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The spin-wave interaction amplitudes which describe processes involving three or four magnons are 
calculated in the long-wave limit. Both exchange and relativistic interactions are taken into account. 
It is shown that the interaction amplitudes tend to zero when the nonactivated particle wave vectors 
vanish and the laws of conservation of energy and momentum are obeyed. The dependences of the 
low- and high-frequency magnon damping coefficients on energy and temperature are calculated in a 
broad range of energy and temperature. 

1. INTRODUCTION 

Relaxation processes in magnetically-ordered crys­
tals have been the subject of many experimental and 
theoretical studies (see the monographs (1-6], where 
references to the original papers are given), and the 
main mechanisms of relaxation phenomena in the mag­
non system of dielectric ferromagnets are by now 
clearly understood. When it comes to antiferromagnets 
(AFM), the situation is much more complicated, although 
many experiments have been devoted to the antiferro­
magnetic resonance line widths, and intensive studies 
of nonlinear antiferromagnetic resonance are being 
carried out(7-9] and yield the experimental dependence 
of the spin-wave damping coefficient on the tempera­
ture and on the wave vector. 

At present there are only about ten papers(lO-IB] de­
voted to the theory of relaxation processes in AFM, 
i.e., to the calculation of the magnon damping coeffic­
ient on the basis of a microscopic or phenomenological 
Hamiltonian of the AFM. The situation is made compli­
cated by the fact that the published results fail to 
agree, but frequently contradict one another (a detailed 
analysis of the published data is contained in the paper 
by Harris et al. (IS]). This circumstance is not acci­
dental, but is due to the fact that in the case of AFM 
the determination of the Hamiltonian for the magnon­
magnon interaction in the existing spin-wave theory is 
a rather complicated problem. (It is necessary to sum 
about 100 separate terms to determine the amplitude 
of magnon-magnon scattering.) Naturally the fact that 
neither the formalism of either Holstein and Primakoff 
nor that of Dyson and Maleev provides a general princi­
ple for the determination of the magnon-interaction 
amplitudes makes it very difficult to verify the results. 
Thus, Harris et al. (IS] believe that the discrepancies in 
the results on the magnon damping are due to the fact 
that different authors have actually used different mag­
non-magnon interaction amplitudes. 

This situation is typical of modern theory of a sys­
tem of magnons, but is entirely different, for example, 
for a system of phonons. In the investigation of phonon­
phonon interactions one uses in explicit form the fact 
that the lattice Hamiltonian is invariant to the shift of 
the lattice as a unit, and must therefore be made up (in 
the long-wave limit) of powers of the strain tensor. 
This makes it possible to determine in general form 
the dependence of the interaction amplitude on the pho­
non wave vectors, namely 'It(k1, ... , kn ) 
~ (k 1, ••• ,kn )I/2. 
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It has become clear recently that the main proper­
ties of the spin-wave spectrum are governed by the 
symmetry of the Hamiltonian of the spin-system-by 
the invariance of the Hamiltonian to rotations(19]. This 
has made it possible to develop a hydrodynamic theory 
of spin waves in AFM(a>]. It is shown in the theory of 
the phenomenological Lagrangians of elementary parti­
cles (see, for example, Volkov's review(21]) that the 
symmetry properties of the Hamiltonian not only make 
it possible to assess the particle spectrum (the Gold­
stone theorem), but also to draw definite conclusions 
with respect to the dependence of the scattering matrix 
on the particle wave vectors (Adler's principle). In the 
present paper, when checking on the magnon-magnon 
interaction amplitudes, we start from the fact that the 
Adler principle should be satisfied for activationless 
magnons (they are Goldstone particles for AFM), mean­
ing that the scattering amplitude should vanish, when 
energy and momentum conservation is taken into ac­
count, if the wave vector of the activationless magnons 
tends to zero. We note that the amplitudes used by 
Harris et al. (IS] also satisfy this requirement. 

In this paper we investigate the damping of magnons 
in an antiferromagnet with uniaxial magnetic anisotropy 
of the easy plane type, and take the Dzyaloshinskii inter­
action and the inter-ion anisotropy into account. We use 
the Holstein-Primakoff formalism, which is more con­
venient for this problem. We calculate the spin-wave 
damping coefficients in a wide range of temperatures 
and magnon wave vectors, and obtain the mean magnon 
relaxation times. 

2. AMPLITUDES OF SPIN-WAVE INTERACTION WITH 
ONE ANOTHER 

To describe the interaction processes in a system of 
spin waves, we start from the following expression for 
the Hamiltonian: 

de = ~ (J(R'f)S,S! + ~(R'f) (S,n) (Sfn) + d(R'f)n[S,stl)-i....J . 
'f 

(1) 

where J( Rgf) is the exchange integral between sublat­
tices, f3 (Rgf) is a quantity describing the magnetic­
anisotropy energy, S~ and Sf are the sublattice spin 
vectors, Rgf = Rg - Rf, where Rg and Rf are the 
radius vectors of the sublattice sites, n is a unit vector 
along the z axis, d( Rgf) is a quantity describing the 
Dzyaloshinskii interaction, and H = (H, 0, 0) is the 
external magnetic field. 
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It is convenient to represent the spin operators in the 
form 

where ea j; = SalSa (a = g, f) are unit vectors tlong the 
quantization axes, and the operators si, S~ = So' ± iS~ 
are connected with the HOlstein-Primakoff operators 
by the relations 

(3) 

Using (2) and (3) and changing over with the aid of a 
canonical transformation I) from the Holstein-Primakoff 
operators to the spin-wave creation and annihilation 
operators ck and dk with wave vector k: 

(4) 

We can represent the spin-system Hamiltonian (1) in the 
form 

:/6 = iC +:/6, +:/6, + :/60, 

where :/62 is given by 

:/6, = ~ {e •• c. +c. + e,.d. +d.} 
""-I • 

and the energies of the spin waves are determined by 
the formulas 

(4 ') 

e •• ' = (A, + B.)' - C.', e,.'': (A, - B.)' - C.'; (5) 
A, = S[2/lhcos 8 + dsin28 -I, cos 29], 

B. =S[/'cos'9+ '/2~ - '/2dsin28], (5') 
C. = S[lo sin' 8 + '/2~ + '/2dSin 281. 

In these formulas Jk is the Fourier component of the 
exchange integral, 2 e is the angle between the equili­
brium directions of the sublattice spins, the angle e is 
chosen from the condition that the term linear in the 
spin-wave creation and annihilation operators be miss­
ing from expression (4'), h = HIS, and f3 and d are the 
Fourier components of the corresponding quantities in 
the Hamiltonian (1) at k = O. 

In the region of small wave vectors, expressions (5) 
for the spin-wave energies take the form[22] 

e •• ' = S'[2f.1h co~ 8 - I,(ak)' cos 28][2/, + ~ + d ctg 8 - I,(ak) '], 
e,.' = S'[/,(ak)' - ~ + d ctg 81 [21, + 2dctg 8-

- 2f.1h cos 9 + cos 28/, (ak)'], 

where a is the lattice constant and 10 is a coefficient 
in the expansion of the exchange integral Jk = J o 
- 10 (ak)2. 

The Hamiltonians :/63 and :/64, which describe the 
interaction of the spin waves with one another, are 
given by 

(6) 

:/6, = I:{11'(".(1; 23)d, +c,c, + '1'(') (1, 2, 3)d.+c.+c, + '1'(3) (1; 23)d,+c,+c,+ 

'23 

+ 'I'(U (1; 23)d, +d,d, + '1'(5) (123)d.+d,+d, + + h.c .}, 

123. 

We have written out in the Hamiltonian :/64 only the 
terms that contribute to the mass operator. 
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The amplitudes that enter in these Hamiltonians are 
given in Appendix I for arbitrary values of the wave 
vectors. We confine ourselves here to the expressions 
for the amplitudes in the case of small wave vectors 
and in the absence of an external field: 

(S)'I' (H )'( A )'1. 'I'(t)(1; 23)= i. - d --.::. __ 0 _ .(e,,+e .. +e,,)A(1-2-3). 
N HB 2e"e"e" 

'1'(2) (1,2, 3) 

=i (2 )'Id( HD )2(~) 'I. (e,,-8u-8,,)A(1+2-3), 
N Hs _ 8:u8uBu 

'1'(').(1; 23) 

( S ) 'I, (H D )' ( Ao ) 'h ~i - d - --- (e,,-e,,-e,,)A(1+2+3), 
N . HB 2821e"e .. 

(7 ) 

'1'(0)(1; 23) 

;= i(!...) 'I, d (HD )'(_A'_) 'I. (e" _ 8" _ e,,)A(1-2-3), 
N Hg 2821822828 

where 

2/lH D = Sd, /lHE = SI,. 

In these formulas we use the following notation: 

1"" k., 2"" k" 3 "" k" 4 55 ko, 8,.55 8, (k.), e,.55 8, (k.), a = 1, 2, 3, 4. 

'1'(') (12' 34) = {I, + '!,~ (e1l + e" - 8 .. - 8,,) 2 

, 64N ,<811 8 128 138 1') '/. 

+ 1,-' (e1le"e"e"),I'f.(n,, n., n., n.) }A(1 + 2 - 3 - 4), 

'1'(') (12; 34) A (,1 + 2 - 3 - ~) 
4N(e2te22e23e,,) • 

X {;6(/'-}~) (e2t+eZ2+823+ e")'+}-/,A'}' (8) 

'1'(3)(1,2;3,4) A(1+2-3-4) 
4N'(BuEn 8138u) II. 

X { : I, (e1l + e" - e" - e,,)' + 21,s' (k,k, - k,k,) }, 

'1'(') (12' 34) = A(1 +2 - 3 - 4) 
I 8N(eU8 t28 U8z4)"J 

X {/,s'(k.k, -k,kzl-f/,(eil + e" - e" - e,,)'}, 

A'=2S'I,I~1. s=8oa, 8;=2S'I,I" 
8,. = sk, 8,. = fA' + (sk)'l"'. 

where N is the number of lattice sites and f( nl, n2, n3, 
and n4) is a function on the order of unity and depends 
on the unit vectors 

n. = k.! k •. 

We note that the amplitudes (7) of the interaction of 
three spin waves contain the Dzyaloshinskii constant as 
a coefficient; in other words, these processes do not 
occur in a collinear antiferromagnet. Processes in 
which four magnons participate occur both in the col­
linear and in the canted phases. We call attention to 
the fact that the amplitudes of those processes of (8) in 
which two types of magnons (activation and activation­
less) take part vanish when the wave vectors of the 
corresponding activationless particles tend to zero and 
the energy and momentum conservation laws are satis­
fied (.p(3)(1, 2; 3, 4) - 0 as kl, k3 - 0; .p(4)(12; 34) 
- 0 as kl' k2 - 0)2). In addition, the amplitude 
.p(l)(12; 34) vanishes, up to terms with k\ for a real 
scattering process when the energy conservation law is 
satisfied, i.e., the interaction of the acti vationles$ mag­
nons with one another is much weaker than the interac­
tion between the activation and acti vationless magnons. 
This circumstance is connected with the definite choice 
of the phase of the wave function of the ground state. In 
our case, this choice of the phase of the wave function 
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of the ground state was dictated by the fact that we have 
considered a crystal with magnetic anisotropy of the 
easy plane type. If we take only exchange interaction 
into account then the phase of the ground state remains 
arbitrary and, generally speaking, all the amplitudes 
are of the same order IJ!' ~ k2. This was the case, 
neglecting the relativistic interactions, of the ampli­
tudes in (18), where the authors started from a ground 
state corresponding to magnetic anisotropy of the easy 
axis type. 

3. SPIN·WAVE DAMPING DUE TO THREE-MAGNaN 
PROCESSES 

Knowing the Hamiltonian ~3 that describes scatter­
ing processes in which three magnons take part, we 
can determine the spin-wave damping coefficient as the 
imaginary part of the mass operatorI23). Proceeding in 
standard fashion, we obtain the following expression for 
the damping of the activationless branch of the spec­
trum: 

"t. C'l (k) =4n ~I qrcn (2; 1k)I' (n(e .. ) -n (e,,» Il (~ •• + e .. - 822). (9) 

In (9) we have recognized that the conservation laws 
permit only the process of coalescence of two activa­
tionless magnons into one activation magnon and the 
decay of an activ?,tion magnon into two activationless 
ones; n(E) = [eE/ T _1]-1. 

Analogously, for the activation branch of the spec­
trum we obtain 

"t,c" (k) = 2n 1: 1 qr'" (k; 12)1'(1 + n(e .. ) + n(e,,»1l (e2. - e .. - e,,). (10) 

Performing the integration in (9) and (10), we can ob­
tain the dependence of the damping coefficients Y~:~( k) 
on the wave vector and on the temperature. Without 
stopping to describe the straight-forward but cumber­
some manipulations, we present the final results: 

"t:" (k)=I. (~: r(~Dn~J' 

\

1 (LI.-)'[ ( 2e •• )']2( (e •• )) { ~'} . ""16; -;:; 1 + !. 1- exp -T exp - 4e .. T • 

x e"<T' T<~. 

1 4e •• T ~' -In--, e .• >~, T<~. (11) 
. n~' T 

These formulas determine the damping coefficient of 
the acti vationless magnons at low temperatures 
(T < 6.). 

At high temperatures (T > 6.) the damping coeffic­
ient of the acti vationless magnons is given by 

"t.C·'(k) = I. (:: r ( ~~»)' 
1 ~ ~)' { ~. 
- (-) (- exp -r-----o}, 
16m. e, e.. 4e •• T 

x ~ ( ~JL~J, 
~ (.!....)In 4e •• T 
n' e, ~. ' e •• >T>~, 

It is seen from these formulas that the magnon damping 
coefficient increases with increasing magnon energy. 
We note that as Elk - 0, the damping due to the triple 
processes is exponentially small both at low and at high 
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temperatures. The reason is that the coalescence of 
two acti vationless magnons into an acti vation magnon 
is a threshold process. It follows from the conserva­
tion law that the process is possible only when the 
energies of the activationless magnons satisfy the con­
dition 4E1kEll ~ 6. 2, and therefore Ell ~ 6. 2/4Elk, and 
as Elk - 0 the number of such magnons is n( Ell) 
~ exp(-6.2/4ElkT), and this is why the factor 
exp ( -6. 2/ 4Elk T) appears in the formulas for the damp­
ing coefficient. The damping coefficient of the activa­
tion branch of the spin waves is given by 

P'(k)=..E!(~)·( 1J!l» )'(!...) elk 
"t, n H., e, e, (e,.'-~')'" 

, { [e •• +(e,.i-~.).,,]/ hle •• -(e"'-~')'h]} 
x~n 8h I 4T ' s '4T' . 

To illustrate the dependence of y~3)(k) on the wave 
vector in more lucid fashion, we present the asymptotic 
forms of these expressions for small and large wave 
vectors. 

In the case of low temperatures (T < 6.) 

C"(k) 41.( H» )'( J1.H»)' 11 ==-=-_ - - 0" 

n 'H. e. 

e 1 ~ 2 ~. 

\

( ~.)[ 1 +~( s~,) T( 1 + 2exp.( - ~T))' 8k<T<~, 
X (~:)[ 1+4'(-;;) ], T<~<8k<T' (13) 

( e,. ) [ 1 ( ~ )'] ( 2T ~') - 1+- - 1--1n--, e. 2 e.. elk 4e .. T 
~. 

T<'~<T<8k. 

In the case of high temperatures (T» 6.) 

"t:"(k)"'!!!! (!!.::. ). (~)' 
11 H" 8. 

, ( ~J [ 1+ ( ~ n ' sk < ~ < T, 

X,I 2 (.!....) [1 +2.. (~)'] In 2e •• , ~'< sk < T, (14) e, 2 e.. ~ 

- 1+- - 1--1n--( e,.) [ 1 ( ~ )'] ( 2T ~') 
e, 2 elk e.. 4e .. T' 

~<T<8k .. 

The damping coefficient of magnons with activation re­
mains finite as k - 0, and is proportional to the larger 
of the quantities T or 6., depending on whether the 
temperature is high or low, 

As already noted, three-magnon processes are due 
to relativistic interaction, so that it becomes necessary 
to investigate the role of the processes due to exchange 
interaction. 

4. SPIN·WAVE DAMPING DUE TO FOUR·MAGNON 
PROCESSES 

We proceed now to consider the contribution made 
to the spin-wave damping by processes in which four 
magnons take part. The amplitudes of these processes, 
as seen from formulas (A.1)- (A.4), are due to both 
exchange and relativistic interaction. Bearing in mind 
crystals in which the exchange interaction is much 
larger than the relativistic interactions, we neglect the 
latter and start out from the amplitudes determined by 
formulas (8). 

In the calculation of the mass operator it is neces-
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sary to take into account formally not only diagrams 
containing two amplitudes of the Hamiltonian <m4, but 
also diagrams containing e.ach four amplitudes of the 
Hamiltonian <ms. The reason is that both classes of 
diagrams contain the small parameter l/S of the 
theory of spin waves in antiferromagnets, raised to 
identical powers; since, however, the amplitudes of the 
Hamiltonian <ms are connected with the relativistic in­
teraction and the amplitudes of <m4 are connected with 
the exchange interaction, the principal contribution to 
the damping is made by diagrams containing the ampli­
tudes <m4 in second-order perturbation theory. 

The spin-wave damping due to four-magnon proces­
ses is determined by the following expressions 

+ SI 'I'(')(k2; 34) j' (1 + n,,) n"n,,6 (8,. + 8" - 8" - 8 .. ) + 
+ 1'1'(3) (k, 2; 3,4) 1'(1 + n,,) n"n,,6 (8,. + 8" - 8" - 8,,)1; (15) 

1i') (k) = ~ ~ (SI '1'(2) (k2; 34) 12(1 + n"}n,,n,,6(8 .. + 8" - 8" - 8,,) 
n",-" 

'" 
+ SI '1'(1)(34; k2) 1'(1 + n .. ) n"n .. 6 (8,. + 8 .. - 8" - 8,,) + 

+ 1'1'(3)(2, k; 4, 3) i'(1 + n")n,,n .. 6(8 .. + 8" - 8" - 8 .. ) I. (16) 

We consider first the damping of activationless spin 
waves. Since the amplitude \lI' 1)(12; 34) vanishes ac­
curate to terms k4 when account is taken of the energy 
conservation law, the principal processes that deter­
mine rt,)(k) are the scattering of the activationless 
magnons by activation magnons and the process of con­
version of two acti vationless magnons into two acti va­
tion magnons. Accordingly, we represent yt,)(k) in the 
form 

(17 ) 

The quantities rll(k) and r ,2(k) are damping coeffic­
ients and are due respectively to the processes of con­
version of two activation less magnons into two activa­
tion magnons and the scattering of activationless mag­
nons by acti vation magnons. The results of the calcula­
tion of r ll(k) and r dk) are gathered in Appendix II. 

In the case of low temperatures (T« A.) we see that 
as k - 0 the principal role is assumed by the scatter­
ing of activationless magnons by activation magnons. 
The damping coefficient Y\.4)(k) depends on the spin­
wave energy in power-law fashion, and on the tempera­
ture in exponential fashion (see Appendix II). Since 
rll(k) and r ,z(k) are exponentially small at low ener­
gies, it is necessary to estimate the role of the 
processes of scattering of acti vationless spin waves by 
one another. Using expression (8) for \lI(l)(12; 34), we 
find that the contribution r 1S( k) of this process to the 
damping coefficient of the activationless spin waves is 
determined by the formulas 

~ .. <1:, 

T.< 8,. < 8,. 

Comparing r lS( k) with the quantities r ll( k) and 
r1z(k) we see that if 

then the process of scattering of activationless magnons 
by one another plays the decisive role, r\.4)(k) "" r 13(k). 
When the magnon energy E:tk increases, both r ll(k) 
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and r ,2(k) increase. At larger values of the energy, 
Elk> A. 2/T, .the principal role is played by the process 
of conversion of two activationless magnons into two 
magnons with activation, so that the summary damping 
coefficient is r\. 4) (k) "" fu( k) and increases linearly 
with energy. 

We proceed now to the case of high temperatures 
(T » A.). At sufficiently low values of the energy, Elk 
« (T/®c)2A. 2/T, the principal role is played by the 
process of scattering of activationless magnons by one 
another, r\.4)(k) "" r1s(k); in the energy interval 

1:1' (!"')'< 8,. <~ 
T e, T 

the principal role is played by the process of scattering 
of activationless magnons by activation magnons 
y\.4)(k) "" r 12 (k). At energies A. 2/T « Elk, on the other 
hand, the contributions rll(k) and r ,z(k) become com­
parable and play the decisi ve role with respect to 
r1s(k). Thus, y\.4)(k) "" rll(k) + r ,2(k). 

Let us analyze the results of the calculation of the 
damping coefficient of magnons with activation, given 
in Appendix II. The damping of these magnons is due, 
to three processes: the scattering of activation mag­
nons by each other, the conversion of acti vation mag­
nons into acti vationless magnons, and the scattering of 
acti vation magnons by acti vationless magnons. It is 
therefore convenient to express the damping coefficient 
in the form 

1~") (k)~ r2l(k) + r,,(k) + r.,(k) , (18) 

where r 21( k), r 22(k), and r 23( k) correspond to the 
three terms of formula (16). 

We note first that as k - 0 the quantity y~4)(k) 
remains finite at both low and high temperatures. At 
low temperatures (T« A.) the principal contribution 
is made by the scattering of acti vation magnons by 
activationless magnons, y~4)(k) "" r 2s(k), and at high 
temperatures (T » A. ) it is made by both processes 
with participation of activationless magnons: y~4)(k) 
"" r 22( k) + r d k). As seen from Appendix II, when the 
wave vector of the magnon increases the damping 
coefficient r 21(k) decreases, because the scattering 
amplitude of this process decreases with increasing 
k, see formulas (8). As to r 22(k) and r 2s(k), they in­
crease with increasing wave. vector. 

It is interesting to note that in the wave-vector 
regions A. « sk « T and A. « T « sk the values of 
y\.4)(k) coincide with the values of y~4)(k). This is not 
surprising, ~ince the principal role is played by the 
same processes, and the activation of the spin wave 
can be allowed formally to approach zero. 

Appendix II gives expressions for the summary 
values of the damping coefficients y~4)(k) and yk4)(k). 

We present expressions for the mean values of the 
damping coeffiCients, defined by the formula 

1. = L. l.(k)n •• / En •• , a = 1,2. 
• • 

If T « A., then 

l:") -I. ( ~) ( ~y ( ~)'" e-AfT
• 

l~')-lo(~:)'(It:D)'(!J(~ )'exp (- :;.). 

l,(I) -I. ( ~:) ( ~,)' ( : )', 1!') -I. ( !: ) '( It:D r ( !, ). 
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If T » ~, then 

1,") ~ i. ( ~ ) (2-)', 1:'} ~ I. '(H;)'{' ~)'( 3:...) ,e, HIl e, e,' 

1:') ~ I. ( ~', ) ( ;, )', "1.(') ~ I. (E) '( ~:'D)' ( ;, ) . 

CONCLUSION 

A comparison of the damping coefficients of activa­
tionless magnons in three-magnon and four-magnon 
processes (under the condition J-LHD ~ Sj3) shows that 
the principal role is played by four-magnon processes, 
y~4)(k) > r'!3)(k) at both low temperatures (T«~) and 
high temperatures (T» ~). A similar situation ob­
tains when the damping coefficient of the activation 
magnons are compared, y~4)(k) > y~3)(k). 

Thus, four-magnon processes make the main contri­
bution to the damping coefficients due to the interaction 
of spin waves. 

Processes in whicb three magnons take part, with 
allowance for activation in both branches of the spec­
trum, were considered by Ozhogin[l6]. It is easily seen 
that Ozhogin's formulas give an exponential decrease 
of the damping coefficient of magnons of type I with 
wave vector k = 0 (these magnons are analogous to our 
acti vationless magnons), if their acti vation, i.e., the 
external magnetic field, tends to zero. In this sense we 
can state that our results agree with Ozhogin's. A more 
detailed comparison, however, is impossible, since the 
formulas of ll6] are correct only as to order of magni­
tude. 

We note, finally, that although the magnon scattering 
amplitudes given in [11] do not satisfy Adler's principle, 
and therefore cannot give the correct dependence of the 
damping coefficients on the wave vectors of the spin 
waves, nonetheless, correct results were obtained 
in[l1] for the temperature dependence of the mean 
values of the damping coefficients, since the amplitudes 
are quadratic forms in the wave vectors. As seen from 
the formulas of Appendix II, at energies ~ « sk « T 
and ~ « T « sk our results coincide fully with the re­
sults of A. B. Harris, D. Kumar, B. 1. Halperin, and 
P. C. Hohenberg (if we put in our results J 0 = 2zJ, e c 
= JSz, and 10 = zJ/4). The reason is that the activation 
dose not play an important role at these energies and 
can be set formally equal to zero. 

In conclusion, the authors thank A. S. Borovik­
Romanov, 1. A. Akhiezer, and L. A. Prozorova for use­
ful discussions. 

APPENDIX I 

Amplitudes of spin-wave interaction Hamiltonians at 
arbitrary values of the wave vectors 

We present first the expressions for the amplitudes 
of the canonical transformation (4): 

where O! = 1 or 2 and Ao and Bk are determined by 
formulas (5'). The amplitudes of the Hamiltonian lfJ3 

are given by 
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i ('S )'" 'I'(I)(1; 23)""2N' ·Ll(1-2,.,.3){Pi(U;,V~i+U"VI2) (~2I'"-:-u,,) 

+ P,(u"u" + v"v,,)' (vu - u,,)+ P,(u"~,, + v"v,,) (v" - uu)}, 
S 'I ' 

'I'(') (1, 2, 3) = i,{ Iii). 1 Ll (1 + 2.:.. 3) {P, (uuu" + vuv,,) (v" - u,,) 

-p,eu"u" + v"v"),(v" - u .. }+ p.(u"v12 + u .. ,v,,) (vn - u,,)}, 

i (S )'" , 'I'(3) (1; 2:1)=~, Ii " Ll(1 + 2 + 3}{P,(u"v12 + uuv,,) (u" - u,,) 

+P,(u"v" + u"v,,) (u" - v .. ) - P, (uuv" + u"v")(u,, - v,,)}, (A.1) 
i(8)'h, ' 

'I'(U(1~23)=2 N Ll(1-2--:3){P,(u"u"+v,,v,,) (u,,-v,,), 

+ P,(u"u" + v"v,,) ,(U,. - V,.)- P, (U.,v" + U.,V .. ) (u .. - VII)}, 

, , (') i {S )"" 'I' (123)=6" N Ll(1+2+3){P,(u"v"+u,,v2l) (v,,-:u,,) 

+ P.(u"v2l+ u"v,,) (v .. -II,,) + PI (II"V" + lIi.V .. ) (VII - u,,)}. 

In these formulas, Pk = Jk sin 2 e + d cos 2 e. The am­
plitudes of the Hamiltonian ~ 4 are (O! = 1, 2) 

'I'\') (12;34) '= N-'i\ (1 + ~ ~3 ...:. 4) 

X {$.(12; 34) (U.,II.,U.,II •• +V.,lI.,v.,v".) 
+ ¢. (1-3; -M) (~.,v.,lI.,u •• + v.IUU,u.,v •• ) 
+ ,p.(1- 4;3 - 2) (U.IV.;u,.,V •• + 'Va ,II.,V.,U.,) 

+ (-,1)·[opO, -234) (u.,v.,u •• u •• + v.,u.,v.,v •• ) 
+ op(2, -!134) (v.lu.,u.,u •• + u.,v.,v.,v •• ) 
+ op(3, -421) (u.,u~,u •• v •• + v.,v.,v.,u •• ) 
+ op (4, -"32i) (u.,u.,v.,u •• + v.;v.,u.,v •• )]), (A.2) 

'I'('I(1, 2; 3,4) = N-'/';. (1 + 2 - 3- 4.) 

X {-4C (,1 - 3; -24) (u"v"v"u" + v"u"u"v,,) 
+ D(1, 2;'3, 4) (n"n"u"u" + v"v"vl'v,,) 

+ D (1, -4; 3, -2) (v"u"v"u" + u"v;,u\';v;.) 
+ 2M(1, 234) (u"v"u"u,,+' v"u"v"v,,) 
+ 2M(3, 412) (u~,u"u .. v" + v"v"v"u,,) 

-'2,M,(2,,143') (v"u"u'"zi .. -l: ,U"~22.v"V2l), 
-c, 2M(4, 321), (u"u"v"u",+z);;v .. ,UI3V~.)}, (A.3) 

'I' (4) (12; 34) = N-' Ll (1 + 2 - 3 - 4) 

X{-C(12; 34) (u llu"U,tu" + vllv"v"v,,) 
+ '/.D(1, -3; -2,4) (u llv"v"u" + VIlU"U"v,,) 
+ 'I,P(1, -4; .,-2,3) (UIlV"U"V" + vll uu v"u .. ) 

+ 'I,M (1, 324) (UIlV"U"U" + VIlU"V"v,.) 
+ 'i2M(2, 314) (vuu"u"u" + UIlV12V"v,,) 
- '12M (3, 142) (uuu"u"v" + VIlVI2V"u,,) 
- '12M (4, 132) (u llu"v"u" + v ll v"u"v,,)}. (A.4) 

In these formulas 

¢.(12; 34) = '/t8{(/1-3 + 1,_. + I,:.... + 1,-.) cos 20 
-4dsin20+ (-1)"[(1, +1,+1,+1.) cos'O +2~-2dsin2a]}, 

op(1,234) = 'I .. {(I, + I, + I.) sin' a 
+ 'I,~ + 'I,d sin 2e}, a= 1,2; 

C(12; 34) = 'I,,{(/,_. + 1,_, + 1,_. + IH) cos 2a 
-.4d sin 2a + (I, + I, - I. -I.) cos' a}, 

D( 1,2; 3,4) = 'I .. {(/1-3 + 1,-. - 11-4 - 1,_,) cos 2a 
- (I, - I, + I, -I.) cos' a}, 

M(1.234) = '/.{(/,-I. +1.) sin' a + '/2~+ '/2d sin 2a}. 

APPENDIX II 

Magnon damping coefficients 

We present the calculated damping coefficients 
r ll( k) and r l2( k) of acti vationless magnons. At low 
temperatures (T« ~) we have 

r .. (k)~/. C~J 
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i (Ll )'( T )'( T )'1'( (e,. )) ( Ll') --_ - - - 1-exp -- exp -~ , 
32n'l'n . e, e. e,. T . s •• T 

n (8 .• ) ( T )' 720 8, 8," , 
Ll' 
r<e,.<e •. 

The quantity r 12 (k) is given by 

r .. (k)= I. ( ~J 

12n'l'2n \ e, e, Ll I ~ I!!!..) '( 2.) ( 3..) 'I, e-6/T , e,. < T, 

xl Ll'T' Ll'I, 
96rt~ ( e:-)( e,)( ~: )( T) e-6/T Ll < e < e 

If A « T « ~c, then 

r,,(k)=l, (~: ) 

3 (Ll )'( T) (Ll' ) ~ - - exp-_ 
64n' e, e, e •• T ' 

Ll' 
8 •• < T ' 

1 8 .. ' T ' T 
72n (8," ) hd In~, 

x 

Ll' y< e •• < Ll, 

_1 (~ ) '(.!.-.) \n..!. 
72n e, e, 8 •• ' 

Ll < e .. < T, 

T< e •• <8" 

and the damping coefficient r 12 (k) is given by 

r .. (k) = I. (~:) 

~·(~)'(2) (!"')', 
75 e, e, Ll 

~1 (~)'(.!...)\n!..., 
-\" 72n e, e, Ll 

1 (8 .• ), ( T ) \ T 72n" e;- e, n~, 

2n (el') ( T )' 
2160 e, e: ' 

Ll' 
8 .. <y' 

Ll<8 •• <T, 

T<e,.<e,. 

We proceed now to consider the damping coefficients 
r 21(k), r 2Jk), and r 23(k) of magnons with activation. 
At low temperatures (T« A) these quantities are 
given by the formulas 

r,,(k)=I.( ~:) 

1 (Ll )'( T)' -6/T sk < T, 
64n' e, e, e , 

1 ( Ll )'( T)' ¥LlT _6/T T<sk<Ll, 
x 64n'¥2n e,. e, ~e 
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If A « T « <tiI c , then 

r21 (k) = I, (~J 
_1_ (~)'(.!...)In'!..· sk < Ll, 
64n' e, e, Ll ' 

1 Ll'T' T x "64;,(e,) (eJ In7' Ll<sk<T, 

1 Ll' T '( Ll 
( ) () ) T<slf<'iI.Ll, 

-~ e, e, -;;;' 

r,,(k)=I. (~'J 

9~n ( !,) , ( ~J 'In :' sk < Ll, 

1 sk '( T' T 
X -- (---.) -) In-72n e, e, sk ' 

Ll <sk <T, 

~(:!:-) (!..)' T<sk< e" 
720 e, e,' 

r,,(k)=I,( ~J 
1 Ll'T' T 9fudeJ (eJ In~, sk<Ll, 

x _l_(:!:-)'(!"')\n"!', Ll <sk < T, 
72n e, e, sk 

2n (Sk) ( T)' 
2160 e:- e, ' T<sk<e,. 

Finally, we present the results for the summary 
damping coefficients ri 4) and Yk 4) (k) due to processes 
with participation of four magnons. 

In the case of low temperatures (T« A) we have 

1t'(k)=I. (~J 
__ 1_(~)'( T)( T)'I. e-6/T e,.<T, T<e,.<Ll, 
12n' l'2n e, e, -:i" ' 

Ll' 
Ll < e,. <-, 

T 

At high temperatures A « T « ~c, the dependence 
of the damping coefficients on the wave vector is deter­
mined by the formulas 

1.")(k)=I.(~J 

4n (~)'(!..) (!")', Ll' 
75 Etc Etc d 8 1k <t:.. y ' 

1 e .. ' T' T 
Ix 36n (8:) (eJ InT' 

Ll' r< e'k < Ll, 

_1 (~)'(!..)'In..!... 
36n e, e, e •• ' 

Ll < e •• < T, 

n (SI.)(T)' me, e, ' T<e,.<e" 

1~') (k) = I. ( ~',) 

/

1 Ll'T' T 
. 48n (eJ (eJ In7' sk < Ll, 

1 sk' T' T 
X 36n(e;-) (eJ In-;;;, l'1<slf<T, 

~(.!!:...)(!..)', T<sk<e,. 
432 e, e, . 
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1)Expressions for the amplitudes of the canonical transformation of uj3k 
and vj3k (j) = 1,2) are given in Appendix 1. 

2)By starting from the exact formulas (A.l), (A.3) and (AA) for the ampli­
tudes of the HamiitonianX4 , one can show that these amplitudes vanish 
if the momenta of the activationless particles tend to zero and when 
relativistic interactions (the magnetic anisotropy energy and the Dzyalo­
shinskii interaction) are taken into account. 
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