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The phase transition in multivalley cubic semiconductors with electron-phonon coupling via the 
deformation potential in a magnetic field leading to quantization of the carrier motion (variation of 
their energy spectrum) is considered. A nontrival distribution of the electrons over the valleys arises 
in the new phase as the result of a spontaneous homogeneous anisotropic deformation appearing in 
the crystal, which deforms the carrier energy spectrum. The phase transition region is a series of 
separate or overlapping regions on the "concentration-temperature" diagram, the higher regions 
approximately reseinbling the first one adjacent to the point N = T = 0 (N is the electron 
concentration and T is the temperature). In the case of a multivalley band structure of the n -Ge 
type, states with one, two, or three enriched valleys are possible. Each of these states is absolutely 
stable in a certain range of N and T values. The regions are bounded by first-order phase transition 
curves which contain separate second-order phase transition points. 

INTRODUCTION 

The deformation interaction of current carriers with 
the lattice can lead to a phase transition of a cubic 
multi valley superconductor to an anisotropic state pl 
The anisotropic phase of the semiconductor is charac­
terized by a spontaneous homogeneous uniaxial defor­
mation along one of the symmetric crystalline direc­
tions. The energy spectrum of the carriers is distorted 
here: the energy of one or several of the valleys is de­
creased and that of others increased. As a result, a 
nontri vial carrier distribution among the valleys is 
achieved. Generally speaking, several such states 
exist, to which correspond deformations along different 
axes of the crystal and different variations of the energy 
spectrum. Anisotropy of the properties of the crystal 
to which the carriers make a contribution (electrophys­
ical, elastic and other characteristics of the semicon­
ductor) should appear in the new phase properties. 

The critical condition for the phase transition de­
pends on the temperature T and the carrier concentra­
tion N, and can be represented in the form A ( N, T) 
~ 1, where the parameter A(N, T) reaches a maximum 
as T - 0; max A ~ b~AdEF/dNrl (b and A are char­
acteristic combinations of the constants of the deforma­
tion potential and the elastic modulus E( N) is the Fermi 
energy of the carriers). If we take b ~ Ea and 
A ~ Ea/ag, 

(3,,') 'I'm. 
8F "" v'I'm' (Na.')'I'E. 

(here Ea is an energy of the order of atomic energies, 
ao the lattice constant, aB the Bohr radius of the hy­
drogen atom, m* the effective mass of the carriers, II 

the number of valleys), then the following order of mag­
nitude estimate is obtained for the critical concentra­
tion in the region of actual temperatures T < EF: 

N 3d<~ (m.a •• ) .... .a. , ., 6. 
v mao 

In semiconductors in real cases, the number of car­
riers is much smaller than the number of atoms in the 
lattice (Nag ~ 1); therefore the effect should appear in 
crystals with large effective mass of the carriers. 1) In 
the cases m* « mo, it turns out that Ncag ~ 1, i.e., 
the critical condition has not been achieved experi­
mentally. 
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A different situation obtains in the case of a strong 
magnetic field that leads to quantization of the motion 
of the carriers and which changes the dependence 
EF( N). Actually, when the Fermi level approaches the 
Landau level, the density of states in the band increases 
without limit and dEF / dN - O. Then, according to the 
estimate given above, A - 00, i.e., the critical condi­
tion is satisfied in a number of intervals of values of 
N, which are determined by the equality EF(N) ~ liwk, 
k = 0, 1,2, .... For finite T, this should lead to the 
existence of a number of separated or overlapping 
regions for the thermodynamic variables Nand T, in 
which the effect is possible. The concentration barrier 
which exists in the absence of a magnetic field disap­
pears. In fact, for small N, when the ultraquantum 
case is achieved, we have 

Ea' 
8F(N) ",,(Na.')' (1iw),6<1iw, 

so that A ~ N-" (w is the cyclotron frequency). If 
nw < ~ Ea , then an isolated interval of concentrations 
bordering on the value N = 0 must necessarily exist, 
and an estimate of the critical concentration gives 
Nca~ :s (nw)2/E:i~. It is easy to determine in this case 
the range of temperatures for which the critical condi­
tion T < EF(Nc ) is satisfied, i.e., Tc :5, (liw)2/Ea~. If 
nw > ~ Ea , then all the regions in the NT plane overlap, 
and the effect is possible for any N, if T < liw. 

The magnetic field not only leads to a change in the 
region of the phase transition, but also has a material 
effect on the resultant anisotropic phases. Thus, in a 
multi valley semiconductor with a band structure of the 
n-Ge type, when states with one, two or three sunken 
valleys are poSSible, the thermodynamically most 
favored (in the absence of a magnetic field) are the 
single-valley states. In a magnetic field, it turns out 
that there are regions of absolute stability for each of 
the "deformed" states. As a result, there are on the 
NT plane, in addition to the phase transition curves of 
the crystal from the initial state to the anisotropiC, 
first-order phase-transition curves along which the 
different anisotropic phases coexist, and isolated points 
of second-order phase transitions appear, at which 
these curves terminate. In the two-valley situation (a 
two-valley semiconductor or, say, a four-valley one in 
which the valleys are pairwise equivalent in the aniso-
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tropic phase), first or second order phase transitions 
can be achieved, depending on the values of Nand T. 
Points appear on the NT plane at which the curve of 
second order phase transitions joins with the curve of 
first order phase transitions (a second order phase 
transition is always achieved in this situation in the 
absence of a magnetic field). 

We shall consider below the theory of phase transi­
tions in multi valley semiconductors in a quantizing 
magnetic field. 

1. FUNDAMENTAL. EOUATIONS 

For the study of the spatially homogeneous states of 
a monopolar multi valley semiconductor, we write down 
the free energy density of the crystal in the form 

F = ~ 1." .. uljU" + t b,\·)ulin. + t F •• (n.) , (1 ) 
a=1 a._t 

where Aijkl' Uij, bH~) are the respective components of 

the tensors of elastic moduli, the deformation and the 
constants of the deformation potential; Ila and FO'e(nO') 
are the concentration and free energy of the carriers of 
valley O!, v is the number of valleys. It is convenient to 
express the free energy F O'e for carriers located in a 
quantizing magnetic field in terms of the thermody­
namic potential in the variables T, V, and !l 
- Q(T, V, !l )[2]: 

F •• (n.) = I'.n. + Q(T, 1'.) "" I'.n. - g/iro.T'I'q>'I. ( ~ - 'M., tt.) . (2) 

Here g = (1/21T2)(2m*/n2)3/2, m* is the effective mass 
for the density of states, wO' is the cyclotron frequency 
of the electrons of valley 01, ~O' = nwO'/T; the following 
notation is also introduced for the Fermi integrals: . 

q>.(z, ttl "" 1:, <1>.(z - mtt), 
to dxx' 

<1>. "" J""(-e.--.-+,......,.,1),.-. (3) 
o 

Since the variable in F O'e (nO') is the carrier con­
centration Ila, we can assume !lO' = !lO'(nO') in (2). The 
explicit form of this relation is found from the condi­
tion 

Variation of the free energy (1) with respect to the 
variable Uij gives an equation for the components of 
the deformation tensor: 

The equations for nO' are Similarly obtained from 
(1) with account of (3)-(5): 

where EF is the Fermi level in the deformed crystal, 
and is found from the condition of the constancy of the 
total concentration of the carriers: 

(4) 

(5) 

(6) 

(7 ) 

Equations (5)-(7)'completely describe the possible 
states of the crystal in a magnetic field. These states 
and the changes in the free energy F corresponding to 
them will be considered below in the example of a semi­
conductor with an energy band structure of the type of 
n-Ge. For definiteness, we renumber the valleys lying 
on the axes [111], [ill], [iil] and [lil] as 1,2,3,4, 
respectively (the coordinate axes are directed along the 
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fourfold crystallographic axes). We denote the nonzero 
components of the tensor Aijkl by AXXXX = A1, AXXyy 
= A2, Axyxy = A3' Then, with account of the symmetry 
properties of the tensor bIT, we obtain an expression 
from (5) for the components Uij: 

b".N 
U==UIlIf=UU=----, 

1.., + 21., 
1 1:, ") . 

UIi=-- b'j n., 1+1. 
21., (8 ) . 

We also assume that the magnetic field is directed 
along a fourfold symmetry axis, so that all the valleys 
remain equivalent and i/O' = O. In this case, as also for 
~ = 0, Eqs. (6)- (8) ha ve solutions of the following types. 

A. Two-valley solutions. These solutions possess a 
sixfold degeneracy and correspond to spontaneous uni­
axial deformation along directions of the type [110], for 
example, 

(9 ) 

B. Single-valley and three-valley solutions. Each of 
these solutions has a fourfold degeneracy and corre­
sponds to deformation along a direction of the type [111], 
for example, 

(10) 

The single-valley and three-valley states differ from 
one another only by the sign of the deformation and the 
intervalley redistribution. 

2. SECOND ORDER TRANSITIONS. TWO-VALLEY 
STATES 

We now consider the two-valley solutions. Inasmuch 
as it is not possible to find the explicit dependence 
!l0l (nO') in the general case from (4), we limit our­
selves at first to the case of small redistributions 
((na - no)/no = ~O' « 1, no = N/v), for which 

~",t·q>{1_ t.qxp" + t.'q>' ( ".-..!. "")+ } (11) 
T q>' 2(q>')' 2(q>')' q> 3q>q> ... , 

here and below, 'P = 'P-!/2(ZO), where Zo = !lofT is the 
reduced chemical potential for uniform filling of the 
valleys 

N == vgT'I·/iroq>_'I.(zo, tt). (12 ) 

From (2) and (11), we find the variation of the free en­
ergy of the electrons from valley a upon change in 
their concentration: 

{ t.'q> t.'q>'q>" + t.'q>' ('" 1 '''')} 1'lF •• = Tn. z.t.+2;'"-""'6'W)' 8(q>')' q> -'3q> q> . 

In the two-valley Situation, introducing/; = Y2(/;1 
- /;2) (see (9)), we get 

~ tJ.F •• =.!-TN t'q>{1_+~( "'_..!. '" ')} ~ 2 q>' 4(q>')' q> 3 q> q> . 

Expressing Uij in terms of I: with the aid of (8), and 
denoting 

'1 = 2bu"" IT = -tAq> I q>', 

(13) 

(14) 

we get for the change in the total thermodynamic poten­
tial (1) and small solutions Tj: 

2~ . 
MT",,--tJ.F =(l-A)'l' + C(N, T)'l' + ... , 

I.,T' 

Tj=±[(A-1)/2C)''', A>1, (A-1)<t:1. 

Here the parameters A and C are defined by the 
expressions 

b'N q>'(z.,tt) 
A ""'----

·I.,T q>(zo, ttl , 
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(15) 

(16) 

(17 ) 
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C"" '/,(q/)-' (q>''' _ t/,q,'q{"). (18) 

The expression (15) has the form of the character­
istic Landau(2] expansion of the thermodynamic poten­
tial near a second order phase transition point. As an 
expansion parameter, we use the quantity 1], which de­
termines the degree of deviation from the state with 
uniform filling of the valleys. The transition takes 
place under constant external stresses, the thermody­
namic variables are the carrier concentration, the 
temperature and the magnetic field; for example, the 
curve A{N, T) = 1 on the NT plane is the continuous 
line of points of the phase transition. The results (15)­
(16) are valid for C > O. At the points C = 0, joining 
of the curves of the first and second order transitions 
takes place. The total change in the free energy for the 
phase transition is found from (15), (16): 

/J.fr = -(A -1)'(<p')' / [(<pH)' - t/,<p'<p"'J (15') 

and allows us to calculate the entropy change {t..S 
~ (A - 1) and the j':lmp in the specific heat in the 
usual way. 

We analyze (in the variables Nand T) the region of 
existence of the two-valley anisotropic states, whose 
boundary, in accord with (12) and (17), is determined by 
the conditions 

'it';;; <p_'I.' (zo. 'I}) • x = l't <P-'I. (zo. 'I}). (19 ) 

where the dimensionless concentration and temperature 
have been introduced: 

X"" m., / (2gnrob)'. tEO n,' / (2b'gnro)'. 

Equations (19) become simplified for fiw > T. As 
T - 0, when the Fermi level satisfies the conditions 
r - 1 < z < r, z:; zo/J, i.e., when it is populated by 

(20) 

r Landau levels (r = 1, 2, ... ) and the electrons on the 
levels are strongly degenerate, while the contribution 
of the highest levels is insignificant, Eqs. (19) take the 
form 

2 r:,-t -
x=-=.. l'z-m, 

l'e -
m=O 

( 2gb' )' e""nro -­
I., 

(21) 

It is seen that in this case the dependence of A on z 
takes on the same character as the dependence of the 
density of states on the energy in a magnetic field, i.e., 
A becomes infinite for the values z = 0, 1, 2, .... This 
leads to the result that (21) is satisfied in a number of 
intervals of values of the concentration K. Each of 
these intervals begins at 

. 2 f,' 
Xir~= l'8 i...J,m"'. 

m";'~· 

Depending on the values of the magnetic field e, we 
can have either separated intervals or overlapping ones. 
For f!9 ~ 1, the separated intervals are absent, and the 
effect takes place for any value of the concentration. 
For ..[2/ (I + ..(2) < f® < 1, a single interval exists, 
which~s separated and adjoins K = O. It terminates at 
K = 2. In the general case, for 

the first r intervals will be separated and all the sub­
sequent ones overlap, forming a continuous interval of 
values of K in which (21) is satisfied. 
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FIG. I. Dependence of the concentration l.It----_.'_ 
on the temperature. The first region of phase 
change K = K,(t)-curves I and I'. Curves 2 
and 2' bound the region of absolute stabili-
ty of states of the two-vaHey type, and ·1' 
curves 2, 3 and 2',3' pertain to one- and 
three-vaHey states, respectively. 

c. 

At a finite temperature, these intervals indicate the 
presence of a series of regions, part of which is 
separated on the NT plane under conSideration. The 
boundaries of these regions depend in general on ®. 

For the first isolated region (z < 1), it is necessary to 
take into account only the first component in 'P- l/~. In 
this case, the explicit dependence on the magnetic field 
drops out, and in place of (19) we find 

(19') 

The Kl{t) dependence that follows from (19') is shown 
in Fig. 1 by the lines 1 and 1'. For small K, the bound­
ary of the region coincides with the straight line x = t, 
i.e., it is determined by the expression for the parame­
ter A, which is characterized for the case of nonde­
generate carriers. In the region of maximal tempera­
tures, for which the effect still exists, the curve K1{t) 
takes the form 

x - x, = ±Il(t, -t)"', .Il' "" (<p" II <p'" I ).~ ... (22) 

where KC = Y ~ { 'P 2 )z' , tc = {'P )z~ and Zc is found from 
the condition c 

(d'<p_:. / dz') •• = o. 

The upper boundary of the region is determined as 
t - 0 by the line K = 2. Here, according to (18), the 
coefficient C{N, T) in the expansion (15) vanishes at 
some point NA, TA (actually, C ~ -1T~/ 48z~ < 0 as 

(23) 

t - 0, KA and t < tA, as t - 0, the solution can be 
obtained by USing the general formulas (2)-(4) without 
assuming smallness of 'a. We then get for the free 
energy of the electrons 

~ nro ·N' ~ 
i...J,Fe·=T N +3v'(gnro)' i...J,(l+~e)'. 

ex '-ct 

(24) 

Using (I) and (24), we can find that a nontrivial solution 
appears only jumpwise, so that all the carriers turn out 
to be in a single valley and correspondingly 'a = 1. The 
decrease in the thermodynamic potential and the limit­
ing expression for the parameter A have the following 
forms in this case: 

/J.F=- N'(A-i)· 
(4gnro) , • A = b'(4gnro)'/21.,N. (25) 

The approximate course of the curves Kr { t), (r > 1)­
the boundaries of the succeeding regions-can be ob­
tained for ® « 1, when there are several isolated 
regions. For 

• n {2q (r)} t<t =--exp ---
q'(r) q(r)-1 • 

,-t 

q(r)"'" 1-l'8 Em-'''. 

close to Kir we find 

x-xir=tlnCV: q(r») (l-q(r». (26) 

Outside this exponentially small region, for t > t*, the 
Kr{ t) dependence differs from the Kl{ t) dependence 
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considered above only by a change in scale, i.e., the 
following similarity holds approximately: 

x, (t) = x ir + q ~r) x, ltq' (r) ], r= 1,2, ... (27) 

The boundaries of the considered regions Kr(t) are 
curves of second order phase transitions only for 
C(N, T) > O. In the general case, C vanishes at finite 
t for the isolated regions; as K - Kin, t - 0, the coef­
ficient C(N, T) - Y6 and at the ends of the curves, 
when K - Kfr, t - 0, r > 1, 

(28) 

-Cf>-m)-"')(E (z-m)-'I. )}<o. 
o 0 

(The latter follows directly from the well-known Cauchy­
Bunyakovskii inequality.) Thus the points 

A(N"T,) = 1, C(N" T,) =0, (29 ) 

exist on the curves Kr(t) at which the first two terms 
of the expansion (15) vanish. In the vicinity of these 
points, one must keep the term in (15) with 1/ 6 
- (YS)DTj6. We then get as a solution, in place of (16), 

Tj' = D-'( -C ± l'C' + (A - 1)D), (30) 
<p" tp(IV) <p" cp(V) 

D(N"T,) ... D(z,)= 8(cp')' (7) - 120cp' ; (31) 

here the value of the argument of D corresponds to the 
points (29). 

If C > 0, then the solution with the plus sign in front 
of the radical of (30), for C 2 » I D(A - 1) I goes over 
into (16). If C < 0 and D> 0, then the solution with the 
plus sign (in the vicinity of the points (NX, TX), this 
solution still appears small) shows up as a jump at 
C2 = (1 - A)/D and corresponds to the minimum of D.F. 
The second solution of (30) corresponds to the maxi­
mum of D.F and determines the height of the barrier 
which separates the trivial state from the "deformed" 
state. Thus, for C < 0, the phase transition turns out to 
be a transition of first order, i.e., the points NX, Tx 
are points of joining of the first and second order 
phase-transition curves (X points). The first order 
transition curve is found from the condition D.F(1/) = 0, 
where Tj is taken from (30) and is determined by the 
condition 

C' = '1,(1- A)D. 

It is easy to show that all the phase transition curves 
do not undergo a discontinuity at the X points. In the 
vicinity of these points, we have in place of (15') 

(32) 

MT = -'I,! (A - 1)' I DJ'''. (33) 

whence it follows that the entropy chanJe for a. phase 
transition of the system D.S ~ (A - 1) 2and the un­
bounded increase in the specific heat is D.ca 
~(A-1rJ/2. 

In the case D < 0, both types of solutions of Eq. (30) 
for 1/ ~ near Nx , Tx have a meaning for C > O. The 
solution which transforms into (16) corresponds to a 
relative minimum in D.F, while the second, larger solu­
tion is a maximum. Consequently, there should exist 
one more type of minimum of D.F with, generally 
speaking, large deformations and repopulations (I] ~ 1) 
for which (15) and (30) are unsuitable. The point Nx, 
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Tx itself is unstable in this case "accumulation" takes 
place for it (without an activation barrier) in the state with 

Tj ~ 1. Thus, the case D < 0 indicates the existence of 
a region of values of Nand T at which two stable 
states exist, one of which corresponds to a relative 
minimum in D.F and is metastable. Close to the point 
(29), states with small repopulation are metastable. We 
note that the presence of two stable states should lead 
to hysteresis effects in the spontaneous deformation 
and intervalley redistributions for a change in Nand 
T. 

3. FIRST ORDER TRANSITIONS. STATES OF THREE 
AND SINGLE-VALLEY TYPES 

Results similar to those given above can be obtained 
also for single-valley (three-valley) states (see (10»: 
for them there is also a number of separated (or over­
lapping) existence regions on the N, T plane, always 
bounded, in contrast with (9), by curves of first order 
phaSe transitions. One can show that in each of these 
separated regions, a region is preserved which corre­
sponds to two-valley solutions, so that the states of 
type (10) are realized over a broad range of values of 
Nand T. 

Let us consider in more detail the first region of 
existence of solutions of type (10). At T = 0, when the 
electron part of the free energy is given by the expres­
sion (24), it is easy to find that one-valley solutions 
exist in the range 0 ~ K ~ 2, while for 0 ~ K ~ 1, this 
solution corresponds to complete redistribution of the 
carriers in one valley U; 1 = 3) and for 1 ~ K ~ 2, for 
the partial one: 1:1 = 3(2 - K)/ K. For 2 ~ K ~ 3, this 
latter goes over into a solution of the three-valley type. 
Another solution of this type with destruction of one of 
the valleys (1:1 = -1, I:~ = 1:3 = 1:4 = Ys) is realized in the 
interval 0 ~ K ~ 3. For T ~ 0, we can find the change 
in the thermodynamic potential in the following form by 
using the formulas (11 )-(13): 

'1,t:>.f1T = (1-A)Tj' +'I,BTj' + 'I,C'Tj' + ... , ITjI¢: 1. (34) 

Here C' = 14C, A and C are determined by formulas 
(17) and (18), and B = q;"/q;; according to (23), it 
changes sign at z = zc, which on the (K, t) plane corre­
sponds to the parabola K = ff<p-J/z(zc). In the region 
K < ff<p-J/~(zc), it turns out that B> O. The extremum 
of the expression (34) is achieved at 

1 
Tj= 2C,(-B±l'B'-4(1-A)C'). (35) 

Both these values are suitable only near the point B = 0, 
A = 1. The absolute minimum of D. F corres ponds, in 
the region B > 0, to the solution with a minus sign 
(Tj < 0, the one-valley solution), and in the region B < 0 
to the one with a plus sign (1/ > 0, the three-valley solu­
tion). These solutions appear jumpwise (for B ~ 0) and 
for them D.F ~ (A - 1), D.S = const (first-order transi­
tion). The transition curve can be found from the condi­
tion D.F(Tj) = 0, near KC and tc it has the form K - KC 

= ±Ih~, where o~ = (2Y13) (/ (compare with (22». 
The point B = 0, A = 1, according to[31, is a separated 
point of a second order phase transition (1/ ~ ± ffC=t 
for K = KC). Far away from this point, the solution and 
the curve of first order phase transitions can only be 
obtained numerically by using Eqs. (5) and (6), with (10) 
taken into account. 

Other solutions of (35) appear for A 2: 1, varying 
smoothly from zero, are small and are suitable near 
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FIG. 2. Qualitative dependences 
.,.....---" of 1/ and M"onK for fixed t. The 

broken lines correspond to stable 
states, the dashed lines to unstable. 
The path of 1/(K) and M(K) for 
states of the two-vaHey type are 

."...'4--- J( indicated by the. curves 2, while 
curves I and 3 give the correspond­
ing curves for one- (1/ < 0) and three­
vaHey (1/ > 0) states, respectively. 

the whole curve A (K, t) = 1. For B '" 0, we obtain 
1} = (A - 1 )/B, i.e., this solution corres ponds to the 
three-valley state in the region B > 0 and to the one­
valley one at B < O. The expression (34) takes the form 
~F = -3(A - 1)3/B2 near A = 1, B = O. In the vicinity of 
(KC, t c ), the explicit,curve 1}( K, t) can be obtained: 

3 ( ':1/76' 4 )' 
T]= 7(cp')' x-X,±ly 3(t,-t)-3(x-x,)~ , (36) 

This character of the T/( K, t) dependence is preserved 
qualitati vely over the entire region of existence of the 
solutions and'is illustrated in Fig. 2a. In this drawing 
the stable states (corresponding to minimum F) are 
shown as solid lines, while the dashed lines indicate 
unstable states. 

The existence of several types of states in a single 
region of the variables (K, t) requires the determina­
tion of the thermodynamic suitability of these states. 
This can be accomplished in the two limiting cases. As 
T - 0, we obtain the following change in the thermody­
namic potential for one-, two-, and three-valley states, 
respecti vely: 

AF, = -Fox'(6 - 5x), O~K~ 1, 

AFII = -Fox'(2-x), 0.;; x.;; 2, 

Fo=(Ii;:)\" (37) 

O~x<3, 

AF,_III = -Fo(2- x)', 1~x:S;;;3, 

The first three states correspond to an intervalley re­
distribution with a complete destruction of the valleys 
in the corresponding states, the fourth is the partial 
repopulation in the single valley (1 ~ K ~ 2) and three­
valley (2 ~ K ~ 3) states (the latter do not generally 
correspond to minimum in F). From (37) we obtain the 
result that, in the range of values K [0, 1], an absolute 
minimum F is achieved for single-valley states, in the 
range [1, %] for two valley, and in the range ['Ys, "%] 
for three-valley (for "% ~ K ~ 3, the three-valley solu­
tion is metastable). For T '" 0, one can equate the dif­
ferent phases near the point (KC, tc ). From (15), (16) 
and (34)-(36) we find the equilibrium curve of two­
valley states with states of the type (10). This curve 
touches the line A( N, T) = 1 at the point (KC, t c ) and 
has the form: K = KC =±62(tC - t)Ji2, where 62< I) 

(compare with (22)); in the continuation into the low 
temperature region, its branches should terminate at 
the points (1,0) and ('Ys, 0). It is easy to show that, on 
the line of coexistence of one- and three-valley states: 
K - KC = (t - tc )'P/2Q,')z=zc' Similarly, with the help of 
(15), (16) and (34), (35), we can investigate the depend-
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ence of ~T( K, t) in the vicinity of B = 0, A = 1, which 
is represented in Fig. 2b. Such a character for the 
behavior of ~T is maintained qualitatively through the 
entire range of values of K. 

CONCLUSION 

On the basis of the results given above, we can draw 
the following picture of phase changes in multi valley 
semiconductors. In a quantizing magnetic field, a series 
of regions of phase transitions appears on the concen­
tration-temperature plane, which, for high concentra­
tions, over lap with one another. The number of over­
lapping regions increases with increase in the magnetic 
field, and for nw > (>-3/2gb2)2 all the regions overlap. 
The higher separated regions are approximately similar 
to the first, which is shown in Fig. 1. The effect on them 
of a magnetic field, in accord with (20) and (27), re­
duces to a change in scale (following a change in the 
value of the magnetic field). The first region is bounded 
by the curves of the first order phase transitions 3 and 
3'. Single-valley states appear upon passage through the 
first of these, and three-valley states upon passage 
through the second. One-, two- and three-valley states 
exist in the overlapping regions, bounded by the curves 
3, I'; 1, I' and 3',1, respectively. However, the 
regions of their absolute stability are different and are 
located between the curves 3, 2; 2, 2' ; 2', 3' (compare 
with Fig. 2b). Curves 2 and 2' are coexistence lines of 
these phases, i.e., curves of first-order phase transi­
tions between states of types (9) and (10). One- and 
three - valley states can exist only as metastable states. 
The regions of metastability of one-, two- and three­
valley states are bounded by the lines 2, 1'; 1, 2 and 1', 
2'; 1, 2'. The one- and three-valley metastable states 
terminate on curves of their absolute instability (I' and 
1), on which the minimum F for them disappears and 
accumulation of the system should take place in the 
corresponding stable state (see also Fig. 2). In each of 
the separated regions, there is an isolated second order 
phase transition point (the point C in Fig. 1). At this 
point, contact takes place between the lines of the first 
and second order phase transitions, and all four states 
become identical. We note that in the regions which lie 
between the curves 1, 3 and 1', 3', the initial isotropic 
state of the crystal is stable, but appears to be meta­
stable. 

The authors thank V. L. Gurevich who pointed out 
the possibility of order estimates of the effect. 

1) At the present time, a number of multivalley crystals with a large density 
of states is known, for example, the n-type SrTi03 and KaTa03, the p­
type SnTe and GeTe, and so forth. 
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