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The kinetics of conduction electrons in ferromagnetic conductors with a periodic domain structure is 
considered. It is shown that the specific distribution of the magnetic induction leads to resonance 
absorption of an electromagnetic field at a frequency which depends on the domain structure period 
w", = 7T v F/ d (v F is the charge carrier Fermi velocity and 2d is the domain structure period). The 
shape of the resonance absorption line is found. 

1. FORMULATION OF PROBLEM. CHOICE OF MODEL 

As is well known, a multidomain ferromagnet is 
characterized by spatial periodicity of the magnetic in­
duction. This special form of the inhomogeneity of the 
magnetic induction causes the dynamics of conduction 
electrons to have interesting features[lJ. A new param­
eter with dimension of length, namely the period 2d of 
the domain structure (d is the dimension of the domain) 
comes into play in the problem of electron motion in a 
magnetic field. Depending on the relation between this 
parameter and the cyclotron radius R = c P 1 /eB (c is the 
speed of light, e is the electron charge, P 1 is the projec­
tion of the electron momentum on a plane perpendicular 
to B), we can distinguish betw~en three electron groups 
whose trajectories differ qualitatively from one another. 
The kinetic properties of the electron system differ in 
this case strongly from the effects in a homogeneous 
magnetic field and depend on the period of the domain 
structure. 

In the analysis that follows, we replace the exact dis­
tribution of the magnetic induction by the model distri­
bution (Fig. 1) 

B(x)=B,(x) =Bo sign sin'(l'lx/d). (1.1) 

The z axis is directed along the easy axis of the magnet, 
and the x axis is perpendicular to the phase-separation 
plane. In this model, no account is taken of. the distor­
tion of the domain structure near the surface of the 
sample, nor is the influence of the domain boundaries on 
the influence of the conduction electrons taken into ac­
count. The surface distortion of the magnetic structure 
influences strongly the kinetic effects in the case when 
the perturbation of the electron subsystem takes place 
in a narrow surface layer of the sample (of width ~d). 
In the case when the characteristic depth of the pertur­
bation of the electron system greatly exceeds the dimen­
sion of the domain, the distortion of the magnetic struc­
ture is a surface effect and can be neglected. The influ­
ence of the domain walls on the motion of the conduction 
electrons reduces in the main to the following. 

1) The traj ectories are bent within the limits of the 
domain wall. For this effect to be negligible it is neces­
sary to have 

(jot Vz < 0 0- 1, 0 0 = eRo / me, (1.2) 

where 00 is the width of the domain wall, Vx is the elec­
tron velocity in the x direction, and no is the cyclotron 
frequency. 

2) If the temperature of the sample is much lower 
than the Curi~ temperature, then the Landau-Lifshitz 
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. solution [2J holds in the domain wall, and the magnetic 
moment changes only in direction. In this case, forces 
connected with the "disorientation" of the electron spin 
and of the vector of the magnetic induction B come into 
play. However, the exchange interaction of the conduc­
tion electrons with the lattice atom, under the condition 

hr./ l(jo 4: 1 (1.3) 

ensures that the spin "follows" adiabatically the direc­
tion of the magnetic induction during the course of the 
electron motion [3J (I ~ 0.1 eV is the exchange integral). 

3) The electrons are scattered by spin waves propa­
gating in the domain wall. However, as shown by Turov 
and Voloshinskir [4J, the effectiveness of this scattering 
decreases with temperature T like T3i2 , and at suffi­
ciently low temperatures this effect can be neglected. 

The inequality (1.2) ceases to be satisfied for a very 
small group of electrons with small v:(l;' the contribution 
of which to the kinetic effect is negligible. The condition 
(1.3) is satisfied for the electron groups that will be con­
sidered from now on. 

2. RESONANT ABSORPTION OF HIGH-FREQUENCY 
FIELD 

One of the simplest kinetic effects illustrating clearly 
the features of the system under consideration is ab­
sorption of a high-frequency electromagnetic field (fre­
quency w) under conditions of the normal skin effect. 
The most interesting is the case when 

(2.1) 

where 1 is the mean free path and 0sk is the depth of the 
skin layer. 

The left-hand inequality, as will be seen from what 
follows, ensures a sufficiently sharp resonance absorp­
tion. The right-hand inequality corresponds to the 
normal skin effect and is satisfied for conductors with 
sufficiently low carrier density or for doped semicon­
ductors. 

+60 

FIG, I. Coordinate dependence of the magnetic induction. 
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The kinetic equation for the nonequilibrium increment 
f to the electron distribution function, linearized with 
respect to the external field, is 

(v - ioo)/ + vi)/ / ax + Q(x)a/ / a'l' = -eEv a/o / ae, 

/('l' + 211) =/('l'), /(x+2d) =/(x}. 

(2.2) 

(2.3) 

Here II is the frequency of the collisions with the scat­
terers, E is the amplitude of the external monochromatic 
field of frequency w, q; is the angle in momentum space, 
tan q; = vy /vx ' fo is the equilibrium electron distribution 
function, and 

Q(x} = eB(x) / me = Qo sign [sin (1IX fd} J. (2.4) 

The boundary conditions (2.3) with respect to the coor­
dinate x reflect the periodicity of the distribution of the 
magnetic induction in the conductor. 

The motion of the electron in the field (1.1) is along a 
circular arc so long as the electron is within the con­
fines of one domain. When the domain wall is crossed, 
the curvature of the trajectory reverses sign. It is con­
venient to classify the electron trajectories in terms of 
the rotation-center coordinate x reckoned from the 
nearest domain boundary (on the left): 

x = x- dE(x / d} - R sin 'l', (2.5) 

where x is the coordinate of the electron, cp determines 
the direction of the velocity at the point x, and E(x/d) is 
an integer defined in such a way that 

o ~ x / d - E(x fd} <.1. 

Depending on the type of trajectory, the electron motion 
can be broken up into three groups. 

The first group (Fig. 2) is made up of electrons that 
rotate in circles in the xy plane and do not touch the 
domain walls. For these electrons we have 

-R<X< d-R. (2.6) 

The second group (Fig. 3) is made up of electrons 
with either 

O<X<R, d - R, (2.7) 

or 

R,d- R<X<d. (2.8) 

These electrons execute infinite motion along the 
domain wall, whereas their motion in the direction of 
the periodiCity of the magnetic structure (the x axis) is 
finite. 

The third and most interesting electron group (Fig. 4) 
is defined by the condition 

d-R<X <R. (2.9) 

These electrons execute infinite motion along the x axis 
and "feel" the periodicity of the domain structure. The 
electron velocity is periodic (with period 2d) as a func­
tion of the coordinate x on the trajectory of motion, as 
the result of which the electrons of the third group make 
a special resonant contribution to the absorption of the 
high-frequency field. 

After solving equation (2.2) with conditions (2.3), we 
can calculate the electric conductivity tensor aik(w, x). 
The contributions of the three electron groups differ 
qualitatively from one another. In the case of quadratiC 
dispersion, the expression for aik(w, x) is 
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a .. (00, .z)= a!."(co) + af:' (co,~) + a!·'.(di,x), (2.10) 

where aCj;) is the contribution made to the el~ctric con­
ductivity by the m-th group of electrons: 

(2.11) 

" "I) _I I ", (" at;) 0' ,II' ,[ \I - ioo ' 
(I) .. =A<&; g,'"' fdp -&; vlj 4V. (s,x,p)exp T.~J. 

~ -- (2.12) 

V.").,. VJ. cos <p(1) (8), ' V,")'''' VJ. sin 9l"),(S), 
t(l) 

V. = v" (2.13) 

!pll) (8) =( S J!,. ',l- 1 
, ", 2' ") . [ n 8 - 8(1).(x) ] (2.14) 

CJ!,+) --Ijl- arcsin cos 2 f , 
, no, ; , ''P,-)' 

, ,I) 

8(1' (.z)= {(f>l.,:-CJ! for ,Q(x)!.~o?O,. (2.15) 
, , ,'l''-',IP>(I) for O(.z)/Q.<<()·' 

<'> . I -'<'f <" <'). 'il,,,,),= f. <PI ± Cf~ .J; (2.16) 

(I) (" <i, '.(5' 
'PI = n - ct(-h ,. = q>l =. ~(+)t <Pt.::R 3t - (1(+), 

(2.17) 
,I) ,I) (0) ,(I)' " 

'l" = 'l" = a(_), 'il. = It - a,+), '1', ... 11 - a,-It 

The tensor Au: is obtained from the normalization con­
dition 

.' ;r,~I~II=1, 00=0, 

where aik is the static electric-conductivity tensor. The 
symbol Le in the integral of (2.12) means that integra­
tion in the formula is limited by the following conditions: 
(2.6) for L1, (2.7) for L2, (2.8) for L3, (2.9) and -1T/2 
~ cp ~ 1T/2 for L4 , and (2.9) and 1T/2 ~ cp ~ 31T/2 for L5' 

An analysis of (2.11)-(2.18) shows that the contribu­
tion of the electrons of the first group a~ describes 
the usual diamagnetic resonance in the absorption of the 
electromagnetic field, since near the resonant frequency 
wres = no we obtain for the high-frequency power ab­
sorbed by the first group of electrons 

1 ~ 'l'f 'Y' '~' 
Q, = '2 k.J E,E. Re a .. e! v' + (00 -'- QoJ' t... l..E.E., 

(It . "i,k 

0A -I'Sd' ( al ,) , 1'" = a.. '" P - --a;- v,V •• 
L. . 

(2.19) 

The kinetic properties of the electrons of the second 
group recall the properties of surface electrons in me­
tals. The local power ~(x) absorbed by this group has 
a resonant character, but the resonance frequency de­
pends on the coordinate x of the observation point. 
Therefore, after averaging Q2(X) over the period of the 
domain structure, the resonant Singularity becomes 
smoother. Strictly speaking, the treatment of this group 
of electrons within the framework of the chosen model 
is not fully justified, since it includes glancing electrons 
for which the condition (1.2) are not satisfied, and it is 
necessary to provide details of the domain-wall struc­
ture. A rigorous analYSis of this group of electrons is 
contained in the paper by Mints [5J . 
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FIG. 2. Trajectories of electrons that do not cross domain walls. 
FIG. 3. Typical trajectory of electrons that execute infinite motion 

only along the domain wall. 
FIG. 4. Trajectory of electron motion that is infinite in the periodi­

city direction. 

Greatest interest attaches to the contribution of the 
electrons of the third group. Analysis of expressions 
(2.11)-(2.18) shows that only the component u(3) has a 
singularity after averaging over the period of1fie domain 
structure. This singularity occurs only at temperatures 
much lower than the degeneracy temperature. At higher 
temperatures, the singularity due to Hle integration with 
respect to energy in (2.12) vanishes. The final result 
assumes the simplest form when 

v, / Q.d :J> 1. (2.20) 

In this limit, the resonant contribution to the absorption 
is given by 

(2.21) 

(SI 2ey' SS '\I , 
Rea" ",a'-A dp,drp,.( _ .)' ' 

xx 'V + w Wo 

UF P.l... 
(0). = ny pcosrp, 

(2.22) 

2 SdS V;" (x, x', rp = 0, p, = 0) nx nx' 
a. = a"" 0 --;pdx dx' --=--'--'-.:...:..-...:..:....:-'-~ cos -d cos -d ' 

o v" 
(2.23) 

x' = v,s f Q. + x. (2.24) 

It is seen from (2.23) that the resonance frequency Wo 

as a function of Pz and .cp has a maximum at the point cp, 
Pz = O. In this case as shown by Kaner et al. [6J , the 
shape of the resonance-absorption line is asymmetrical 
and is given by 

Q ( ) • ( 2.. (0), .. '-.(&1 ) ,CD'" KE. i + - ~rctg --_.- , 
n· '\I 

(2.25) 

'K- 4 (Qod): pld .• -- -- --v=· n v, A .. · 
(2.26) 
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FIG. 5. Shape of resonance-ab­
sorption curve, 

where the resonance frequency wres is given by 

(0)". = nv, f d, 

UJ- . rlS 

(2.27) 

As seen from (2.25), the amplitude of the resonance ab­
sorption depends strongly on the orientation of the polar­
ization vector of the absorbed wave relative to the 
domain structure, and the resonance frequency is simply 
connected with the dimension of the domain. A plot of 
the resonance curve is shown in Fig. 5. 

The considered effect is an illustration of the singu­
larity of the kinetic s of the electrons in multidomain 
structures. A similar resonance effect should take 
place also in the absorption of sound. 

In conclusion, the authors are highly pleased to thank 
E. A. Kaner and I. O. Kulik for support and'valuable re­
marks made during the discussion of the results. 
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