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An analysis of recent experiments of Ling and co-workers on the degeneracy of homogeneous 
isotropic turbulence in flow behind a grid shows that the Karman complete self-similarity hypothesis 
is not confirmed at the intermediate stage of the turbulence degeneracy. Another more general 
self-similarity hypothesis is proposed. All solutions of the Karman-Howarth equation of propagation 
of correlations consistent with this hypothesis are obtained and it is found that the experimental data 
are in agreement with this more general incomplete self-similarity hypothesis. 

1. The study of homogeneous isotropic turbulence 
was begun by Taylor in a series of pioneering papers, [11 

but this field acquired its present importance after A. N. 
Kolmogorov's investigations[2] (see also [3,4]) in which 
the homogeneity and isotropy of the local structure of 
arbitrary turbulent flows at sufficiently large Reynolds 
numbers were predicted. The experimental confirma­
tion of the microstructural laws obtained on the basis of 
these predictions made local isotropy and homogeneity 
a fundamental property of the microstructure of devel­
oped turbulent flows. 

Of the utmost importance in the theory of homogeneous 
isotropic turbulence is the study of the intermediate phasE 
of the decay (the decay of the homogeneous isotropic 
turbulent field created at the initial moment of time). At 
this stage nonlinearity effects are still important, and 
viscous dissipation already exerts some influence on the 
flow. At the same time, the details of the initial condi­
tions cease to be important at the intermediate stage: 
universal laws of decay come into play. 

The study of isotropic homogeneous turbulence is 
based on the joint-moment, or correlation-function, 
technique[3-5]: moment (or correlation) tensors of the 
flow characteristics are introduced into consideration, 
and from the Navier-Stokes equations of motion and the 
equation of continuity, equations which are valid for 
each realization of the random hydrodynamic field, is 
obtained an infinite chain of equations for the moments. 
The first equation in this chain is the Karmlin-Howarth 
"equation of propagation of correlations,,[5,4]: 

a,BLt = 2vr-'a,r'a,BLL - 2r'a,r'BNN. L, (1.1) 

connecting the functions BLL(r, t)=(uL(x)udx+r» 
and BNN, L(r, t) = (uN(x)udx + r», which are respec­
tively components of the second- and third-order mo­
ment tensors; on account of the isotropy, homogeneity, 
and incompressibility of the flow field, these components 
completely determine the tensors. Here v is the 
kinematic viscosity of the fluid, r = I r I , t is the time, 
uL is the velocity component along the vector r, UN 
is the velocity component in the direction perpendicular 
to the vector r, and the sign ( ) denotes mathematical 
expectation. 

For the final stage of the decay, at which the contri­
bution of the third-order moments is negligibly small, 
so that the relation (1.1) goes over into an equation for 
the function BLL<r, t), Millionshchikov[6] (see also [3,4]) 
has established the decay law for the second-order 
moments: . 
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1\0 [r'] BLL(r,t)= exp - , 
48l'2n[v(t-t,)1'/, 8v(t-t,) 

A, = J r'BLL(r, 0) dr. 

For this law of decay of the second-order moment 
distribution to be valid, Ao should be finite, i.e., 
o < Ao < 00, at the beginning of the final phase of the 
decay. 

(1.2) 

At the intermediate stage of the decay, the contribu­
tion of the third-order moments (the nonlinearity) is im­
portant, so that the relation (1.1) connects two functions, 
i.e., it is not a closed relation. Nevertheless, Lo'itsyan­
ski'i[7] (see also [3,4]) established, on the basis of the fact 
that the term with the third-order moments in (1.1) has 
the form of a divergence, an integral law of conservation 
of the second-order moments that is applicable to the 
intermediate phase of the decay: if, as r- 00, BLdr, t) 
decreases faster than r- 5 and BNN, L(r, t) faster than 
r -\ then the integral 

~ 

J r'BLL(r,t)dr=A (1.3) 

is finite and is conserved in time. A connection be­
tween this conservation law and the law of conservation 
of angular momentum was shown by L. D. Landau and 
E. M. Lifshitz.[3] 

To make (1.1) a closed relation, Karmlin[5,4] put for­
ward the hypotheSiS of self-preservation (self-similarity), 
according to which there exist functions of the time, v(t) 
and l(t), such that the moments BLL and BNN,L can be 
represented in the form 

BLL(r,t)=v2(t)fC~»), BNN.L(r,t)=v'(t)h( l~»)' (1.4) 

The relation (1.4) is valid in the case of complete 
self-preservation of the velocity field, when the velocity 
field eventually varies in self-preserving fashion during 
the decay, i.e., only the spatial l(t) and velocity v(t) 
scales vary. Karmlin used the hypotheSiS (1.4) to estab­
lish a family of possible decay laws valid at the initial 
stage of the decay of homogeneous isotropic turbulence, 
when the Reynolds number is large and the term with 
the viscosity in (1.1) can .be neglected. Kolmogorov[B] 
derived from this family a decay law corresponding to 
the preservation of Lo'itsyanski'i's finite integral. 
Sedov[9] (see also Dryden's paper[lO]) found all the solu­
tions to the Karman-Howarth equation (1.1) that are al­
lowed by Karmlin's complete self-preservation hypothe­
sis (1.4) when the viscous terms in (1.1) are retained. 
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In [9J, it was established, in particular, that the self­
preserving decay law (1.4) is incompatible with the 
preservation of Loltsyanskil's finite integral: if the 
LoItsyanskil integral A is finite and the relations (1.4) 
are fulfilled, then it is not preserved in time. 

Attempts have been made since Taylor's work to use 
the homogeneous isotropic turbulence as a model for 
turbulence behind a grid in wind tunnels. It must however 
be admitted that these attempts, which continued until 
recently (for a review of them, see [4J), are not quite 
satisfactory (the absence of homogeneity and isotropy, 
a large variance, etc.). Only in the recent experimental 
investigations performed by Ling and Huang[llJ and Ling 
and Wan[12J was the intermediate phase of the decay of 
homogeneous isotropic turbulence adequately simulated, 
apparently for the first time, in a turbulent flow behind 
a grid in a low-velocity water channel, and thoroughly 
inve stigated. 

It is shown in the present paper that the results of the 
experiments [U,12J ar.e at variance with the preservation 
of LoItsyanski'i's finite invariant and with the complete 
self-preservation of the flow (K~rmtin's hypothesis (1.4)) 
at the intermediate stage of the decay of homogeneous 
isotropic turbulence. A more general concept of incom­
plete self-preservation of the flow field is formulated in 
which the velocity fields at different moments of time are 
not similar, but the correlation coefficients decay in a 
self-preserving fashion. All the solutions to the K~rm~n­
Howarth equation that are allowed by the incomplete self­
preservation hypothesis are constructed, and it is shown 
that the experiments [U,12J confirm the incomplete self­
preservation hypothesis at the intermediate stage of 
the decay. 

2. The Ling-HuangWJ and Ling_Wan[12J experiments 
were performed in a carefully checked-with respect to 
homogeneity and isotropy-turbulent flow behind a grid 
in a low-velocity water channel. A special analysis 
showed that the flow was at the intermediate stage of 
decay. The authors succeeded in representing with great 
accuracy the law of decay of the second-order moments 
in the self-preserving form 

BLL(r,t)= b(t)f (I~t»)' b(t)= (t~to)n' I(t)= l'v(t-to). (2.1) 

Here, as usual, t=x/U, where x is the distance 
from the grid and U is the mean flux velocity, and A 
and to are constants. The Reynolds number MV / v 
(M is the dimension of a grid mesh and V is the char­
acteristic velocity) of the grid was varied within a wide 
range of values - from 470 to 34000. It is significant that 
not only the constants A and to, but the exponent n in the 
decay law, turned out to be dependent upon the initial 
conditions: by varying the grids- setting different com­
binations of fixed and mobile grids and varying, for the 
mobile grids, the velocity of oscillation of the agitating 
bars-they succeeded in obtaining n= 2.00, n= 1.73, and 
n= 1.35; the exponent n decreased with increasing 
grid Reynolds number. 

The exponent n was in all the experiments invariably 
less than 5/2; substitution of (2.1) into (1.3) shows 
that the Loltsyanskil integral (1.3) cannot therefore be 
finite and constant: if it is finite, then it grows like 
(t_to)5/2- n • This shows that the experiments [U,12J do 
not confirm the assumptions underlying the derivation 
of Loltsyanski'i's conservation law, since the conserva­
tion law can be derived quite rigorously after making 
these assumptions. The verification of the validity of the 
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K~mtin similarity law (1.4) at the intermediate stage of 
the decay can be carried out on the basis of Sedov's re­
sults [9J, which include all the possible solutions to equa­
tion (1.1) that are allowed by this law. The substitution 
of the expressions (1.4) into the K~rman-Howarth equa­
tion (1.1) led Sedov to the relation (X = r/Z, b(t) = ~(t)): 

h' (x) + 4h (x) / x - '/2X( (x) b-'/'(dl / dt) 
+ 'M(X)lb-"'(db / dt) = vb-"'l-t["(x) + 4f(x) / xl. (2.2) 

Sedov considered three possible cases, one of which, 
as it turned out, was a priori physically uninteresting 
and was therefore discarded. In the first of the remain­
ing cases, one necessarily obtains that Z = ..; v( t - to) , 
which corresponds to the experimental dependence (2.1), 
and b=A(t-tor1, which does not correspond to this de­
pendence. The second possible case leads to a system of 
ordinary differential equations for the functions b( t) 
and Z(t): 

Idb v' 
--=-n--:-o_ 
b'l, dt l'b I (2.3) 

The relations (2.3) for p '" 0 are satisfied by the func­
tion 1 00"; v(t-to) only when b = A(t- to)-1, which again 
is at variance with the experimental dependence (2.1). 
For p = 0, the third-order moment tensor vanishes 
identically-this approximation is not applicable at the 
intermediate stage of the decay. Our attempt at the 
direct processing of the initial data of the experiment Oll 

led to a considerable scatter in the values of the con­
stant p obtained for the various experimental points. 

Since Sedov's results are quite rigorous in the frame­
work of the assumptions (1.4), we can conclude that the 
data of the experiments [U,12J do not corroborate K~r­
m~n's self-preserving decay law (1.4) at the intermedi­
ate stage of the decay of homogeneous isotropic tur­
bulence. 

3. If the self-preserving decay law for the second­
order moments in the experimentally obtained form 
(2.1) is valid, then it is not necessary to postulate the 
self-preservation of the third-order moments-it is es­
tablished by simply substituting (2.1) into the K~rmtin­
Howarth equation (1.1) and then integrating it. The 
self-preserving decay law is then obtained in a form 
different from the one predicted by the K~rmtin hypothe­
sis. It is clear, however, that K~rmtin's complete self­
preservation hypotheSiS is not the most general self­
preserving decay law. It is therefore natural to postulate 
the following more general self-preserving decay law for 
the second- and third-order moments: 

BLL = b(t)t(x), B NN , L = g(t)h(x), x = rll(t), (3.1) 

where b(t), Z(t), and g(t) are certain functions of time, 
and, developing an approach similar to Sedov's approach, 
obtain all the solutions to the ~rm~n-Howarth equation 
(1.1) that are allowed by this self-preserving decay law. 
The formal difference between the hypothesis (3.1) and 
the K~rmtin hypothesis consists only in the fact that it is 
not assumed that g(t) = [b(t) ]3/2; in essence, however, the 
difference is significant- in contrast to (1.4), the validity 
of (3.1) implies the absence of an isogonal variation of 
the velocity field in the process of decay, and therefore 
we shall call the hypothesis (3.1) the hypothesis of in­
complete self-preservation. Substituting (3.1) into Eq. 
(1.1), we obtain 

( : ~~) x/'(x) - ( ~ ::) !(x) + ( 2v ;1 )[ f" (x) + : f' (x) ] 

d (3.2) 
~ 2x-'a:;:x'h(x) = o. 
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Differentiating (3.2) with respect to t at constant X, 
we have 

d(bdl). d(ldb) dt gdt xl ('1.)-& gat /('1.) 

+ ~ (2V~) [1"('1.) + ~ r (x)] = O. 
dt . gl X 

(3.3) 

As in Sedov's treatment, two physically meaningful 
cases may be met here. The first case corresponds to 
the linear independence of the quantities Xf'(X), f(X), 
and f"(x) + 4f'(x)/x, so that all the coefficients attached 
to these quantities in (3.3) are equal to zero. Hence, 
we have 

vb 
-=(me)-' 
gl 

(3.4) 

(n, m, and c are constants). Integrating, we obtain 

I' = (me'l n)v(t - to), b = A (t - to)-n. (3.5) 

Comparing with (2.1), we see that this result agrees 
with experiment. Further, we obtain 

g = l'mnv A (t - to) _n-'f>, (3.6) 

which does not agree with the Karman hypothesis for 
n;>! 1, i.e., for all the values of n found. Substituting 
(3.4) into (3.2) and integrating, we find the expression 
for h in terms of f: 

h={r+ mC'r.!+[(2n-5)]S'X'/dX}_1. (3.7) 
4n 4'1.' 0 me 

It was shown in [11,12] that the experimental data for 
the correlation coefficient f can be represented to a 
very high degree of accuracy by the relation 

f= [1 +r.'la']-', r. =rI1v(t-t,) (3.8) 

in the investigated range of values of r*: (0:5 r* < 16), 
the constant a being dependent upon n: a = 3.16 for 
n=2; a=3.40 for n=1.73; a=3.85 for n=1.35. 

Let us compare these data with the consequences of 
the self-preserving decay law (3.1). Substituting the 
expansion of f in the vicinity of X = 0 in the form f = 1 
-Bl+ ... into (3.7), we obtain 

h= (-2Blme+c/10)r.+O(x'). (3.9) 

As is well known [4], the expansion of BNN ~ in the 
vicinity of r = 0 should begin with the term O(r ), so 
that the coefficient in front of the first term in (3.9) 
vanishes, with the result that B=mc2/20. Using (3.5), 
we obtain 

/ "" 1 - Bx' = 1 - nr' 1 20v (t - to).· (3.10) 
On the other hand, expanding the experimentally ob­
tained expression (3.8) into a series for small r, we 
obtain the expression f'" 1-r2/a2v(t-to), which coincides 
with (3.10) for a = v' 20/n. This relation for a is in good 
agreement with the above-cited experimental data on the 
dependence a(n), which confirms the agreement with 
experiment of the incomplete self-preservation hypothe­
sis (3.1). We note that the relation a = J20Tn was ob­
tained in [12] from other considerations. On account of 
the arbitrariness of the coefficient when choosing the 
scale, the constant c can be chosen arbitrarily; let us 
choose it so that mc2/n=1. From (3.1), (3.5), and (3.7), 
we finally obtain the form of the self-preserving decay 
law which is allowed by (3.1) and agrees with experiment: 

BLL = A (t - to) -"/('1.), BNN• L= Al'v (t - t.) -n-'hh(X) , 

• (3.11) 
'1.= r/Yv(t-to), h =/' + ('I,)r.! +[ (2n - 5)/4'1.'] S x'/(x)dx· 

o 
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The second possible case is when the quantities 
f(X)' xf'(x) , and f"(X) + 4f'(x)/x are linearly dependent. 
This linear dependence can, without loss of generality, 
be represented in the form 

(3.12) 

(n and c are constants). Comparing (3.12) and (3.3), 
we obtain 

~(-.!!.~-2ev~) =0 
dt g at gl ' 

- --+n- =0 (3.13) d ( I db Vb) 
dt g dt gl 

whence 

b dl b 
-_=2ev-+p 
g dt gt' 

I db nvb 
--=--+q 
g dt gl • 

(3.14) 

where p and q are constants. Substituting (3.14) into 
(3.2) and integrating, we find 

h= 2P, f x'f'(x)dx--2
Q, fx'/(X)dX, (3.15) 

x o. x 0 

The condition that h=O(X3) for X- 0 yields q =0. In 
this case, in contrast to the previous one, quite a defi­
nite differential equation is obtained for the function 
f(X)' but then the three functions l, b, and g turn out to 
be connected only by two relations. If we set, in accord 
with experiment, 1 = v' v(t-to), then the relations (3.14) 
(for q = 0) yield a system of equations from which the 
functions b and g can be completely determined: 

b=A(t-to)-n, g=A1V(t-to)-"-'''[(1-4c)lp]. (3.16) 

so that in this case, as in the preceding one, the decay 
of the correlation moments in time is found to be in 
agreement with experiment and at variance with Kar­
man's similarity law. By means of a simple transfor­
mation of the independent variableEq. (3.12) can be 
reduced to the equation for the confluent hypergeometric 
function. Assuming natural boundary conditions, we 
obtain 

/('1.) =M(nI4e, '/" -nx'/S), (3.17) 

where M(a, b, z) stands for the confluent hypergeo­
metric function. Thus, a simple comparison with ex­
periment should determine whether or not the constant 
c can be chosen such that the whole curve for the cor­
relation coefficient can be described in a unified manner. 
Experimental data on the correlation coefficient have 
been obtained up to considerable values of X (up to 
X - 15), when the function (3.17) should already be repre­
sentable to a fairly high degree of accuracy by the first 
term of the asymptotic form for large values of the 
argument. U sing the asymptotic representation of the 
confluent hypergeometric function for large values of 
the argument [13J, we find f - X- n/2c . But according to 
(3.8) f_[2 for X- oc , so that n=4c. For the case-of 
the fixed grid, n = 2, whence c = ~ an<;l we obtain f (X) 
= M(l, %, -X 2/4), which, as inspection shows, is at vari­
ance with experiment. Thus, there is in fact a natural 
first case when a definite equation for the function f 
cannot be obtained, and only a relation between the func­
tions f and h can be found from the equation for the 
propagation of the correlations. 

4. Ling and Wan[12J noted that the exponent n in the 
decay law for the second-order moments tends to unity 
as the grid Reynolds number is increased. If this is so, 
then one can expect Karman's complete self-preserva­
tion hypotheSiS to be applicable at large grid Reynolds 
numbers. The Kistler-Vrebalovich experiments [14J, 
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which were performed at very large Reynolds numbers, 
can serve as known confirmation of this. Apparently, 
the viscous terms in the equation for the propagation of 
the correlations become unimportant at such large 
Reynolds numbers: the applicability of the complete 
self-preservation hypothesis at the initial stage of the 
decay of turbulence is in complete agreement with 
Kirman's original idea [5J. 

The appearance of self-preserving asymptotic forms 
for correlation moments of different orders at the inter­
mediate stage of the decay of homogeneous isotropic tur­
bulence is a typical "self-preservation-of-the-second­
kind" effect [l5J. Indeed, the decisive dimensional param­
eters of the decay of turbulence behind a grid are: the 
mean velocity U, the dimension M of the grid mesh, the 
kinematic viscosity v, the distance r of correlatable 
points, the time t-to, the amplitude Vp and frequency 
w of the velocity of the tips of the agitated bars of the 
grid (in the case of the fixed grid the last two parame­
ters drop out). We c~, on the basis of dimensional 
considerations, write the moments (correlation func­
tions) in the form 

B I•L =MU(t- to)-·f.(~, Tj, Re, A, ,,), 
BNN • L = [MU(t - to)-']"'f.(~, Tj, Re, A, ,,), 

(4.1) 

where the decisive dimensionless parameters can be 
represented in the following manner: 

r U(t-t.) Re= UM, A=2 
, ,Tj M U' 

h~-~ v 

Moo ,,=-. 
U 

(4.2) 
The details of the initial conditions should cease to be 
felt at large distances from the grid, i.e., as 1/- co. If, 
as T/- co, the functions f1 and f2 tend to finite limits, 
then we have the Kirman case of complete self-preser­
vation. Comparison with the results of the experi-
ments W,12J indicated to us that this is, generally speak­
ing, not the case, so that as T/- co , the functions h and 
f2 do not tend to finite limits, but have power asymptotic 
forms in T/: 

f.'" Tj"F.(s, Re, A, ,,), f,~Tj·F.(s, Re, A., ,,), (4.3) 

where the exponents a and {3 depend, generally speak­
ing, on the parameters A, /l, and Re. Therefore, as 
T/- co, the parameter 1/ remains important (including 
the case when the grid is fixed) no matter how large its 
magnitude is. However, owing to the power character 
of the asymptotic forms (4 .3), as 1/- co , the decay of 
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the correlation functions becomes self-similar. In 
spite of the fact that the variation in time of the velocity 
field does not lead to the variation of the velocity and 
length scales, and, in this sense, is not self- similar, 
the correlation coefficients vary in self-similar fashion. 
In this sense, we speak of incomplete self-similarity of 
the problem as a whole. 

The authors are grateful to Ya. B. Zel'dovich for val­
uable comments on the manuscript of the paper. 
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