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Energy-density correlation functions of nth order are obtained for the plane Ising model with an 
arbitrary point positions. The somewhat cumbersome general expression can be simplified by 
introducing a "multivector product." Due to symmetry of the two-dimensional Ising model with 
respect to the Kramer-Wannier transformation, the even- and odd-order correlators are even and 
odd functions of t::.. T / T C' respectively. In conclusion, the behavior of energy correlators in the 
general case is discussed from the view point of scaling laws. 

1. INTRODUCTION. 

A large number of papers devoted to the investigation 
of correlation functions for the two-dimensional Ising 
model has been published in recent years. However, the 
multipoint correlators found thus far U ,2J pertain only to 
the case when the points are located on a straight line
along a row (column) or diagonal. The multipoint sfain 
correlators then satisfy the scaling-law hypothesiS ,41, 
whereas the multipoint energy-density correlators, while 
not contradicting the hypotheSiS, does not confirm it, 
Indeed, if at T = Tc the energy-density correlator for an 
odd number of points vanishes on account of the Kramers
Wannier symmetry, then the even-order correlator is, 
according to KadanoffUJ , equal to 

<15, ... ~'2") = E ({ff,{ff2) ({ff$,) ... ({ff2,,~$2n), (1.1) 

where the summation is over all the (2n - 1)! ! permu
tations of the indices. It follows at once from this that 
the corresponding irreducible corre.lator «&1 ...... &2n» 
for points situated on a straight line also vanishes. Also 
inapplicable for the two-dimensional Ising model is the 
expression resulting from the general form of the three
point correlator at T = Tc found by Polyakov t5J on the 
basis of the theory of conformal symmetry; this ex
pression vanishes here due to the above -indicated 
Kramers-Wannier symmetry. 

However, the high-order energy correlators do not 
vanish: if n is their order, then their integrals are equal 
to the n-th derivatives of the free energy: 

ss S I1nlnZ 
... «{ff, .•. 8 n»dr, ... drn= I1Kn ' (1.2) 

where K = -J/T. Therefore, the investigation of the 
multipoint energy-density correlators for arbitrary posi
tions of the points, to which the present paper is devoted, 
is of unquestionable interest. 

2. THE GENERAL FORMULAS 

To compute the multipoint energy-density correlator, 
let us consider a two-dimensional M x N Ising lattice 
for different interaction constants. The statistical sum 
of such a model is equal to 

Z = sp { exp [ t t (Kmn(Jmn(Jm+l.n + Km ,,' (Jm n(Jm.n+,) ]}. (2.1) 
1>I~t n=l 

Here, as a rule, a takes on the values ± 1, Kmn = J mnlT , 
Kmn' = J mn' IT, where J mn and J m~ are respectively 
the interaction constants along the vertical and horizontal 
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lines. Let us introduce the dimensionless vertical and 
horizontal energy densities: 

The ordinary energy density is obtained by adding these 
expressions multiplied beforehand by -J and -J', re
spectively. 

The energy-density correlation function in any num
ber of arbitrary points of a homogeneous anisotropic 
lattice is equal to the corresponding n-th derivative of 
the statistical sum (2.1) with respect to Kmn and Kmn' 
for all Kmn = K and Kmn' = K': 

/IT ~~~~ ,,= Z-' (IT -_11_) Z I . (2.3) 
" i • 1/ i aK~:~i K!:~=K(.) 

Here the index O! denotes the presence or absence of the 
prime on the corresponding quantities. 

Let us now write the statistical sum (2.1) in terms 
of the trace of the product of the transition matrices: 

Z = Sp(PM ' ••• f'/P,'), 

Pm'=UmVml 

Um = II (2sh2Knm)';'exp (,LKmn'Xn 
n n 

(2.4) 
(2.5) 

=II (2Sh2Knm)'"exp(2i,LKnm'~n+~n-), (2.6) 

V m = exp (~Knm'ZnZn+l) = exp (-2i ~ Knm'~n +~n-;"); (2.7) 
n 

thK'=e-2K or sh2K'= (sh2K)-'. (2.8) 

Here we have written the expression for the transition 
matrix first in terms of the ordinary Pauli matrices X 
and Z and then in terms of the Onsager matrices 

~n+ = 2-"'YnX'''' i n_" "itn- =Z-'''Znx, ... xn_" (2.9) 

which satisfy the commutation relations for Fermi 
operators: 

(2.10) 

Since we shall be interested in only bulk effects, we shall 
not pay any attention here and below to the boundary 
conditions. 

To find the energy-density correlator of interest to 
us, we shall differentiate, accordingto (2.3), the sta
tistical sum (2.4). Then, there will appear at the points 
of the transition-operator product on the right hand side 
of (2.4) that correspond to the column number the energy
density operators: 

((ff::.~.8~~~, ... ) =Sp(pM-m,i;~~"'fim.-m'15~:') ... )/SpPM, (2.11) 
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$n = (sh 2K) -, (ch 2K - 2i~n+~n-)' 

8.' = -2i!-1n +!-1~+,. (2.12) 

To simplify the expression, we carried out a small num
ber of cyclic permutations under the Sp sign, so that now 

(2.13) 

The expression (2.11) obtained for the correlator can 
easily be reduced to a product of factors of the form 
A + BJ.J.f3J.J.f3;, and then by the Hurst-Green method(6) to 

n n 
the corresponding Pfaffian form, which can be computed 
with the aid of the hothouse forms. It is easier, how
ever, to use the Kadanoff-Hecht method [7,aJ , introducing 
the column-number dependent energy-density operators: 

Then the sought-for correlator assumes the form 

/rr ",(ai) " (M rr"(a i ») I M 
". "'mini/ = Sp P Tm . ~mini SpP. . . 

(2.14) 

(2.15) 

The symbol Tm here stands for the operator that per
mutes the operators standing after it in the order of 
decreasing column number m from left to right. 

The above expression is clearly analogous to the 
multipoint temperature Green function (9) , the role of the 
imaginary "time" being played here by the index m: the 
column-number dependent operators are analogous to 
the operators in the Heisenberg representation, the 
operator P is analogous to the translation operator 
exp(-Xr) , the operator pM is analogous to the operator 
exp(-f3x), and the row number n is analogous to the space 
variables. The subsequent probram is obvious. The ex
pression (2.12) connecting the energy-density Schro
dinger operators and the Schrodinger Fermi-operators 
is also valid for the Heisenberg operators if we anal
ogously introduce the Heisenberg Fermi-operators: 

(2.16) 

Since our Hamiltonian is a quadratic function of the 
Fermi operators (2.6) and (2.7), the Heisenberg repre
sentation is in fact the interaction representation and the 
many-particle Green function, i.e., the required corre
lator, can, according to Wick's theorem, be expressed in 
terms of the two-particle Green function: 

The applicability of Wick's theorem to the case under 
consideration can be proved by the method given in the 
book(9) . 

To do this, we assume that the distances between the 
points Im-m'l «Mand In-n'l «N,andalsothatn, 
n' » 1, so that the Green function (2.17) depends only on 
the intervals 1m - m' I and In - n'l , on account of the 
uniformity of the system. The Green function (2.17) is 
computed in the Appendix. 

3. THE ENERGY·DENSITY CORRELATORS 

Let us first of all find the pair correlator. Computing 

represent each Fermi operator by a point and the pair 
Green function (2.17) by a line, then the second term in 
(3.1) graphically has the form shown in Fig. lb. The first 
term-the irreducible .energy-density-energy-density 
correlator-is the result of the bonding of the Fermi 
operators from different energy-density operators: it 
is shown graphically in Fig. 1a. The interaction of lines 
in a diagram corresponds, on account of the anticom
mutation of Fermi operators, to the appearance of the 
minus sign. 

We can now use the expressions (A.S) and (A.9) ob
tained in the Appendix for the Green functions to find 
the irreducible pair correlator. The corresponding ex
pressions can be Simplified near the transition temper
ature at small values of 

e = 2 sh 2K/ (K' - K') ~ 1. (3.2) 

Here Kc is the critical value of K' determined by the 
equation K~ = K~, i.e., sinh2Kcsinh2K~ = 1. For an iso
tropic lattice, sinh2Kc = 1 and € = --4J(T - Tc)/T~. Using 
the expressions (A.14) and (A.15) (see the Appendix) for 
the Green functions, we find for large distances meas
ured in units of the lattice constant that 

«fC,,'fC,,'» = (e/,,)'(K.'(leIR) -Ko'(leIR)), (3.3) 
R' = (x, - x,)' + (y, - y,)' 8h' 2K, » 1, (3.4) 

where Ko and K1 are Macdonald functions. 

We have written here the expression for the horizontal 
(primed) energy-density correlator. The other pair 
correlators differ only by the appearance of the additional 
factor (sinh2Kcr1 multiplying each unprimed (vertical) 
energy density: 

«fC,fC,'» = «fS,'fC,» = (sh 2K,)-'«fC,'fC,'», 
«fC,fC'» = (sh 2K) -'«fC,'fS,'». 

At small-in comparison with the correlation radius 
Rc ~ I € 1-1 -distances, using (A.17), we obtain 

«fC,'fC,'» = 1 / ,,'R', 1 ~R ~ R,. (3.5) 

The pair energy-densitt correlator was previously ob
tained by Stephenson in 0) and by Hecht in [aJ • 

Let us now consider the triple energy-density corre
lator. The application of Wick's theorem to the 
expression (2.15) in the case of three energy-density 
operators is demonstrated graphically in Fig. 2. Thus, 
the triple correlator breaks up into the irreducible 
correlators: 

(fC,fS,fC,) = «fS,fC,fC,» + (fC,)«fS,fS 3» + (fS,) «fS,fC 3» (3.6) 
+ <fC 3 )«/s,fC,» + <fC'>(fS,)(fS 3 ). 

Using (A.14) and (A.15), we can obtain after quite tedious 
computations the following expression for the irreducible 
triple energy-density correlator near the transition tem
perature for large distances: 

u u 
b 

FIG. I. The diagrams contributing to the reducible pair correlator (see 
(3.1 )); a-contribution to the first term of the expression (3.1 )-the ir
reducible correia tor; b-contribution to the second term. 

according to Wick's theorem the average of the product ~ L.J T 4:::!!::::P 
of four Fermi operators, we find 

u u u 

The second term on the right hand side is the result of 
the bonding of the Fermi operators that enter into one 
and the same ~nergy-density operator. If we graphically 
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FIG. 2. Diagrams contributing to the three-point reducible correlator 
(see (3.6)): a-two of the four diagrams contributing to the first term of 
the expression (3 .6)-the irreducible correlator; b-the diagrams contri
buting to the second term of this expression; c-the contribution to the 
last term. 
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~8.'8,'8,'»= 2 ( : )' [.E K.(leIR 12)K,(leIR,,)K,(leIR,,) (n"n,,) 

+K.(leIR12)K.(leIR,,)K.(leIR,,) 1, (3.7) 

The summation sign denotes summation over three per
mutations of the indices: 1, 2, and 3; Rij is the dis tance 
between the points r i and rj in the sense of (3.4); nij is 

the unit vector in the direction going from the point ri 
to rj, also with allowance for the anisotropy: 

n;J=R;lR'j, R;;={x;-x;, (y,-y;)sh2K,}. (3.8) 

As before, the correlator for the unprimed (vertical) 
energy densities differs from this correlator by the 
appearance of the factor (sinh2Kcr 1 multiplying each 
unprimed energy. 

At distances that are small compared to the corre
lation radius Rc, the dominant contribution is made by 
the first term of the formula (3.7): 

, 1 I -28 L D23n,H «8,82 8, »=-- ---In(leIRI2)' 
. n' 'R,.R3I 

(3.9) 

Thus, the triple correlator is an odd function with re
spect to the transition temperature and vanishes at 
T = Tc. This result is a consequence of the symmetry 
of the Ising model under the dual Kramers-Wallnier 
transformation. Under such a transformation (8 - (8» 
- - (8 - (8». Therefore, the scaling term in the triple 
energy correlator predicted by Polyakov l5J vanishes here 
and the dominant term (3.9) behaves as ±RiR-2 ln (R/Rc)' 

Let us consider the fourth-order correlator. It also 
breaks up into irreducible correlators: 

<8,8,8$,> = «8,8$-$,» + 
+ (8,)«8,8,8,» + ... +«8,8,»«8$,» (3.10) 

... + <lB,> <lB,><8,><8.>. 
The dots stand for terms obtainable from the expliCitly 
written-out terms by permuting their indices. We leave 
out the tedious intermediate computations and give the 
final result for large Rij near Tc, obtained with the aid 
of the formulas (A.14) and (A.15): 

«8,'8,'8,'8,'»= - 2(e/n)'{ K,(leIR12 ). 

. K,(leIR,,)K,(leIR,,)K,(leIR,,)· (3.11) 

+ LK.K.K,nK,n + K.(leIRI2)K.(l eIR,,)/(.(l eIR,,)K.(leIR,,).}+ ... 

The dots stand for two more analogous terms obtainable 
from the written-out term by permuting the indices (12) 
and (34); in other words, to each of the terms corre
spond the nonequivalent (in the sense that they cannot be 
transformed into each other by cyclic permutation or 
inversion) cycles (1234), (1324), and (1243). The sum
mation sign denotes summation over the six permuta
tions of the arguments R12 , R23 , R34 , and R41 of the func
tions under the summation sign. 

The expression (3.11) obtained by us for the fourth
order correlator is, of course, quite unwieldy and dif
ficult to examine. To simplify it let us introduce the 
"multivector product" denoted below by the angular 
brackets ( ... ) and satisfying the following rules: 

1) the multivector product is distributive; 

2) the scalar quantities that enter into the multivector 
product commute with each other and with the vectors; to 
put it simply, they play the role of coefficients and can 
be' taken outside the multivector-product sign; 
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3) the multivector product is noncommutative with 
respect to the vectors that enter into it, but cofactors 
can be cyclically permuted; 

4) the transposition of two adjacent vectors satisfies 
the "anticommutation" condition: 

<. .. abo .:> + < ... ba .. .> = 2<ab>< .. .>; 

5) the multivector product of two vectors coincides 
with the ordinary scalar product: (ab) = (a. b). 

It follows from the definitions 3)-5) that the multi
vector product of an odd number of vectors vanishes, 
while the product of an even number of vectors can be 
expanded according to Wick's theorem and expressed in 
terms of binary scalar products. For example, for four 
cofactors 

<abed> = (ab) (ed) + (ad) (be) -'- (ae) (bd). (3.12) 

With the aid of the multivector product introduced by 
us we can write the expression (3.11) for 'the correlator 
in the quite simple form: 

«8.'8,'8,'8,'» 
, (3.13) 

=-2(: )'(rr (K,(lslR.,i+,)n",+, +K.(leIRi ,,+,» > + .... 
i=t 

As before, the dots here stand for the two analogous 
terms with different nonequivalent arrangements of the 
indices; R45 -= R41 . The unprimed 8 lead to additional 
factors of (sinh2Kcr1. 

For 1 « Rij ~ R « Rc, the dominant contribution is 
made by the first terms of the cofactors in (3.13), so that 
the fourth-order correlator behaves, on account of (A.17), 
in an invariant fashion under scaling: 

«<l!1,8 $ $,» - .1 I R', 

with quite a complicated angular dependence, which, as 
can be verified by direct calculation, leads to the van
ishing of this dominant part of the correlator when all 
the four points are situated on a straight line, in accord 
with Kadanoff's resultUJ • 

Higher-order energy-density correlators have sim
ilar form near Tc. They are each a sum of (n - 1)! /2 
terms, to each of which corresponds a nonequivalent 
closed cycle composed of the indices entering into the 
correlator of the points. Each term of the sum can be 
written in the form of a multivector product: 

The unprimed (vertical) energy densities yield additional 
factors of (sinh2Kcr 1; Rij should be understood in the 
sense of (3.8); Rn, 11+1 = Rru. 

For 1 « Rij ~ R « Rc, the dominant contribution to 
the correlator is made by the first terms standing inside 
the brackets under the product sign in (3.14), so that 
even-order correlators behave at T = T c according to 
scaling theory: 

«8,8, ... 8,.» - 1/ R'n 

with a complicated angular dependence guaranteeing the 
vanishing of the correlator when the points are situated 
on a straight line. An odd-order correlator is an odd 
function of " and vanishes at T = Tc. Since the multi
vector product is different from zero only for an even 
number of vectors, the dominant contribution to an odd-
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order correlator is made by the product in (3.14) that 
contains the function Kl n - 1 times and the function Ko 
once: 

(3.15) 

4. CONCLUDING REMARKS 

In conclusion, let us answer the naturally arising 
question: Is the vanishing at T = Tc of odd-order energy 
correlation functions a general property, or is it con
nected with the specific properties of the two-dimensional 
Ising model? According to the sCaling-law hypothesis [3 ,4J , 

the singular part of the free energy is equal to 

{ A+e'-" e > O. 
F.i.,INT = A I ·1'_" ° _ E ,B < . 

(4.1) 

Let us now represent the expression (4.1) as a sum of 
even and odd functions of EO and take into account the 
connection between the integrals of the irreducible cor
relators and the derivatives of the free energy with re
spect to EO (see (1.2)), a connection which is valid for any 
model. Then an even-order correlator is determined at 
T = Tc by the even part of the expression (4.1): 

(4.2) 

while an odd-order correlator is determined by the odd 
part of (4.1): 

(4.3) 

The critical-point exponent of the energy density 
A = d -1/11, where d is the dimension of the model and II 
is the critical-point exponent of the correlation radius 
Rc ~ I EOI-II. 

Thus, the vanishing of odd-order energy correlators 
for the two-dimensional Ising model is connected with the 
symmetry of the singular part of the specific heat with 
respect to the transition point, Le., in the final analYSis, 
with the Kramers-Wannier symmetry. In the general 
case odd correlators do not vanish, being proportional to 
~ -A_. 

In conclusion, the author expresses his thanks to M. A. 
Mikulinskif for useful discussions. 

APPENDIX 

A Green function similar to ours (2.17), was found 
in [7J by Kadanoffj therefore, we shall only outline the 
method of computing it, Citing in detail only the final 
formulas that are necessary for obtaining the energy
density correlation functions. 

ConSidering the Fermi operators fJ.~n as components 
of a spinor 

~ (" +) f.Lmn = .mn_ 

I'm. 
(A.1) 

in T space and using their defini tion (2.16) and the 
definition (2.6), (2.7), and (2.13) of the operator P, we 
find that far from the boundaries 

~mn=p-l~m_l.nP= L,i(n-n')~m-l.n" (A.2) 
n' 

where g(n) is an operator in T space, Le., a 2 x 2 matrix. 
It differs from zero only when its argument n = 0, ± 1. 
Taking the Fourier transform of this matrix, we obtain 
in T space the operator g(p) whose eigenvalues are equal 
to exp(±y(p)), where 

ch 1 ~p) = ch2K' ch 2K' - sh 2K' sh 2K' cos p. (A.3) 
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Let us represent the operator g(p) in the form of a sum 
of the operators of projection unto the eigenstates g.(p) 
and gJp): 

i(p) = exp (1 (p) ) g~+ + exp (-1 (p) ) g-, 
where the projection operators are equal to 

A 1 1. 
g±(p)=-±--[T.sh2K' ch2K' sinp 

2· 2 sh 1 

(A.4) 

(A.5) 
+ {.(sh 2K' ch 2K' cos p - ch 2K' sh 2K') - i~, sh 2K' sh 2K'] 

(TX , Ty , and TZ are the ordinary Pauli operators in T 

space). 

Using now (A.2), we find the equation for the Green 
functions (2.17) considered here as matrices in T space: 

@(m,n)= I,i(n-n')@(m-1,n')+lIom. (A.6) 

.' 
Solving this equation with the aid of the Fourier trans
formation, then using the decomposition (A.4) of g(p) in 
terms of the projection operators, and then carrying out 
the inverse Fourier transformation with respect to the 
first argument, we obtain for the Fourier transform of 
the Green function in the second argument: 

m( ) {exP(-l(p)m)i-(p), 
'" m,p = ~ 

-exp(-l(P) Iml)g+(p), 

m;;;oO 

m<O. 
(A.7) 

Using the values (A.5) of the projection operators g±(p) 
and performing the inverse Fourier transformation, we 
find the diagonal components of the Green-function 
matrix: 

1 m'Fn ±"d 
(M±±(m n)=---S ~r"ml+iP" (A.8) 

, 2 Iml _,2n 

and the off-diagonal components: 
i [ +S" dp e-Ivlm+ipn 

(MH(m,n)=+- ch2K'sh2IC ----
2 _.2n slq 

(A.9) *ndp e-ylml+ip(n±IJ 

- sh 2[(' eh 2K' j . 
_. 211 sh 1 

These expressions are exact (far from the lattice 
boundaries). From them, it is easy to obtain, in par
ticular, expressions for the free energy. In fact, using 
(2.12) and taking (2.8) into account, we find 

<Et> = (sh 2E)-' (cit 2K - 2i@+-(O,0» 

1 0 +'d 
=-- rlnsh2K + S~l(P)], 

2 oj( L _. 211 

1 0 +n d 
(8'>=-2i@+-(0,-1)=TiiJCJ. 2: 1(1')· 

(A.10) 

(A.ll) 

Integrating these expressions, we immediately obtain 
Onsager's celebrated formula: 

1 +. d 
In z = '2 (In 2 + In sh 2[( + 1, 2: 1 (1') ) . (A.12) 

Near the transition temperature, when K' - K*, we have 
for small p and EO (see (3.1)) 

1 (p) "" (p,' + 1") 'I, 5h 2!C. (A.13) 

Then at large (in comparison with the dimensions of the 
unit cell) distances 

sh2Ie 
~l±±(m, n)= --(m 'F n) leIK,(leIR), 

211R 
(A.14) 

(MH(m,n)= -/-[ ±E.Ko(lelR)- ch 2K/ ~Kt (lelR)] (A.15) 
211 fl 

fl = (n' + m' sh' 2;':,)'1, ~ 1. (A.16) 
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We have replaced K' by K~ = K~. Here Ko and K, are 
Macdonald functions. Let us remind ourselves of their 
behavior at large and small values of the argument: 

K() {-lnX K!(x)={1lX, x<1. (A.17) 
o x = (n/2x),"e-" (n/2x),"r' x:3> 1. 
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