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According to the nature of the field and the temperature dependences of the magnetization, dilute 
suspensions of identical particles should be regarded as paramagnetics. Relaxation of magnetization 
to the equilibrium value defined by the Langevin formula is ensured by Brownian rotational motion 
of the particles and their spontaneous remagnetization (Neel supermagnetism). When the particle 
volume exceeds a certain critical value, the Brownian motion becomes the major factor. In this case a 
macroscopic equation of motion of the suspension magnetic moment can be derived from the 
Fokker-Planck equation. The former equation contains two relaxation times, one for the longitudinal 
and the other for the transverse magnetization components. The relaxation times are proportional to 
the liquid viscosity and are decreasing functions of the Langevin argument. 

A suspension of very fine (.$ 100 A) particles of a 
ferromagnetic material is similar in its static magnetic 
properties to a paramagnetic gas. In it, the role of the 
elementary carriers of magnetism is played by parti­
cles suspended in a liquid. For the sizes mentioned, 
each of them is in a uniformly magnetized single­
domain state[l]. Far from the Curie temperature, the 
magnetic moment of an indi vidual particle is practically 
independent of the temperature and equal to 1.1. = MSV, 
where MS is the saturation magnetization of the ferro­
magnetic material and V is the volume of the particle. 
Orientation of the magnetic moments in the direction of 
the applied field is impeded by heat motion. Allowance 
for both factors, just as in Langevin's classical theory 
of paramagnetism, leads to the formula for the mag­
netization of the suspension 

M. = cMsL(fJ.If / kT), L(6) = cth 6 - 6-'. (1) 

The volume concentration of the solid phase, c = n V, 
is assumed to be so small that the dipole interaction 
between the particles can be neglected. Because of the 
large values of 1.1. (10· to 105 Bohr magnetons), satura­
tion can be observed experimentally[2) at room temper­
ature in even very moderate fields (~103 Oe). 

Much more interesting are the kinetic properties of 
magnetic suspensions. The establishment of the equili­
brium magnetization (1) is accompanied by a number of 
relaxational processes, of which some occur in the 
solid phase (that is, inside the particles themselves) 
and others are due to rotation of the particles in the 
viscous liquid. A qualitati ve analysis of these processes 
(section 1) enables us, in particular, to introduce a 
critical volume V * for the superparamagnetic state[l) 
of colloidal particles of a ferro- or ferrimagnetic 
material. 

To find the distribution function of the magnetic mo­
ments of particles with V > V *' for which a determin­
ing role is played by Brownian rotational diffuSion, in 
section 2 the Fokker-Planck equation is used. The 
characteristic values of this equation determine the 
spectrum of relaxation times of the distribution function 
W; that is, they describe the rate of approach of W(t) 
to the equilibrium (canonical) distribution Woo We have 
calculated the dependence of the lowest (most important) 
levels of the spectrum of characteristic values on the 
Langevin argument ~ = JJ. H/kT. 

In section ~, we derive from the Fokker-Planck 
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equation the macroscopic equation of motion of the 
magnetic moment of the suspension. The method used 
here is a modification of the well-known thermody­
namic method of Leontovich(3) (the effective-field 
method). The equation obtained for the magnetization 
agrees in form with the phenomenological equation of 
one of the authors[4] but differs in the dependence of the 
relaxation time on ~. 

Comparison of the results of sections 2 and 3 shows 
that the relaxation times of the magnetization actually 
coincide with the longest relaxation times of the distri­
bution function. 

1. RANGE OF THE CHARACTERISTIC TIMES 

In an external field H, the energy of a uniaxial, uni­
formly magnetized particle is[l) 

U = -lteH - KV(en)', (2 ) 

where K> 0 is the effective anisotropy constant, n is 
the unit vector along the axis of easiest magnetization, 
and e = lJ./JJ.. 

In equilibrium, the magnetic moment of the particle 
is parallel to the effective field intensity 

Heff = -fl.-'au / ae = H + 2KMs -' (en)n. 

The precession of the vector jJ., which occurs for any 
deviation of it from the equilibrium orientation, is de­
scribed by the Landau-Lifshitz[5) equation 

(3 ) 

(4)* 

In the absence of a radiofrequency field, the Larmor 
precession is extinguished after a time To = (aYHefff\ 
with a < 0.1. Hereafter we shall take as an estimate 
a = 10-2, in agreement with experimental data on ferro­
magnetic resonance in a colloidal suspension of 
nickel (6). The effective fie ld .(3)is composed of the 
external field H and the anisotropy field HA = 2K/MS. 
For H « HA, the relaxation time is 

1"0 = Ms /2a.yK. (5) 

A second characteristic time, which together with To 

determines the rate of "solid- state" relaxation pro­
cesses, is due to thermal fluctuations of the direction of 
the magnetic moment jJ.. This relaxation mechanism, 
first pointed out by Neel [7), is peculiar to subdomain 
particles: even in the absence of an external field, there 
is possible a reorientation of the vector jJ. between dif-
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ferent directions of easiest magnetization, by surmount­
ing of an energy barrier KV. The Neel fluctuation pro­
cess is characterized by a remagnetization time TN, 
for which Brown(8] obtained the asymptotic formula 

'tN = 'toa-'''ea, a = KV ( kT, (6) 

correct when (J ~ 2, with To from (5). 

If the external conditions change over a characteristic 
time t', then for t' ;> TN a system of subdomain parti­
cles, embedded in a solid nonmagnetic matrix, displays 
paramagnetic properties -superparamagnetism (1]. This 
shows up in a characteristic (Langevin) dependence of 
the magnetization on the fie ld and the temperature. 

In suspensions of single-domain particles, the equili­
brium orientation of the magnetic moments in an ex­
ternal field can be attained also by rotation of the parti­
cles themselves with respect to the liquid. This re­
laxation mechanism is described by the Brownian rota­
tional-diffusion time 

On taking into account the parallelism of the vectors 
IJ. and Heff, we find from (3) 

J.I[eH] = -2KV(en) len]. (11 ) 

The right side of (11) can be written -[n, au/an]; that 
is, it is equal to the torque acting on the particle in the 
magnetic field. Thus the equation of rotational motion 
of the partic Ie has the form 

1m + ~m = J.I[eH], (12) 

where I and ware the moment of inertia and the angu­
lar velocity; ,W is the frictional torque (for a spherical 
particle, ,= 61/V). The ratio II' determines the 
viscous time 

"f. = II ~ = PaR' 115Tj (13 ) 

(PS is the density and R the radius of the particle). For 
R:s 10-6 and 1/ "" 10-2 we get TS;S 10-10 sec. The small­
ness of TS permits us to neglect the inertial term in 
equation (12) in comparison with the viscous. 

't. =3TjV I kT, (7) We shall hereafter suppose that, in addition to (10), 

where 1/ is the dynamic viscosity of the liquid. 

Thus, the dynamics of the magnetization of a suspen­
sion is linked with two fluctuation mechanisms. These 
mechanisms are physically different: the Neel mecha­
nism is determined by the properties of a dispersed 
ferromagnetic material, the Brownian by the viscosity 
of the liquid. At the same time, there is a definite 
similarity between them: the Neel process can be 
considered(7J as a rotational diffusion of the magnetic 
moment with respect to the body of the particle, that is 
as a certain analog of the Brownian rotation of the par­
ticles in the liquid. Consequently, the mean square of 
the angular displacement of the vector IJ. after time t 
must be equal in order of magnitude to 

«68)') = 2t('t.~t + 'tN-t). (8) 

Thus the more important mechanism is the one that is 
described by the shorter rotational-diffusion time. 

According to (5)-(7), the equality TN = TB holds 
when 

a-'I'ea = 6a'YTjM.-t. (9) 

The value (J. that is the solution of equation (9) deter­
mines a critical volume V. = (J.kT/K for the super­
paramagnetic state of a particle. On settingf} = 10-2, 

MS = 1500, }' = 2 '107, and O! = 10- 2 in (9), we find 
(J. "" 4. For the critical radius of particles of iron 
(K = 4.8 .105) and of hexagonal cobalt (K = 4.5 . 106 ), 

at room temperature, we get 40 and 20 A. respectively. 
Particles with V < V", (TN < TB) are superparamag­
netic. In a suspension of ferromagnetic particles, 
V ;> V", (TN;> TB), and consequently the establishment 
of the equilibrium orientation of the magnetic moments, 
as is seen from (8), is guaranteed essentially by rota­
tion of the particles; that is, the relaxation time of the 
magnetization of such a suspension is of the order of 
TB. For (J 2: 10, the condition 

(10) 

is satisfied. In this case, the internal state of each 
solid particle, during the process of magnetization of 
the suspension, can be considered an equilibrium state 
(after time TB the precession of the magnetic moment 
has become extinguished, whereas the Neel fluctuation 
mechanism is "frozen"). 
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the inequality H « HA is satisfied; that is, 

~ <: a, a ;;;'10. (14) 

Then, as is seen from (3), the vector IJ. = Ile will be 
directed along the axis of easiest magnetization; con­
sequently, in the kinematic relation 

n=[mn] (15 ) 

n may be replaced bye-the condition (14) enables us 
to treat each particle as a rigid magnetic dipole. Then 
on eliminating w from (12) and (15), we get the equation 

e=-(/l/6TjV)[e[eHll. (16) 

2. RELAXATION OF THE DISTRIBUTION 
FUNCTION 

The distribution function of particles suspended in a 
liquid, with respect to the orientations of their magnetic 
moments, is subject to the Fokker-Planck equation. On 
allowing for the rotational diffusion of the vector e and 
for its regular change (16) under the influence of the 
field, we get 

&W / &t = -(2"t.)-t div [e[e(V - s) llW. (17) 

The differential operators here contain only the angular 
variables; in spherical coordinates, with the polar axis 
along ~, equation (17) takes the standard form (3] 

&W & [ ( &W )] f &'W 2't.sin~--=- sin~ --+~sin~W +--_. 
&t &~ &~ sin ~ &<p' (18) 

The normalized stationary solution of equation (17) is 

(19 ) 

During the process of approach of the system to the 
equilibrium state (for example, after sudden switching 
on of the field), the distribution function can be repre­
sented in the form 

- , 
W = Wo + L.1: A'm!tm (x) exp {~x - im<p -1..'mtI2"t.}. (20) 

1_1 m __ t 

The coefficients AZm are determined by the initial con­
ditions-the orientational configuration of the system of 
dipoles at the instant t = O. 

On substituting (20) in (18), we get the equation 

(1-x')!,m" +[6(1-x')- 2x]f'm' + (1..lm -~)!'m = 0, (21) 
i-x' 
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whose characteristic values Alm (~) determine the 
spectrum of relaxation times Tlm = 2TBAZ:n of the dis­
tribution function. All that is required of the character­
istic functions flm (x) is finiteness in the interval 
-15x5+1. 

In the absence of an external field (~ = 0), equation 
(21) is satisfied by the associated Legendre polynomi­
als, 

{ 21+1 (l-m)! }'" /.m(X)= ---(--)- p,m(x), /.'m(0)=I(I+.1). 
2 I+m! 

The magnetic field partially removes the degeneracy 
with respect to m: each (2l + 1 )-fold degenerate level 
splits into l + 1 levels, differing in their values of 
\ m \. In the case of a weak field (~ < 1), perturbation 
theory can be used. In the second order, we find 

~J~ f--~~'Ir',<-f---.~~~f--~--'-

J III 

Dependence of relaxation times on dimensionless field ~. Solid lines: 
Tl,oCII) and Tl. ±1 (1), calculated by Galerkin's method. These curves are 
approximated by the functions Til and Tl of (28) with accuracy 15% (II) 
and 7% (1). Dotted lines: Tl from (30). 

1 { l(l + 2) [(l + 1)' - m'] (I' - 1) (I' - m') } s'. The solution ~ e (~ , t) of equation (25) determines the 
/.'m (s) = 1(1 + 1) + 2 (21 + 1) (l + 1) (21 + 3) (21- 1) I magnetization of the suspension 

(22 ) 
We are basically interested in the smallest character­
istic numbers (the largest T lm), since, except in the 
earliest stages of the relaxation process, it is they 
that determine the rate of approach of the system to 
equilibrium. For the longest relaxatiOn times we get 
from (22) 

(23) 

The calculation of the characteristic values of equation 
(21) for ~ 2: 1 was done by Galerkin's method. The 
function flm with fixed m was approximated by a 
linear combination of the first twenty polynomials 
pF(x), differing with respect to the lower index. The 
characteristic determinant has tridiagonal form; 
diagonalization at each step with respect to the parame­
ter ~ was accomplished with an electronic computer. 
In the Alm( ~) spectrum obtained, there are no inter­
sections, so that relazation times T1,o and Tl,±l appear 
fundamental over the whole interval investigated, 
o < ~ < 15. Their dependence on ~ is shown in the 
figure. 

3. MACROSCOPIC EQUATION OF MOTION. 
RELAXATION OF THE MAGNETIZATION 

Equations for tht;! macroscopic characteristics of a 
magnetic suspension can be obtained by averaging of 
the corresponding quasimicroscopic quantities with a 
distribution function satisfying equation (17). For ex­
ample, for the magnetization of the suspension, nlJ.(e) , 
we get from (17) 

(24) 

Equation (24) for the first moment of the distribution 
function contains the second moment, the equation for 
the second contains the third and so on' that is one 
gets, as usual, an infinite sy~tem of cou'pled eq~ations. 
Closure can be accomplished in the effective-field ap­
proximation. In accordance with the idea of Leonto­
vich's method[3J, we shall suppose that at each instant 
the distribution function W( t) coincides in form with 
the equilibrium function Wo, but with replacement in 
(19) of the actual field by a certain effective field ~e. 
On performing the averaging in (24) with the distribu­
tion function introduced in this form, we get the equa­
tion for the effective fie ld 

i) { s.} 2TsTt L(6')1:" = - 26.-'L(s.) (s. - s)- s,-' {3L(s.)- s.>ls.rn.lJ. 
(25) 
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We shall consider the case of Slight nonequilibrium, 
when the effective field is close to the actual field, 

For the nonequilibrium part of the magnetization, 

m =M-Mo =nJ.l{L(s.)s./s.-L(m/s} 

we get in the linear approximation with respect to v 

m =nJ.lL(s) {(din L(6) I d In m-'(Sv)s + s-\'}' (26) 

Then on carrying out the linearization of equation (25) 
and, in it, expressing" in terms of m by means of 
(26), we get the equation of motion of the magnetization: 

m = -H (mH) I TIIH' - [H[mH]] I Tllf', (27) 

which describes a relaxation of the components of m 
parallel and perpendicular to the external field with 
time constants . 

dlnLm 2L(6) 
Tg= dins Ts, TL = s-L(s) (28) 

These formulas reduce for ~ « 1 to 

Til = (1-;- 'I"S')Ts, TL = (1- 'I"S')T. 

(compare with (23)), whereas the asymptotic form for 
~ » 1 gives 

The macroscopic relaxation times (28) are close to 
the quasimicroscopic Tl,m' For all values of ~, the 
equalities 

(29) 

are satisfied with accuracy no worse than 15%. 

The results obtained are easily generalized to a 
suspension of nonspherical particles. For example, let 
each particle be an ellipsoid of revolution with volume 
V = %1Tab 2 and with magnetic moment directed along 
the nondegenerate semiaxis a of the ellipsoid. In this 
case all the changes in the formulas gi ven reduce to a 
simple renormalization of the rotational diffusion coef­
ficient: TB must be divided by a certain function <1>( E ), 

where E == b/a. We shall not give here the unwieldy 
expressions that define <1>( E) separately for oblate 
( E > 1) and prolate (E < 1) ellipsoids; these formulas 
can be found, for example, in[9 J• We point out only that 
the value <1>( 1) = 1 is a maximum; that is, <1>( E) < 1 for 
E '" 1. Consequently, nonsphericity of the partic les 
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should manifest itself in an increase of the relaxation 
times of the magnetization. 

In closing, we mention that equation (27) can be de­
ri ved also by a phenomenological method[4]. In the 
paper[4], a linear law was assumed for the relaxation of 
the vector magnetization, with time constant TB. An 
additional (Landau-Lifshitz type) relaxation term ap­
peared as a result of allowing for the rotational degrees 
of freedom of the particles (the same considerations 
were used as in the derivation of equation (16». In 
brief, Til remained equal to the "priming" constant TB, 
whereas T 1 turned out to depend on the field: 

'II = '0, '1. = 21:0 / [2 + 6L (S) I. (30) 

Equation (27), with the relaxation times (30), was 
applied in[4J for calculation of the rotational viscosity 
t:.. 7J of the suspension. This is independent of Til and is 
expressed in terms of T 1 by the formula t:.. 7J = Y4MOHT 1. 
The T 1 obtained with the phenomenological deri vation 
from (30) gives values close to the T1 from (28) (see 
Figure). This evidently also explains the good agree­
ment of theory[4] with experiment[lO] in the dependence 
of the viscosity of magnetic suspensions on the field. 
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* [JlHeff 1 == Jl X Heff . 
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