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It is proposed that the effects detected recently in InSb with a Te impurity are due to beats in the 
Shubnikov-de Haas oscillations, which change when the field is reversed. The phenomena may be 
attributed to the presence of a narrow electron level in the conduction band due to a part of the 
tellurium atoms and to the appearance of ferromagnetism in a narrow concentration range when the 
Fermi level approaches the impurity level. A quantitative description based on a simple model is 
presented. 

It has recently been discovered by Andrianov, Brandt, 
loon, FistuI' and Chudinov[1 1 that a number of phenom
ena suggestive of ferromagnetism appear when a tel
lurium impurity is added to InSb in a certain range of 
concentration. These are, first, beats in the Shubnikov
de Haas quantum oscillations and, secondly, a change 
in the pattern of these oscillations when the direction 
of the applied magnetic field is reversed. At high tem
peratures, paramagnetism is observed in these sam
ples. Analogous phenomena have been observed in 
certain other semiconductors of the AUIBV type on 
alloying with tellurium and selenium. 

We can suggest the following model to explain these 
phenomena 1). We shall imagine that the impurity atom 
has a narrow discrete level (for simplicity of discus
sion-an s-level) and that the electrons at this level 
interact in an "exchange" manner with the conduction 
electrons. If this level is far from the Fermi level, it 
will be completely occupied or completely empty and 
will give no magnetism. But if it is near the Fermi 
level, it may turn out that it is energetically favorable 
to have one electron at this level, as the exchange inter
action can make the total additional energy negative. 

Here, however, we must make the following reserva
tion. The conduction electrons themselves originate 
only on account of the tellurium impurity. In view of 
this, it appears at first sight that the Fermi level can 
never be raised above the impurity level, in which case 
there is no way in which a finite range of concentration 
for ferromagnetism could be obtained. The way out of 
this situation could be that the tellurium atoms in the 
lattice of the semiconductor occupy slightly different 
positions. Most of the impurity atoms are always 
ionized and put electrons into the conduction band, and 
only a small fraction of them have a level in the neces
sary position. In this case, the concentration of mag
netic centers Nm = NCm = Ne I q = zNq / q < Ne (q is 
the total atomic concentration of impurities, q > 1), 
and the Fermi level can be situated both below and 
above the impurity level of interest to us. Since the 
position of the Fermi level and, in the final analysis, 
the exchange interaction depend on the impurity con
centration, it is clear that ferromagnetism, if it can 
arise at all, will be observed only in a certain range of 
concentrations. The polarization of the conduction
electron spins should lead to beats in the quantum 
oscillations. 

Thus, the model proposed can, in principle, qualita
tively explain the experimental facts. We shall proceed 
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to a quantitative analysis of its properties. We take the 
simplest Hamiltonian: 

H - N,JJ. = J 1jla+(r)H,"'a(r)d'r+ L eai.+ ai. -I L a,.+sa..1jla+(ri )O"'a(ri ) , 

, < (1) 

where lIo = _h2V 212m - tJ., E is the impurity level, 
reckoned from tJ., I/Ja is the conduction-electron an
nihilation operator, ais is the annihilation operator for 
an electron at an impurity level at the point ri, and s 
and (] are Pauli matrices. We have assumed for 
simplicity that the impurity spin is equal to 7'2 and that 
the electrons have a simple isotropic quadratic spec
trum. Moreover, we have not introduced any extra 
terms that could complicate the model, such as, e.g., 
the Hund term Uni +ni - or a term corresponding to the 
transition of an electron from the level E to the con
ductionband. We shall discuss the qualitative role of 
these effects later. Below we shall use the self-con
sistent field approximation. This means that we assume 
the Kondo temperature to be below the ordering tem
perature and, on the other hand, we are not describing 
the region of the phase transition completely accurately. 

In the self-consistent field approximation, an 
"effecti ve fie ld" 

Q=l(a). (2) 

due to the conduction electrons acts on each impurity 
spin. Hence the mean spin of an impurity atom is equal 
to 

~ 1 (Q+,s e- Q ) 
<s>=np (e- Q)-np (e+Q)=2' th-----zr-th-----zr . (3 ) 

'An "effective field" 

(4) 

due to the impurities acts on the electrons, where Nm 
is the number of magnetic centers in unit volume. Un
der the influence of this "field" there appears a mean 
electron spin 

(0) = xH = 2vH, (5) 

where v = pam'" 121T2fi 3 is the density of states of the 
conduction electrons (with one component of the spin). 
From formulas (2)-(5), we obtain an equation for (~>: 

<a> = vlNm [th ( Q ;s ) + th( Q2-; s )]. (6) 

If we disregard magnetic-anisotropy forces, the direc
tion of (0-) in space can be arbitrary. We shall fix the 
direction and assume this quantity to be scalar. We 
call attention to the fact that Eq. (6) is invariant with 
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respect to a change of sign of E and a change of sign of 
J. This means that the picture is symmetric with re
spect to the position of the Fermi level relative to 
(below or above) the localized level, and the sign of J 
does not affect the absolute value of < a ) . 

We introduce new variables: u = Q/T, x = IE I/T. 
After certain transformations, we then obtain from (6): 

u 

where 

2a.xshu 
chu+chx' 

(7) 

(8) 

Below we shall also need an expression for the change 
of the free energy. From the Hamiltonian (1), we obtain 

aru aJ = -Nm(s)(o) = -(0)'1 (2vJ), 

and consequently, 

But (&) = uT/J1, and we write Eq. (7) as 

u = a.x/(u). 

Then a=u/xf(u) and 

dIn!, =~dIna = ~ (~_ f'(u) )dU. 
2 2 u /(u) 

Substituting this into (9), we find 

NmT 1 u 

L\Q=-2-["2 u/(U)- ff(u,)dU,]. 

• 
For u in this formula, we must substitute the value 
from formula (7). Making use of Eq. (7') and the fact 
that f( u) = 2 sinh u/ (cosh u + cosh x), we obtain from 
(10) 

L\Q= NS ( ushu 
2 chu+chx 

21n chu+chx ) 
chx+,1 

NS [ u' 2a.xshu ] =-- ---21n----
2 2a.x u(chx+1)· 

(9 ) 

(7') 

(10) 

(11) 

Eq. (7) has, in all cases, the solution u = 0, but also 
has nontrivial solutions. Which of these are realized 
can be elucidated from the condition ~n s o. 

We first consider the asymptotic behavior of the 
solution at low temperatures: x» 1. It is not difficult 
to see that only two possibilities are obtained from Eq. 
(7). Either u/x = const > 1, in which case 

Ut ~2cu; 

or u - x = const, in which case 

u,""x-ln (2a-1). 

For a < 0.5, Eq. (7) has no nontrivial solutions. For 
the free energy we obtain 

2L\Qd NmT "" -2(a -1)x, 

2L\Q.1 NmT "" xl 2a - 21n 2a+ 2a-1. 

(12) 

(13 ) 

(14) 

Thus, for x - "", the first solution corresponds to 
~n < 0 for a> 1, and ~n > 0 for a < 1. For the second 
solution, ~n > 0 always. The straight lines (12) and 
(13) first intersect, for a = 1, at the point x = u = o. 
For a < 1, the point of intersection moves away in the 
direction x, u - 00. We can assume that the complete 
solution for 0.5 < a < 1 will be a continuous curve with 
two asymptotes. For a - 0.5, the whole curve will be 
situated in the region x, u - 00. Indeed, from formula 
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(7) for x, u - 00 and a - 0.5 it follows that the point 
at which du/ dx = 0 is situated at u ~ x ~ (2a - 0-1 1n 
(2a - 0-1 • 

We now consider the region of small u. We shall 
find it convenient to write Eq. (7) in the form (7'), and 
expand f( u) in a series: 

(15) 

Substituting this into formula (10) for the free energy, 
we obtain 

NT· k 
L\Q=~u' ['"'t -u .. ] 4 ~'k+1 . (16) 

. A_t 

Thus, for small u, the sign of ~n is determined, ex
cept in special cases, by the sign of fl. 

The coefficients fk are easily calculated from 
formula (7): 

/. =2~(x). J, = ~(x) ['1.- ~(x)], 

/. = ~ (x)['I .. - 'I.~ (x) + 'I.~·(x)], 
~(x) = (1+chx)-'. 

From the condition u - 0, we obtain 

1 +chx=2ax. 

(17) 

(18) 

The solution a (x) is depicted in Fig.!. Consequently, 
the condition (18) can be fulfilled only for sufficiently 
large a. The lowest value of a for which this condi
tion is fulfilled is obtained if we supplement (18) with 
the touching condition: sinh Xo = 2ao. Eliminating ao 
from these conditions, we obtain 

x. 
xothT= 1. (19) 

This gives Xo = 1.544, and ao = Y2sinh Xo = 1.117. If 
a < ao, the two curves u(x) merge into each other and 
do not reach the abscissa. This corresponds to the 
results of the analysis for x, u - "". 

Now let a » 1. From (18) we obtain in this case two 
solutions. One of these corresponds to x = l/a « 1, and 
the other to x "'" In 4a + lnln 4a » 1. In the first of these 
cases, f1 = -Y12, Le., the solution corresponds to ~n 
< 1. Determining u from Eq. (17), we have 

u,=l'12a(x-lIa)'h. (20) 

In the second case, f1 ~ (6a In 4ar1 > 0, Le., ~n > o. 
From Eq. (7) we obtain in this case 

It, = 1'6(x -In 4",) 'I,. (21) 

Thus we can say that, for a » 1, we have two solu-
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FIG. 2 

tions. One of these corresponds to a.a < 0 in the whole 
range of values of u from 0 to 0() , while the other cor
responds to a.a > 0 in the whole range, i.e., is not 
realized. For the following, it is useful to know both 
these branches Ul( x) and U2( x). They start at different 
x and increase with different slopes. With decreasing 
a, the two branches approach each other and, finally, 
when a = aD, they start at the same point. 

We shall determine the nature of the solutions in the 
vicinity of this point. First, we obtain 

j,~~l~ (~_~1~) >0, 
2aoxo 3 2aoxo 

i.e., both branches correspond to a.a > 0, From Eq, 
(7), we find in this case 

[ aoxo-'/, ],/, ) 
u,~ ,(xo-x)~4.03(xo-x , 

aoxo/3 - I, 
u,~4.03(x-xo). (22) 

This means that the left branch has du/dx < 0 at the 
starting point. But since it goes over into u = 2aox for 
x » 1, this means that the curv~ Ul(X) is S-shaped, 
Consequently, an indeterminacy appears: in the region 
near Xo three values of u correspond to one value of 
x, The fact that a.a > 0 at the start of this branch is 
connected with precisely this indeterminacy. Thus, for 
a = aD, what actually occurs is a first-order phase 
transition to a state with finite u. The situation re
mains the same over a certain range of values of a 
close to aD. Obviously, the upper boundary of this 
region is determined from the condition fl = 0 or 
cosh x = 2, From this and (18), we obtain Xl = 1.317 
and al = 1.14. The lower boundary, in accordance with 
the preceding discussion, is a = 1. 

Thus, we have analyzed qualitatively the behavior of 
the solutions of Eq, (7) and the a.a corresponding to 
them, and have obtained asymptotic values. The full 
form of the curves u(x) for different a is depicted in 
Fig, 2, The right branches (the thin lines) always cor
respond to a.a > 0, The dashed line denotes the first
order transition (for a in the range 1 < a < all. 

It follows from the above analysis that for a < 1 
only u = 0 corresponds to a minimum of the free energy 
so that the condition for ferromagnetism is a > 1. Ac
cording to our definition, the level E is measured from 
jJ., i.e., E = Eo - jJ., where Eo is the absolute height of 
the level. Using the definition of 0', we can write the 
condition 01 > 1 in the form 

Iso - ILl < (3n'Nm) "'m'I'Nm / (2n~Ii'), 

where we have put 11 = pom* /21T2fi3 and Po = fi(31T 2Nmq)1/3 
(q is the ratio of the total electron concentration to the 
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concentration of magnetic centers-cf. the beginning of 
the article). Since it follows from the experimental data 
that the necessary range of concentration is relatively 
small, i.e., I Eo - jJ. I « Eo, we can express Nm in the 
right-hand side using the condition 

eo"'" /L ~ 1I'(3n'Nmq)"'/ 2m'. 

Hence, we obtain the criterion 

Iso - /LI < 2(m')'eo'l' / (3n'!i'q). (23) 

Unfortunately, because J and q are unknown, it is 
difficult to compare this with the experimental data. It 
is not ruled out that the quantity J is not a constant but 
depends essentia~ly on Eo - jJ.; the criterion must then 
be written somewhat differently. But, provided that J 
does not decrease more rapidly than (I Eo - jJ. I )1/2 as 
I Eo - jJ. I - 0 (and there are no reasons for supposing 
this 2») the criterion (23) explains the fact that the ef
fect is' observed in a narrow range of concentration. 

We now find the effect of the magnetic polarization 
on the Shubnikov-de Haas oscillations. For electrons 
with different spin orientations, the limiting momenta 
are determined from the condition 

p+'/2m' ~ /L +H, p_'/2m' ~ /L - H, 

where m* is the effective mass. Hence, the difference 
in the areas of the central sections is equal to 

2nm' ~ 
S+ - S_~ n(p+, - p_')~4nm'H~~,,-(a). (24) 

Thus, we can directly determine < a > from the beats 
in the Shubnikov-de Haas effect. We note that, under 
conditions when ferromagnetism is present, u = 2ax in 
the limit T - 0, x - 0() , Substituting the definitions of 
u and x, we thus find < a > - 2I1JNm , and consequently, 

(25) 

In the necessary concentration range, Nm is essen
tially determined from the condition Eo - jJ. = 0, i.e., the 
beat frequency, which is proportional to S+ - S-, varies 
with concentration only in the case when J depends 
strongly on Eo - jJ.. Establishing the very existence, and 
then the form, of this dependence would make it possi
ble to refine the model we are applying. Another way of 
determining the dependence of J on Eo - jJ. is to study 
the concentration dependence of the Curie point. In 
particular, in the region 0' » 1, the condition x = 1/0' 
or Tc = IIJ2Nm is obtained, and for lower values we 
can always find 0' if T c is known (Fig, 1), 

We can also explain qualitatively the change in the 
pattern of the oscillations when the sign of the magnetic 
field is reversed. According to the general theory of 
quantum oscillations of Lifshitz and Kosevich [6], in the 
case under consideration the oscillation effect is de
scribed essentially by the function 

( cS+ ng m' ) ( cS_ ng m' ) sin --±-- +sin --=F--
lieJ16 2 m lieJ16 2 m 

where the upper signs correspond to the case when the 
external magnetic field JI6 is parallel to < 0-) and the 
lower signs correspond to the opposite direction of the 
field, and g is the spin-splitting factor (for InSb, the 
quantity g I::; 50), From this formula we obtain 
(S = ?'2(S+ + S_)) 

(26) 
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We shall assume that our sample consists of domains 
with different signs of the magnetization, the concentra
tion of the (+)-regions being cd. We shall also assume 
that the magnetic fie ld JiC is so weak that it does not 
alter the pattern of the domains, and is oriented 
parallel to the magnetization in the (+)-regions. Then 
we have, in the sum, 

edcos (a + b) + (1 - Cd) cos (a - b) 

= [cos' b + (1- 2ed)' sin' bl'" cos [a + arctg«2cd - 1}tg b)], 

a = e(S+ - S_} 12heJiC, b = 'I,ngm' I m. 

Change of sign of the field implies the replacement 
b ~ -b; the amplitude and period of the beats are not 
changed, but the phase changes. This is actually ob
served in experiment (cfY) and essentially constitutes 
the so-called "commutation effect". The large magni
tude of the g-factor compensates the smallness of m*. 

It should be noted that the effect will not be observed 
for cd = 1'2, Le., if the sample as a whole is unmag
netized. Obviously, the effect possesses anisotropy and 
will be absent if the field J6 is perpendicular to (a). Of 
course, it is possible to achieve this only for uniaxial 
magnetization, Le., if there are only two opposite types 
of domain. In the experiment of[l), the growth charac
teristics of the crystal resulted in the realization of 
precisely this situation, with the magnetization along 
one of the lllO] directions. The commutation effect 
therefore disappeared for a whole plane of directions. 
Finally, the effect should vanish in the case when the 
field is so strong that "saturation" occurs, Le., the 
domain structure disappears. In the experiment, this 
had not occurred in fields up to 70 kOe, and this is not 
easy to understand3 ) • 

We now find the total magnetization. In unit volume, 
we have 

M=JlB(~ Nm(S>+~ <o»=JlB(4~1 +g)<O), 
(27) 

where J..LB is the Bohr magneton, and gi is the gyro
magnetic ratio for the impurity spin. The quantity M 
depends on the sign of J. Depending on this sign, the 
spins of the impurity and of the conduction electrons 
are polarized parallel or antiparallel to each other. 

In all probability, the first term in formula (27) is 
much greater than the second, Le., the impurity atoms 
make the main contribution to the magnetism. But in 
this case, for T = 0, 

(27') 

Le., for impurity concentrations of the order of 1018 

cm -3, the saturation magnetic moment should amount 
to less than 10-4 of the moment of ordinary ferromag
nets. Direct observation of the ferromagnetic moment 
is therefore not very simple. 

Up to this point we have considered the ferromag
netic regime. We now find the paramagnetic suscepti
bi lity for T > T c. For this we take into account that, in 
the presence of a magnetic field JiC, in place of Q a 
field Q + %giJ..LB~ acts on the impurity, and in place 
of H the new effective field for the conduction electrons 
is H + 7'2gJ..L BJiC. These quantities, and also (0-) and 
( S ), are assumed to be small, and we can perform an 
expansion in (3). The magnetic moment is expressed by 
the first equality of formula (27). As a result, for the 
paramagnetic susceptibility we obtain 
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In reality, the electrons also possess diamagnetism. 
Therefore, the coefficient in the first term of formula 
(28) changes (it can even become negative). But this 
term has no singularity at Tc and, moreover, in all 
probability, gi/vJ» g, so that the impurity paramag
netism is still the dominant effect in a wide tempera
ture range above Tc. Comparing with formula (18), we 
see that, in the region of second-order phase transi
tions, X behaves like (T - Tcfl as T ~ Tc. As al
ready noted, this cannot be considered an exact result. 

Thus, the model considered gives in all cases quali
tati ve agreement with the experimental data of the 
paper [1) • As already stated, this model is the simplest. 
But, for the present, there is no sense in thinking about 
more complicated models. This must be done when the 
dependence of the beat period on temperature and con
centration and the dependence of T c on concentration 
have been obtained. We shall make qualitative remarks 
on the consequences of taking certain additional fea
tures into account. 

First of all, we can insert into the Hamiltonian a 
Hund term of the type 

where ni± = a;±~±. This clearly leads to a widening of 
the region of existence of the ferromagnetism. In 
particular, for E < 0 and CI' I E I « U, this region will 
be determined by the condition U > J..L - E > 0, Le., will 
again be restricted with respect to the concentrations. 
The Curie temperature will be of the same order as in 
the model considered. 

Furthermore, we can take into account the possibility 
of transition of an electron from a localized level to 
the conduction band; this can be described by a term of 
the type 

vE [¢.+(r,}a .. +a,.+¢.(r,}] . ' 

(cf. [5). This will lead to the appearance of a finite width 
r = rrV2v of the level Eo; This width will compete with 
T and E and, generally speaking, will lead to a reduc
tion of the ferromagnetism. In particular, for CI' I E I ~ r 
the ferromagnetism should disappear. It is possible, 
incidentally, that allowance for other features, e.g., the 
effect of the spin-orbit interaction on the electron spec
trum, will also be needed for an accurate quantitative 
description of the experimental data when these are 
obtained. It is evident, however, that the basic idea 
proposed in this paper will remain valid. 

In conclusion, I take the opportunity to express my 
gratitude to the authors of paper[lJ for communicating 
their data to me before publication, and, expecially, to 
S. M. Chudinov for valuable discussions. 

l)The theory proposed in the paper [2] to explain the beats in the 
Shubnikov-de Haas oscillations in HgSe [3], which is based on the split
ting of the electron spectrum in the Kane model [4], does not explain 
important features of the phenomena observed in [I], namely, the nar· 
rowness of the concentration range, and the "commutation effect", i.e., 
the change in the beats on reversal of the field. 

2)Forexample, in the Anderson model (cf. [5]), JA = V2 V/e(e + V), 
where V is the matrix element of an electron transition from a localized 
level to the conduction band, and V is the Hund constant. The quantity 
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JA increases as € = €o-jL -+ O. Of course, it is not clear that this model 
is applicable to the present problem. There are insufficient data at the 
present time for a unique choice of an accurate model. For precisely 
this reason, we have chosen the simplest model. 

3) A possible explanation is the pronounced anisotropy of the "exchange" 
interaction, hindering the reversal of the moment, and nonuniformity 
of the impurity concentration, impeding the motion of the domain 
walls. 
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