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The light- (radio-) electric effect is studied in a strong electric field and at oscillation frequencies 
exceeding the collision frequency. Without restricting the analysis to the hydrodynamic 
approximation, allowance is also made for another effect of the wave vector of the propagating wave, 
viz., spatial dispersion of the carrier complex dielectric constant. Helicoidal and Alfven waves and 
also magnetoplasma waves with electric fields parallel and perpendicular to the external magnetic 
field are considered. It is assumed that the carrier spectrum and their scattering are isotropic. It is 
found that the light-electric field component that depends on spatial dispersion of the dielectric 
constant exceeds the component that does not depend on it for both the ordinary and 
extraordinary waves. 

1. An electromagnetic wave propagating in a conduct­
ing crystal produces in this crystal, in the approximation 
quadratic in the wave field Ell a constant current h if 
the circuit is closed, or a constant electric field E2 if 
the circuit is open. This effect was pointed out by 
Barlow[l] and subsequently called the light-electric [2J 
or radio electric effect[3J. It was interpreted as a high­
frequency Hall effect[lJ . It turned out subsequently that 
this interpretation is valid only in the hydrodynamic ap­
proximation; beyond the limits of applicability of this 
approximation, there is superimposed on the Hall effect 
another mechanism, interpreted in [4J as "dragging" of 
the electrons by the photons. In terms of classical phys­
ics, this denotes the influence of the "momentum" of 
the propagating waves, which is proportional to the 
square of the field and to the wave vector) on the car­
riers. The dependence on the wave vector becomes 
manifest here in two circumstances: first, the magnetic 
field of the wave (6) is dependent on the wave vector (and 
the concept of the high-frequency Hall effect is connec­
ted with this circumstance), and second, in the presence 
of spatial dispersion, the complex dielectric constant of 
the plasma can depend appreciably on the wave vector. 
For a weakly-damped wave, when the imaginary part of 
the wave vector k" is much smaller than the real part 
k', this has been considered in[5], and in the case 
k" ;::: k' it was considered in[6J. 

The present paper is devoted to a study of the light­
electric effect in the presence of an external constant 
magnetic field and at different ratios of the wave fre­
quency w to the cyclotron frequency n. 

We consider the different types of electrOmagnetic 
waves that propagate in this case, namely, helicons and 
Alfven waves if k II H, and magnetoplasma waves if 
k 1 H and the electric field of the wave is either parallel 
(ordinary wave) or perpendicular (extraordinary wave) to 
the external magnetic field H. 

We disregard in the present article the anisotropy of 
the carrier spectrum and of the carrier scattering, and 
in this case we have (for transverse waves) 

h=xI+oE2, 

where I is the Poynting vector; if the circuit is open, 
then h " 0, whence 

or in expanded form 
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(1)* 
Here (j and X are tensors having the same form as the 
tensor y in the preceding formula. In the presence of 
carriers of both signs we have a " u. + 0- and X = X+ 
+ X-' and different combinations of quantities with plus 
and minus signs play an important role in the tensor y 
for the various waves. 

Our work differs from that of Kaganov and Peshkov[ 7J 
in two respects. First, they consider only the waves 
which we call extraordinary, whereas in the present 
article we investigate also a few other waves, as men­
tioned above. Second, we introduce the spatial dispersion 
of the complex dielectric constant, which was not taken 
into account in[7J. We have confined ourselves in the 
present article to the case of weak spatial disperSion, 
when k' v « II, w, n, where v is the average carrier 
velocity and II is their collision frequency. This does not 
mean at all, however, that the influence of spatial dis­
persion constitutes only a small correction to Barlow's 
effect. To the contrary, we show that both terms in the 
expression for the light-electric field contains one and 
the same small parameter k . v /w, and are of the same 
order of magnitude with respect to this parameter, but 
on the other hand they can differ Significantly with 
respect to the parameter n 2T2. In the case of the ordin­
ary wave, when w " n, the light-electric field term that 
depends on the spatial dispersion is larger than the 
Barlow term by a factor n2l, and is furthermore of 
opposite sign. For the extraordinary wave, both terms 
in all the components are comparable in magnitude and 
differ only in numerical factors that are determined by 
the carrier scattering mechanism; spatial dispersion 
predominates in the light-electric field component paral­
lel to the Poynting vector, and the Barlow effect pre­
dominates in the case of scattering by phonons. Finally, 
for helicoidal waves and Alfven waves, the first term is 
smaller than the second by a factor niT2. 

2. In the kinetic equation for the carrier distribution 
function 

Of of e of e Of [ of ] -+v-+-E.-+-[vHl-=- -at or m ov me ov at '"' 

we assume that the collisions are elastic and put f = fo 
+ f1 + f2' where fo is the equilibrium distribution func­
tion, and f1 and f2 are respectively the waves linear and 
quadratic in the field. 
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The function f~ can be expanded in powers of k· v, 
i.e., we can put fl = flo + fll + ••• ; we confine ourselves 
to these terms only. Putting fl ~ El ~ exp [i( k· r - (.0.,1)] , 
we obtain for them the kinetic equations 

at. a/.. [a/ .. ] iro/ .. +eE,v-+[vO]-- - =0, 
ae av at •• 

. . oj" (a l"] . lro/" +[vO]-- - = ikv/ ... ov at .•. 
It is convenient to put 

/ .. (v) = {<p, (e)E, + <p2(e) [E,Hl}v; 

(2) 

(3) 

Substituting this expression in the collision integral, we 
obtain after a simple calculation the well-known result: 

at. e, .. 
I .. (v)=-a (1 ')' , {(1-iz .. )E,-[E,y .. j}v, 

e - I.X1o + giO 

, .. -' = S W(v', v).(1- cos S)do' 

where W(v', v) is the scattering probability, 8 is the 
scattering angle, and we have introduced the notation 

(4) 

WT 10 = XI0 and QTlO = Y lOo 'As to the function fll' its form 
differs for the waves of the different types. 

In the function f2' we consider only the part indepen­
dent of the time; the kinetic equation for this function 
then takes the form 

-[vOl~+ [, aj ,] =,!.-Re({ E"+~[vH"l)~), (5) 
av at., 2m c av' 

where 

H, =":"[kE,1 
ro 

(6) 

is the magnetic field of the wave. The form of the func­
tion f2 is also different for waves of different types. 

3. We start with a helicoidal wave, for which we as­
sume k II H = (0, 0, H) and El = (ElJ ± iElJ 0). In this 
case we can put 

/,,(v) = (kvH1Jl,(e)E, + 1Jl,(e)[E,Ol}v, (7) 

where l/!i(e) are functions of the energy and are to be de­
termined. Substituting (7) in the collision energy of (3), 
substituting (4) in the right-hand side, and then compar­
ing coeffiCients, we obtain 

I (v) = tal.. eo",,, 
" Oe [(1- ix .. ) , + y .. '][ (1- Ix,,)' + y,,'l 

Here a = ne2( T 10) / m is the static electriC conductivity at 
E2 II H. From this we find, assuming Q »w » < T~l) 
and taking into account the reflection of the wave: 

E.(z) m " 
--=1")---exp(-2k z) [ eH'<,IO> ,. , 

·s· d '/ al. I·S . (JI. ('tIO) - 88 1_'tiD ~ dss/'-, 
• AS • oe 

where y (0) is the numerical coefficient that depends on 
the carrier distribution function. For a Maxwellian 
function we have y(O) = 41T; in the case of degenerate 
electrons, y(O) = 32../21T/3. We have used the following 
expressions for the helicoidal wave: 

, ro. ( 6J )',. k=7g , k" =_ro_(~) 'I. 
QC<,IO> Q ' 

I is the Poynting vector of a wave incident from the out­
sidel). In the case of two types of carriers, the light­
electric coefficient is 

1 =: 1(') ;, ( 11~- 111_).' 

If the dimensions of the crystal in the wave-propagation 
direction are much larger than the reciprocal absorption 
length k", then the total light-electric potential differ­
ence is 

U, = E,(O) j 2k". (10) 

4. We consider now an Alfven wave (k II H, El 
= (Elo 0, 0)) in crystals with equal electron and hole 
densities. Proceeding in analogy with the foregOing, sub­
stituting (6) and the expressions for the real and imagin­
ary parts of the wave vector[10] 

k' = ro j v., k" = 1j2v.<, .. >, 
v. = H[ 4nn(m+ + 171.-) ]-'J., 

in (5), we obtain for the light-electric field 

E,(z)' 
-[-= 

and the quantities with the subscripts minus and plus 
pertain respectively to electrons and holes. Under the 
previous conditions, the potential difference is obtained 

x(kv) ({[y .. y" -(1- ;x .. ) (1- Ix,,) IE, +[ (1- ix .. ),,, 

+(1- ixll ) , .. ][E,Oj}v), 
(8) from (10). 

,,,-' = '/,JW(v', v) sin' e do', 

where we have introduced WTll = Xll and QTll = Yll[8]. 
The relaxation times TI0 and Tll are functions of the par­
ticle energy e. We substitute (8) and (4) in the right­
hand side of (5) and recognize that it is necessary to put 
fl = fll in the first term on the right, and fl = flO in the 
second term. Putting 

/2 = (k,v) [~,(8)E.' + ~,(e) (E,v)' + ~,(e) ([E.Q)v)' 
+ ~I(e) (E,v) ([E.O)v)], 

(9) 

where kl is a unit vector in the k direction and where 
we take into account the fact that k" II k' in the consid­
ered cases. Substituting this formula in (5) and calcu­
lating the collision integral, we determine the coeffi­
cients ti and obtain an expression for f2. It turns out to 
be proportional to exp(-2k"z). Then the light-electric 
field is determined from the condition that the current 
density vanish: 

j,= S v/.d'v+aE,=O. 
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5. We proceed now to magnetoplasma waves. The 
functions fl and f2 for the ordinary wave H = (0, 0, H), 
El = (0, 0, E1), k = (0, k, 0) take the form 

I" = (E,v)( N, (e)k + 1Jl,(e)[kOl}v), 
f, = E,'{~, (e) k, + ~,(e)[k,Ol}v + (E,v)'( {~,(e)k, + ~. (e) [k,Ol}v). 

Calculating the collision integral with this function fll 
and comparing coefficients on the right and left sides of 
(3), we obtain 

aj. e,,,,,, ) { . 
t,,=-i~a (1 . )[(1 . )'+ ,)IE,v «1-lx,,)k-[ky,,]lv). 

8 - tXtO - LXu Yu 

The light-electric field is determined from the condition 
for the vanishing of the expression 

j, = aE, + a,[EJI) + xl + x,[IH] = 0, 

whence 
+ H' E, = - xa x,a, 1+. xa, - x,a [IH]. (11) 

a' + a,'H' a' + a,'H' 

The expressions for X 1 and X2 are 
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X=-~~ -s de e'l. (-!!!) 'flO' 
3 ml'Cro. Be (1 + y,,') (1 + x,,') 

X{k'[1+(1-YIO')A - 2Y"Y1IB]+k"Lx,,-(1-ylO')C -2YIOY1lD j), 

2'1,,,;, e' s- '( Bt.) 't1O' 
X. = ----- de e I, - - .....,.,-,---:"..::...,-:--".... 

3 m'I'e'ro. Be (1 + YIO') (1 + XIO') 

X {k'[ 1 +(1- YIO')A - 2y"YttB] + k"[x" +(1- y,,')C - 2Y"Y1ID j), 

A x .. (1 +x .. '- y .. ' + x"x .. ) + x,,(1 + y .. ') 
=ctx.. (1 +y,,')[(1-x .. '+Y1l')'+4x1l'] , 

B x,,(1- xu'+y .. ')+ 2xu 
= ctx.. (1 + V,,') [ (l-'xu' + Yu')' + 4x1l'] , 

C-ctX 1+xtt'+Yu'-x"x .. (1+xu'-yu') 
- u(1+y,,')[(1-xu'+Yu')'+4xu']' 

2 Bln't" D-ctx l- xtt'+Yu'-2x"xtt 
- u (1 + V,,') [(1- xu' + Ytt') , + 4x1l'] 

N= ___ _ 

5 a Ins 

When these expressions are substituted in (11), it is 
seen that if Tl does not depend on the energy then the 
field E2 is parallel to I at all values of the magnetic 
field H. 

We shall apply these expressions to the high-fre­
quency case w » (Til), but at different values of n. 

A. w » (T?) »n. In this case the light-electric 
field is 

E,(y)=_"_e _ _ '1_ 1 + y.<"'[m] exp(-2k"y), ( (" ) 
mc:!.wa (1'10) 

where y(O) and yiO) are numerical coefficients that are 
different for weakly- and strongly-damped waves, for 
different scattering mechanisms, and for different dis­
tribution functions. For a weakly-damped wave 
(Eo > W~/W2, where w~ = 41Tne 2/m is the square of the 
plasma frequency and Eo is the static dielectric constant 
of the lattice) we have in the case of scattering by 
phonons (Tu = TlO[6]): 

a) for a nondegenerate electron gas 

1(" = 18,,;'/' /5, y.(" = 11,,; / 5; 

b) for a degenerate gas 

1'" = 1.("= 8,,;/5. 

In the case of scattering by impurity ions (Tll = TlO/3[6]) 
we have 

a) y'o, = 17,,;/5, (" 1'1 =11:; 6) 1'" ~ 136,,;/5, 

The sign of the second coefficient has become negative, 
since in this case, unlike the preceding case, XlU 
> XUl' For a weakly damped wave we have 

In the case of a strongly damped wave 

in the case of scattering by phonons 

a) y'" = 24,,;/5, 1.(" = - 2,,;/5; 6) 1(0' = 24,,;/5, y:" = - 4n/5; 

in scattering by impurity ions 

a) 1'" = 8,,;/5, 1.(" = 1I!9,,;'I'/16; 6) 1(0, = 8,,;/5, 1,"'= 12,,;/5. 

The main contribution to the reversal of the sign of y to) 
is made here by the terms that appear when spatial dis­
persion is taken into account. In the presence of two 
types of carriers of equal density, the main contribution 
is made by th~ electrons. 
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(" 

E,(y)= e (1(0'1+-1'-[10]) exp(-2k"y). (12) 
me'ro'('tIO> Q'('t,,> 

In the case of scattering by phonons and Eo < w~/wa we 
have 

a) 1(" - 32,,;/5, 1:" - -11; b) 1(0, = 32,,;/5, 

For a strongly damped wave 

(0) . 
1. =8,,;/5. 

a) 1(0' = 32,,;/3, 1.(" = - 256/9; b) 1(" = 4n, l~" = - 4,,;/5. 

In the case of two types of carriers that are of equal 
density 

C. w = n » (Til). In this case Yl = X/ulH2, where 
X ~ a In TlO/a In E, i.e., the main contribution to the 
transverse electric field is made by terms that are due 
to allowance for spatial dispersion of the dielectric con­
stant. In addition, the sign of the field depends on the 
carrier-scattering mechanism 

,., 
E,(y)= e,m (-Y-1 + l !" [10]) exp(-2k"y), 

me ,. ('tIO> 

and the coefficient y 1 increases in comparison with the 
preceding case by a factor n2T~. In scattering by phonons 
we have for a weakly-damped wave 

a) 1,0, = 2561';;:/15, y."'= 8,,;/5; 6) Y'o, = 48,,;/5, l!" = 8,,;/5. 

For a strongly-damped wave, 

'" E,(y)= ,~ (y'O'I+_,_Y'_[Ul] )exp(-2k"y), 
me Q ('rIO> Q ('rIO) 

a) 1'" = 3,,;, 1.'" = - 6"";;:; 6) 1'" = 16,,;/5, l~o, = 48,,;/5. 

In the presence of electrons and holes of equal density, 
in the case of a weakly-damped wave we have 

ro=Q_: 

ro =Q+: 
Y = -'1.- / 0+, 
Y = -'1.+ / 0+, 

and for a strongly damped wave 

Y, = -'1.'- / 0+; 
y. = -'1..- / 0+; 

ro = (L: Y = - ('1.+ + '1.-) /0+, y. = -'1..- / 0+; 
ro = Q+: 1 = -'1.- / 0+, '(. = -'1.,- / 0+, 

D. n »w » < Til). In this case the spatial disper­
sion of the dielectric constant can be neglected, and E2 
is described by the same formula (12); in the case of 
scattering by phonons and a weakly-damped wave 

,a) '("'=641';;/3, '(."'--64/3; b) ,("'=8,,;; 

For a strongly-damped wave 

a) 1'0, = 32,,; / 3, 6) '(,., = 4,,;; 

For the last three cases, Yl ~ ehnc2w2n4(TlO)4. 

In the case of two types of carriers of equal density 

6. In the case of the extraordinary wave H = (0, 0, H), 
El = (El' 0, 0), and k = (0, k, 0), we consider the case of 
two types of carriers of equal density, but the electric 
field of the extraordinary wave is now transverse. It is 
convenient to express the functions fll and fa in the form 

f1l(v) =.p. (e) (E.v) (kv} + .p,(e) [(E.v) ([kO]v) - l/av'(E.[kOj)] 

+ .p,(e) [([E.O]v) (kv) - l/av'([E.Olk) I 

" 

+ .p.(e) ([E.Olv) ([kOlv + .p,(e)'/,v'(k[E.O)); 

j, = E.'[~. (e) (k.v) + ~.(e) ([k.Olv) I + (E.v)Z[~,(e) (k,v) 

+ ~.(e) ([k.nlv») + ([E.nlv)'[~,(e) (k.v) + ~.(e) ([k,nlv) I 
+ '/,v' (E. [k.n)) [t,(e) (E,v) + ~.(e) ([E,Olv»). 
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Proceeding as before and assuming n »w » (r?) 
for the extraordinary wave [10] , we obtain a light-elec­
tric field to which the main contribution is made by the 
holes: 

II{[ 5 '1",,+ 1 0 In '1"11+ 4 (2 + '1"10+ ')] 
X "2 ('1",,+> - -~5' 8('1"'0+> I 

, [1 '1",.+ + 4 o In'l"to+ ] [IOl} (2k") 
-'1",.+ -2('1",.+> 5~ , exp - y. 

Attention should be called to the fact that the sign of the 
coefficient y is different here from the sign in the pre­
ceding cases; this is due to the appearance of a term 
that takes into account the dispersion of the complex 
dielectric constant. 

The theory developed by us can be applied to InSb and 
qualitatively also to Bi. For quantitative calculations of 
these phenomena in the second case, when an important 
role is assumed by the spatial dispersion of the electric 
conductivity, which is not accounted for in C7], it is 
necessary to develop a theory in which the crystal aniso­
tropy is taken into account. We are not convinced, how­
ever, that allowance for the anisotropy of the electron 
spectrum is sufficient in this case and that the scatter­
ing anisotropy can be neglected. 

*[IH) =1 X H. 
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!)The Poynting vector of the medium differs from the Poynting vector 1 
of the wave incident from the outside by a factor 4n' /(n' + 1)2 + n"2, 
where n' + in" = cw- I (k' + ik") [9). 
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