at which 
the effects of the nonbinary nature of the collisions be­
come important. Thus, for the 2P 312 - 2P II 2 transi-
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tions in sodium we have: Wo ~ 10-5 a.u., 4.5Edo ~ 10 a.u., 
and N* ~ 1O- 6 a.u. ~ 10 'B cm-3 • Naturally, the value 
strongly depends on the specific transition. 

With these examples we end our investigation of 
specific types of interactions. In the present paper we 
have considered certain general laws for processes 
connected with term crossing. It is clear that the 
search for the crossing points is in each specific case 
an independent complex problem. 

. After the dis patch of the present paper to the press, 
Vitlina and Dykhne's paper[9], in which the interesting 
question of the effect of a dense medium on resonance 
charge transfer is considered, appeared. In[9] the in­
fluence of the medium is considered as some external 
(with respect to the system that is being recharged) 
factor that gives rise to resonance detuning. In the pres­
ent paper the medium is not an external factor, but per­
forms the role of one of the colliding partners. There­
fore the results of the present paper cannot be applied 
directly to resonance processes, which require special 
consideration. The main difficulty here is connected 
with the necessity for taking into account the high 
multiplicity of the degeneracy of a system of resonating 
identical particles. 

The author is deeply grateful to V. 1. Kogan and O. B. 
Firsov for a discussion of the results of the paper. 

l) Resonance and charge-transfer processes are not considered below, 
2)TIle approximation under consideration corresponds to the distorted­

wave method of the binary theory [2,3 J ' 
3)In doing this, we should take into account the factor 2 that arises as a 

result of the fact that the point of intersection is passed through twice 
(see [! J). 
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4)Notice that this case describes, in particular, the effects of the broaden­
ing of the hydrogen spectral lines in the framework of the so-called 
quasi-static theory [4,5] , 
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