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The modifications in the theory of Raman scattering of light in superconductors. which appear as a 
result of taking into account the anisotropy of the electronic spectrum and the electron Coulomb 
interaction. are considered. It is shown that the scattering probability is strongly anisotropic and 
varies from 10-3 up to a value exceeding by several times that previoulsy obtained for an isotropic 
model and without account of Coulomb interaction. 

During the period elapsed since the publication of the 
theory of the Raman effec t in superc onduc tors, (1] in teres t 
in this phenomenon has grown considerably (see (2,3]). 

This is undoubtedly related to the improved experimental 
possibilities; there is reason to hope that the effect will 
be investigated experimentally in the near future. In this 
connection we encounter the question of the accuracy of 
the calculation carried out in [1] for the simplest model. 

The model adopted in[l] for the electrons is in fact 
the model of a neutral isotropic Fermi gas. Long-wave 
and low-frequency fluctuations of the electron density 
are the fundamental cause of the light scattering. If the 
Coulomb forces are taken into consideration, then, as is 
well known, such low-frequency oscillations turn out to 
be impossible because the longitudinal electric field 
(which arises in this connection) leads to a screening 
of the charge, and consequently also leads to oscillations 
of the electron density over distances of the order of 
interatomic distances. This fact might produce an ap­
preciable decrease in the amplitude of the effect (~ (qa)4, 
where a is the interatomic distance and q denotes the 
wave vector of light in the metal) if the metal were 
ac tually isotropic. 

However, the situation is different in an anisotropic 
metal, since in actual fact the question is not that of 
fluctuations of the density but fluctuations of the quantity 
corresponding to the operator 

~ al 8 
-' .. l· + -a-a- a •• Pi p. • 

evaluated on the Fermi surface, and which is certainly 
not equal to (11m) ~papapoik' as would be true in an 
isotropic metal. It is seen therefore that to obtain a 
correct estimate of the amplitude of the Raman effect it 
is necessary to investigate simultaneously the effects 
due to ansiotropy and due to the Coulomb interaction. 
This will be done in the present article. 

First let us write down the Hamiltonian describing the 
interaction of the electrons wi th the electromagnetic 
field. The simplest procedure is to write down the 
energy operator of an electron in a lattice as a function 
of the generalized momentum p - (e/c)A and expand it in 
powers of A up to terms of second order. Then the inter­
action corresponds to the operator 

J [ e a8 e' a'8 ] Hin, = --"'+-a ",A,+-,1Jl+--a-",A.A. dV. 
e Pi 2c ap, p. (1) 

But whereas such a procedure seems natural to first 
order in A, doubts may arise with regard to the second­
order terms.l ) Let us show that this is actually so for 
not too large frequencies. We consider the model of 
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mutually non-interacting electrons in a periodic field, 
and we apply the effective-mass approximation. 

Let the energy of an electron with quasi-momentum 
p in a certain band (we are, of course, interested in the 
conduction band) be "n(P) , and let the corresponding 
Bloch function be eip . runp(r). We represent the func­
tion at a nearby point p + it in the form 

ei,p+t:'1:CnUnp(r). 
- n 

By substituting this expression in the Schrodinger equa­
tion with the Hamiltonian H = -v2 /2m + U(r), we verify 
that the "perturbation" operator is given by v . k + k2/2m 
for small k, where v = -i 'V 1m. From this we can obtain 
the following formula: 

where the summation goes over states with quasi­
momentum p in different bands. 

(2) 

The operator describing the interaction of an electron 
with an electromagnetic field is of the form 

J [ -~"'+~"'A+~"'+"'A'] dV. 
e 2me' (3) 

Let us imagine that the field contains a component with 
frequency Wl and amplitude Al and another component 
with frequency W2 and amplitude ~. We are interested 
in the part of the electron scattering amplitude which 
is proportional to Ali~k' It is expressed by the dia­
grams shown in Fig. 1 and is described by the expression 

[ ~ (-;',),m(7Jo)mn' + ~ (-;,.) nm CV,)mn' +~] e', A"A,.. 
.l...J Bn -8m +{J), .i...I Bn-Bm-{J), m e (4) 

Here the states nand m have different quasi-momenta, 
and therefore they may pertain to a single band. 

We assume that the bands are non-degenerate or " if 
degeneracy exists, then (vi)nm = 0 for such bands. Since 
we are interested in small changes of the frequency, i.e., 
WI "" W 2 , the initial and final states (n and n/) refer to a 
single band. From the summation in Eq. (4) we separate 
the term in which the state m refers to the same band as 
n does (in this case the condition m -I n is satisfied be-
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cause of the change in the value of the quasi-momentum). 
In this term (correct to within terms of order v /c) 
En = Em' (Vi)nm = (Vi)mn and therefore relative to the 
remaining terms it is of order2) 

CIl,-CIl, a 
-----<1. 

CIl CIl 

Thus, only the terms involving interband transitions are 
left in the sum. If I En - Eml » WI >::J W2 for these terms, 
then by comparing with expression (2) we obtain the 
expression a2 E/api apk inside the brackets in (4). 

Thus, calculation of the interband transitions in 
second-order perturbation theory from the first term in 
(3) is equivalent (for the case under consideration) to 
the replacement of (l/m)oik in the second term of (3) 
by a2E/apiapk' Hence one can actually use the Hamilton­
ian (1) and consider only the conduction band. 

There is no reason to repeat here the derivation given 
in [1). We only note the differences. In evaluating the 
function f (formula (~) in UJ) it is necessary to divide the 
integration into an integration over ~ and over the equal­
energy surface. Since vq » CJo (CJo is the energy transfer), 
the surface integration reduces to (as always happens in 
connection with the anomalous skin effect) an integration 
over a narrow strip v . q >::J O. In addition, it is necessary 
to take into consideration that a2 E/api apk appears in our 
calculation instead of l/m. Thus, in the anisotropic case 
it is necessary to make the following substitution in 
formula (4) of[l] 

~,R(q,)_,. ( 00'08 )'IA,.A21'(q,) I', 
m Pi p. 

and the following substitution should be made in formula 
(7) 

1 1 ( a'e )' -,f(q')--2 Sd<Pf(q"a(<p),<p)9(q.-2a(<p» -a-o-
m n ~ h (5) 

(e(x) = 1 for x > 0, e(x) = 0 for x < 0). In this formula 
the integration is performed over the strip g . v = 0, and 
only over that region where 2a«(/') < CJo. The explicit f«(/') 
dependence is associated with the factor [llv2«(/')K«(/') r1 , 

where K«(/') denotes the Gaussian curvature of the Fermi 
surface.3) This factor replaces the expression p~/V21T2 
appearing in formula (7) of [1] • 

Now let us consider what the role of the Coulomb 
interaction reduces to. The strongest effect due to the 
longitudinal electric field can be taken into account if, 
instead of diagram c on Fig. 1, we sum the chain of dia­
grams shown in Fig. 2, where the Coulomb interaction 
41Te2/q2 is denoted by the dotted lines. In the present 
case we are interested in the case qv » CJo ~ a, q « Po. 
It is easy to verify that taking superconductivity into 
account in the loops leads to corrections of order 
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(a/qV)2 « 1. In view of this, we can carry out the cal­
culation for the normal metal. In the case under con­
sideration all of the loops (With the exception of the very 
last) are given by 

. S d8 x' 
IT=-2 v(2n)3 =- 4ne' , 

where K is the reciprocal Debye radius, which is of the 
order of l/a; a is the atomic spacing.4 ) The summation 
of the loops shown in Fig. 3 leads to the apperance of a 
screened Coulomb interaction 

4ne'. 4ne' 
~~~' 

because K » q. 

The outermost loop in the diagrams shown in Fig. 2 
except in the first diagram is given by 

S dS (j'8 az; x' 
-2 v(2n)' ,0PiOP' =- 0PiOP. 4ne" 

where the bar denotes averaging over the Fermi surface. 
The sum of all the diagrams in Fig. 2 leads to the re­
sult that the difference a2E/apiapk - a2E/apiapk appears 
instead of a2E/apiapk. Therefore, the complete formula, 
including the Coulomb interaction, is not given by Eq. (5) 
but rather by 

4f(q')--21 S d<pf(q"a(<p),<p)9(q,-2a(<p» (-00'08 - 0 0': )\6) 
m l1 Pi p. p,vp. 

Now let us analyze the obtained formula. The aniso­
tropy a«(/') appears most strongly near the absorption 
threshold. Let us assume that the minimum point of 
a«(/') on the strip q . v = 0 does not coincide with an 
extremum of the remaining part of formula (6) or, if it 
does, then this extremum is not steep. Near the minimum 
a = ao[l + a(<p - (/'0)2], where a ~ 1 (a> 0). Substituting 
this result into (6) and taking into consideration that 
f 0:: ~ - 2a for ~ - 2a « a, we find that the function 
given by Eq. (6) is proportional to (~ - 2ao)3/2 near the 
threshold CJo = 2ao' From here it is seen that although 
the anisotropy smears somewhat the behavior of the 
scattering near threshold, the growth nevertheless re­
mains rather abrupt. 

We shall see below that cases are possible when a 
small range of angles near the maximum of the integrand 
gives the major contribution to the integral (6). If the 
minimum of a«(/') coincides with this point, then in view 
of the fact that a«(/') is usually a smooth function, in this 
case the previous dependence near threshold is pre­
served in practice: f(~) 0:: (CJo - 2ao). 

According to formula (6) the scattering probability 
is equal to zero in an isotropic metal, but the alkali 
metals, where superconductivity does not exist, are the 
only such examples. In all remaining metals the aniso­
tropy is quite substantial. 

Let us attempt to estimate the change in the probabil­
ity of the Raman effect due to the anisotropy. If the idea 
of a small pseudo-potential can be used as a guide, then 
far away from the intersection of the Fermi surface 
with the edge of the Brillouin zone the correction to E 
will be of the order of V2/Ep. But it is precisely this 
correction which is anisotropic. Therefore, if the direc­
tions i and k are not "special," namely, if they do not 
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: coincide with the normal to the boundary of the Brillouin 
zone, then the scattering probability obtained in [1) should 
be reduced by a factor (V /EF)4, which is usually of the 
order of 10-3 to 10-4. 

However, if we encounter a "special" direction, then 
the situation turns out differently. If the weak-coupling 
approximation is used, the formula for the energy has the 
following form near the intersection 

8= P.L'+p,;~(K/2)' ±[( p;:)'+v'r, (7) 

where pz is measured from the zone boundary in the 
direction perpendicular to it, K is the corresponding 
period of the reciprocal lattice, and V is the pseudo­
potential. If V « EF ~ K2/2m, then a2E/ap~ = a2E/ap~ 
= l/m, but a2E/ap~ = K2/m"v provided Pz < Vm/K. 

It is also necessary to recognize that the quantity 
a(cp) = [rr2v2(cp)K(cp) t appears inside the integral in 
formula (5). In the neighborhood of the singular region 
the square of the velocity, v2(cp) , is of the usual order of 
magnitude, but K(cp) ~ ";Vm ~ Po";VjEF' 

If the strip q . v = 0 does not pass near the intersec­
tion' then the neighborhood of the intersection only gives 
an appreciable contribution to a2E/ap~. The probability 
of a contribution of order EF/V is of the order of V /EF' 
Therefore, the intersection region gives a contribution 
of the order of unity to a2E/ap~. In this case for i = k = z 
the small factor does not appear in Eq. (6), and the 
estimate of the amplitude given in[lJ remains valid. 

Finally let us consider the case when the strip 
q . v = 0 passes through the intersection region. Since 
Vz = 0 at the intersection itself, it would be best to take 
q in the z direction. But in this case only the derivatives 
of E with respect to Px and Py enter into expression (6). 
Therefore we take q in the x direction and consider 
i = k = z. In the intersection region we have 

a's SF Fe 
ap,' - mY' ap,' ---; 

Therefore 

( a'S a's )' 1 8:' (8') 'I, 
ap,' - up," K(<p) -7- V . 

This region itself has a probability V /EF of being in the 
belt. 

After integration over cp we obtain the factor (EF/V)1/2 
in comparison with the old estimate. Thus, in this ~'lse 
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the effect is enhanced by a factor of several times. 

From what has been said it follows that taking account 
of the Coulomb interaction together with the anisotropy 
of the spectrum leads to a very strong anisotropy in the 
probability for the Raman effect, where this anisotropy 
may vary within the limits from 10-3 up to several times 
the value obtained in [lJ. The best condition for observa­
tion of this effect is when the incident and scattered light 
is polarized in the direction of the open orbits on the 
Fermi surface. 

I)Such doubts were expressed by I. E. Dzyaloshinskil, and the proof cited 
below appeared as a consequence. 

2)This has already been mentioned in [I ]. The consideration of suprecon­
ductivity does not change the situation. The difference between En and 
Em leads to a correction of order (v/c)2 in the summation (4). 

3)Since the momentum integration is restricted by the condition q·v = 0, 
it is convenient to use the following transformation of the integral (see 
[4], Sec. 7.3): 

S d·P .... S d.'/; dS -+Sd'S~ 
'j' v vK(it,<p) 

where idS-the integral over the equal-energy surface-is expressed in 
terms of an integral over the angles of the normal vector to the sur­
face, i.e., the velocity: K(O, </J) denotes the Gaussian curvature of the 
surface at the point where the direction'of the velocity is given by 
(0, </J). It is necessary to choose the polar axis along q. After doing 
this one is left with an integral Jd<P in which K(1T12, </J) == K(</J) appears. 

4)The expression for n is well known (see, for example, Sec. 22 of [S]). 
In the anisotropic case it is necessary to transform the momentum in­
tegral according to the rule indicated in the first footnote. 
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