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An investigation is made of the statistical properties of the distribution of distances between energy 
levels in the quasiclassical approximation, for a finite system with mixed classical trajectories in 
phase space. The model is that of electrons "drifting" in a magnetic field along a periodically 
corrugated surface which is convex at all points in the region of motion of the electrons. 
Quantization conditions in the quasiclassical approximation are obtained. Estimates are presented for 
the probability of a given spacing l1E between the levels. A Gaussian distribution is obtained for 
large values of l1E; for small values of l1E the probability is mainly a power function of l1E. The 
exponent depends on the mixing properties of the trajectories. 

INTRODUCTION 
Particles that move with trajectory mixing in phase 

space have the following property: a small perturbation 
of the initial conditions leads to an exponential growth 
of the distance between phase trajectories with time. 
The mixing property leads to a decoupling of the time 
correlations of the physical quantities and to a possibil
ity of describing the system statistically. [lJ We assume 
now that the Hamiltonian of the particle and the bound
ary conditions ("walls") determine in the classical 
case particle motion with mixing. What are the proper
ties possessed by the energy spectrum of the particle 
in the quantum case? 

This question is part of the more general problem of 
obtaining the connection between quasiclassical quanti-
. zation rules and the properties of classical partic Ie 
trajectories. The quasiclassical Bohr-Sommerfeld 
quantization'l'ules are usually defined in terms of the 
aCtions of the particle (see, e.g.,[21). The action vari
ables are at the same time integrals of the motion and 
describe conditionally-periodic motion of the particle. 
An essential property of such particle trajectories is 
their stability. Recently, however, the question has 
been raised concerning the form that the quasiclassical 
quantization rules should assume in the case of unstable 
classical trajectories [3,4], which can occur in different 
physical problems (and, in particular, not only in prob
lems dealing with a particle in the field of scattering 
centers, but also in problems dealing with oscillations 
of resonators with boundaries of complex shape, where 
a beam trajectory is considered rather than particle 
trajectories). Some of the difficulties of quantizing 
unstable trajectories are discussed in[41. In the case 
when the classical trajectories are mixed in phase 
space, some of the integrals of motion decay and the 
corresponding action variables can no longer be quan
tized. The present paper is devoted to the construction 
of quasiclassical quantization rules for stochastically 
unstable (mixing) classical trajectories of a particle 
and to an explanation of the properties of the energy 
spectrum in the quasiclassical region. The investiga
tion is carried out for a model in which the electrons 
"hop" along a periodically corrugated surface in an 
external magnetic field. 

We note that simpler variants of the model of ''hop
ping" electrons were considered[S-7] in connection with 
the problem of electronic surface levels in a metal. The 
effects obtain~d in the present paper are not realistic-
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ally observable in metals at present. The selected 
model, however, not only contains the most character
istic properties of the problem posed above, but is ap
parently one of the simplest, and therein lies the 
utility of its study. 

We consider a surface with periodic inhomogeneity, 
having a definite negative curvature. The classical 
motion of the electrons, if certain conditions are satis
fied, is motion with mixing. This causes the action of 
the particle, which determines the energy spectrum in 
the quasiclassical approximation, to be a random func
tion of the coordinate. Thus, when the mixing conditions 
are satisfied, the electron energy-level distribution be
comes stochastic. We calculate in this paper different 
characteristics of this distribution. The most interest
ing of them is a quantity connected with the probability 
of a given distance A E between neighboring levels. It 
turns out that as A E - 0 the sought probability tends to 
zero like a certain power of AE. A distribution of this 
type was introduced for excited levels of heavy nuclei 
by Dyson[Bl in the form of a hypotheSiS, in order to 
satisfy the property of "pushing asunder" of the 
levels [9]. We shall show here that the character of this 
"pushing asunder" is determined by the properties of 
the mixing motion of the classical trajectories. For the 
models conSidered, it is possible to obtain directly not 
only a distribution of the Dyson type, but also to deter
mine the limits between which it is valid. At large 
values of the distance AE between nearest levels, the 
probability of a given AE has a Gaussian form. Thus, 
the distribution of the distances between levels is 
closer in shape to a Wigner distribution[Bl. 

1. INVESTIGATION OF CLASSICAL ELECTRON 
TRAJECTORIES 

We consider the motion of electrons in a plane (x, y) 
and in a magnetic field J'(J directed along z; the motion 
is bounded by a surface .9'(x, y) = 0 (Fig. 1). The follow
ing is assumed concerning the curve that determines the 
shape of the boundary from the equation .9'(x, y) = 0: 

!I~I ff l; 
x~+L':C 

FIG. 1 
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FIG. 2 

the boundary y '" y(x) is a periodic function of x with 
period a and with amplitude b, and is always convex 
into the region of electron motion. The reflections of 
the electron from the boundary are absolutely elastic. 

The Hamiltonian of the electron 

1 .( .e )' 1 H=- P.+-arly +-P.'·· 
2m e 2m 

(1.1) 

with generalized momenta px and Py determines the 
equation for the wave function[2j 

Ii' (a'¢ a'¢ ). a¢ [ mO'y' ] - -+- +'liOy-+ E--- ¢=O 
2m ax' ay' ax 2.' 

o ... ed'fJ / me. 
(1.2) 

The wave function satisfies the following boundary con
ditions: 

'¢ 1 ... (., .)_. = 0, 

¢(Xo. y) = '¢(xo + L. y). 

(1.3 ) 

(1.4) 

The first of them corresponds to the law of elastic re
flection from the boundary, and the second is the usual 
condition of periodicity with respect to x and makes it 
possible to simplify further the problem of determining 
the eigenvalues. We shall consider later on L ~ 00, and 
regard L and a as not commensurate. This makes the 
problem of determining the eigenfunctions and eigen
values strongly dependent on the phase of the periodic 
boundary to which the position of the point Xo corre
sponds (Fig. 1). We shall say that different choices of 
the pOSition of the point Xo correspond to different con-
figurations of the boundary. ' 

To solve the problem (1.2)-(1.4), we use the quasi
classical approximation and deal only with the behavior 
of the spectrum in the region of large values of E. To 
obtain the quasiclassical wave functions we investigate 
first the classical motion of the electron. 

Let xn by the coordinate and q;n the angle between 
the x axis and the direction of motion of the electrons 
at the instant of the n-th colliSion with the boundary 
(Fig. 2). We assume that b/a '" 10 «1. We write down 
the equation of motion of the electron with allowance for 
the fact that 10 is small, in the form 

Xn+l = Xn + 2R sin <pn+h <pn+l = <pn + ex (6n), 

{ X} [2E]'" 6"'" -;; , R= ~ . 
(1.5) 

here X( 0 is determined by the shape of the boundary 
(max X ~ 1) and the curly brackets in the definition of 
1; denote the fractional part of the argument. We rewrite 
the transformation (1.5) in the form 

Sn+' ={6n + 2Ra-'[1-(P':+lI/mOR)'J'h}. 

p.(n+t)= mOR cos [<Pn + ex (l;.) 1 (1.6) 

"" I;) - emORx(sn) [1-(p~') ImOR)'l'" -'/,e'X'(Sn)p~n) , 

where p~n) is the component of the electron momentum 
px after the n-th step. A transformation of the type 
(1.5), (1.6) was investigated in[lOl (see also[lll), and its 
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FIG. 3 

properties are determined by the "stretching" parame
ter K: 

~n+' R, 
K = -- - 1 + 2 - ~x cos <Po 

~. a (1.7) 

where the prime denotes differentiation with respect to 
the argument. At \ K - 1\ « 1, i.e., at sufficiently 
small R, and consequently at low energies E, the 
motion of the electron is stable and conditionally 
periodic. When K» 1, to the contrary, the electron 
trajectories have the property of mixing in phase space. 
The mixing process is characterized in this case by 
rapid establishment of uniform distribution with re
spect to the phase 1; and by slow diffusion relaxation 
with respect to the variable q; (or Px)' 

The electron energy region for which the trajectories 
become mixed can be obtained from the condition 
K » 1. This yields 

It is seen from (1.7) that the condition K» 1 is not 
satisfied if q;falls in the interval (IT/2 - t.q;, IT/2), 
where 

Il<p = a / 2Rex' - 1 / K <. 1. 

(1.8) 

(1.9 ) 

The condition (1.9) defines small "stability islands" of 
the trajectories in the electron phase space(lll. Stochas
tic motion of the electron takes place mainly in the 
phase-space region outside the stability islands. Since 
the change of the angle q; in each step, according to 
(1.5), is equal to lOX, the condition 

ex <. Il<p - 1/ K (1.10) 

means that the range of angles (IT/2 - t.q;, IT/2) cannot 
be traversed by the electron in a single collision. In 
this case the electron motion takes place with the angles 
q; lying in the region (0, IT /2 - t. q;), and the upper limit 
of this region is equivalent to the presence of a reflect
ing wall in phase space(lol. The inequality (1.10) means 
a stronger limitation than (1.8) imposed on the energy 
region: 

E ~ Eo / e'x'· (1.11) 

We shall investigate from now on the motion of an 
electron in the energy region satisfying condition (1.11). 
In addition to the fact that most electron trajectories in 
phase space correspond to stochastic motion, the in
equality (1.11) singles out a class of trajectories having 
still another attribute, which can be readily understood 
from Fig. 3. If q; can be larger than IT/2, then the tra
jectories can "glide" and self-intersection of the tra
jectories in configuration space sets in. Thus, the con
dition (1.11) means selection of the class of trajectories 
corresponding to the so-called "glancing" electrons 
(Fig. 2). Accurate to small "penetrations" of the values 
of q; into the region (IT/2 - t.q;, IT/2), the property 
wherein a trajectory is glancing is an invariant of the 
motion, so that these trajectories can be treated 
separately from the others. 

We now describe the process of slow diffusion re
laxation with respect to the angle q;. We note first that 
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the quantity x( 0 is proportional to the factor 
sign (% - ~). As a result of the fast mixing with respect 
to the variable 1;, a nearly uniform distribution with 
respect to ~ is establishedLllj , and averaging over this 
distribution yields 

X<~) =0, x'm =x.', (1.12) 

where XO is of the order of unity. The process of slow 
relaxation with respect to the angle q; or, equivalently, 
with respect to the momentum Px = R cos q;, will be 
described by a distribution function w(Px, x) satisfying 
the normalization condition 

mups: 

S w(p.,x)dp.-1. . 
We can write for the distribution w( PX' x) an equation 
of the Fokker-Planck type 

~=_~[( f1p. )w] +~~[( (f1P.),) w]. 
ux up. d 2 up.' d (1.13 ) 

where Apx is the change of the momentum Px in one 
step, d is the length of the step, and the bar denotes 
averaging over 1;. From (1.6) we obtain, accurate to 
terms ~E2, 

d = 2R sin q> = 2R~, ~ -1'1 - (p.1 mQR)'. 

f1p. = -emQRx~ - '/,e'x'p., 

whence 

( f1p. ) = _ e'x.'p. (f1P.)· ) = (mQRex)'..!!!... 
d 4R~' d 2R 

and Eq. (1.13) takes the form 

.!.:::.=-.!(mQRex)·...!....(~~). (1.14) 
& 4R up. up. 

The stationary solution of (1.14), satisfying the condi
tion that there be no electron flow at cp = ° and 
cp = rr/2 - Acp, takes the simple form 

1 1 + f1q> 
w(p.)=const-. ""--

mQR(1- f1q» mQR' 
d (1.15) 

w(q» = w(P.)....!:. "" (1 + f1q»sin q>: 
dq> 

It follows also from (1.14) that the characteristic length 
Zo over which the equilibrium distribution (1.15) is 
established is equal to 

ED - R I e'x.' - R Ie' = e-'[2E I mQ')"·. (1.16) 

The condition L - 00 will henceforth mean L » ZO. 

2. QUANTIZATION CONDITIONS 
To derive the quantization conditions we use a quasi

classical representation of the wave function. Let (x, y) 
be a certain spatial point through which the trajectory 
of a "glancing" electron of energy E can pass, and let 
xn:S x:S xn+l (see Fig. 2a). We express the wave func-
tion in this interval in the form L12,13] • 

{ i (n) 1 (n)} 1jln(x,y)=IIn exp TS' --:2'in8(x-x(p. =0» . 

x [Anexp( ~ S~n»)+Bnexp(- ~ s~n»)], 

(n"" 0, xn:S x:S Xn+1), where 

319 

S(n)= ~.) (_ ) SIn) -S' (n) ( ')d ' 
;1: P;r;XX1Lt v-PuYYt 

0. 

IIn =Ip;') (y)/p~n) (x. + 0) 1-"', 

8(a)={0, a<O. 
1. a >0 
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(2.1) 

(2.2) 

The momenta pill) and p~ll) are taken on the particle 
trajectory at the corresponding point, and the point On 
corresponds to the value of y on the boundary at the 
point xn from which the particle trajectory emerges. 
The wave function in (2.1) is a superposition, each term 
of which corresponds to one of two possible rays. The 
wave function in the form (2.1) already takes into ac
count the tangency of the caustic ray at the maximum 
value of y on the turnL13] (the momentum p vanishes 
at this point). Thus, the wave function satisfies the 
boundary condition IjJ - ° as y --- 00 in the interval 
xn:S x:S xn+1' This is attained by introducing the step 
function e in (2.1), where x( p<ll) = 0) is the coordinate 
along the x axis of the ray at fhe caustic tangency 
point. A solution in the form (2.1), (2.2) actually corre
sponds to the case of separable variables in the interval 
(xn , xn+1)' 

In the interval (xo, Xl) where the trajectory generally 
speaking does not make a complete turn, the wave func
tion ljJo(x, y) differs somewhat from (2.1) (see Fig. 1): 

{ i (0) 1 (.)} 
1jlo(x,y) = II, exp TS" -2'in8(x - x(P. = 0» 

[ ( i (.) ) (t (0) ) ] x A.exp T S' +Boexp -7IS' 

u 
sl:) = p~O) (x - x.), s~O) = ~ p~) (y') dy'. 

u 

II. =Ip.(·) (y)lp:') {fj} 1-'1 •. 

(2.3) 

(2.4) 

Here y == y( xo) is the initial y coordinate of the particle 
trajectory. From the Schrodinger equation (1.2) we get 
1jJ*(x) = 1jJ( -x), whence 

A. = Bo" = IAol e'·,. (2.5) 

Here Ao = Ao(Y) determines the wave function on the 
line x = Xo: 

1jl(x., y) = 2IAo(Y) Icos{}.(y) (2.6) 

for a trajectory emerging from the point (xo, Y). 

We write down an expression analogous to (2.1) for 
IjJn+l in the interval (xn+l' xn +2) and stipulate that the 
wave function vanish at the point xn+l in accordance 
with the condition (1.3): 

(2.7) 

Near the point (xn+}, 0n+l) the wave function can al
ways be represented in the form of a superposition of 
plane waves, so that (2.7) results in the following re
currence relations 

{ in i (n). (n)} 
A.+! = AnII.I ..... -. exp "2 + 1i:(f1S. + f1S. ) , 

I { in i (n> 
B.+! = Bnnn .... -. exp "2 + 71 (f1S. - f1S. 

(2.8) 
0... 

f1S!n) = ~ p:n) (y') dy' (n"" 0), 
0. 

o. 
flS~O) = t p~O) (y') dy' . 

• 
The value fin I xn+1 -0 is taken here at the final point 

(xn+l - 0, On+l) of the n-th turn. The circle on the 
integral in (2.8) denotes that the integration with re
spect to y' is performed along the particle trajectory. 

Let y = y(xo + L) be the y-coordinate of the point of 
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the trajectory at x = Xo + L, and let the number of the 
corresponding turn be N. We write down the wave func
tion I/IN(xo + L, y), using formulas (2.3)-(2.6) and the 
recurrence relations (2.8): 

1!lN(Xt+L,Yi-2QIA.(y)lexp{ ~ t AS!ft) + t~n 1 
ft_' 

" 
X cos U:'L\S.(D)+it,(y»), 

"-0 • 
(2.9) 

where 
Q - II. 1 .. _ •... IIN-.I ",,-.' IIN I ",+L, 

L\S:N) = p:N) (x. + L _ xN), L\S!It) = ~ p!") (y')dy'. 

We stipula,te satisfaction of the boundary condition (1.4), 
which in the notation of the present section takes the 
form 

(2.10 ) 

An expression for 1/10 (xo, y) is obtained from (2.6) by 
replacing y by y. Then, taking (2.6) and (2.9) into ac
count, we obtain from (2.10) 

,IA.(ii Icos {My) = QIA,(y) I 
It It 

x' cos [L. L\S.(·)+~.(y) ]exp{+ L.AS~D)+ i ; N}. (2.11 ) 
... _0 ft_' 

From (2.11) follow the quantization conditions 

1 N (D) ( 1 ) 11 L.L\S. =1'1 M'+ T ' 
n_' 

(2.12) 
1 N (n) _ 

11 L.L\S. +~.(y)±II=nM. 
n_' 

and 
.... 1 cos~.(Y) A.(y) 'I..;; 1 

cOSu Q' A,(y) , (2.13 ) 

where Mx and My are certain positive numbers, and 
the inequality (2.13) should be regarded as a condition 
supplementing the preceding two equalities. 

We note that the quantity J.o(Y) ± 15 in (2.12) can be 
neglected since J.o(y) ± 15 :s 41T, and the phase advances 
due to the change in the action are much larger than 
unityl) . The inequality (2.13) can be simplified by 
recognizing that the quantity Q is self-averaging. It can 
be shown that 

(2.14) 

Before we proceed to investigate the conditions (2.12) 
and (2.13), let us stop to discuss certain essential as
pects of the considered boundary-value problem. 

In accordance with the equations of motion (1.5) and 
(1.6), the parameters xo, y, Px , and E determine 
uniquely the entire particle traJectory, and consequently, 
the quantities S~ll), s~n), and II n, in terms of which the 

wave function is expressed. In particular, the final 
coordinate yo is a definite function of y. The sequence 
[p~m], [p(ll)] is random under the condition (1.8). There
fore the lequence of the phases of [S~m] and [Sm)] is 

y 
also random. This leads to the conclusion that our prob
lem is analogous to the problem of the properties of 
disordered systems, Le., systems with random poten
tials. A feature of the considered model is that all the 
interactions introduced into the problem (external field 
and walls) are regular (non-random), and the random
ness is the consequence of a definite type of instability 
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in the problem. A simple representation of the resultant 
situation can be obtained by starting from the Feynman 
representation of the wave function as a functional of 
all possible particle paths _ In the quasiclassical approx
imation, the integration along the paths reduces to an 
integrand determined by the extremal (saddle-point) 
trajectory and by virtual trajectories in a small vicinity 
of the extremal one. Since the saddle-point trajectory 
is a real trajectory of a classical particle, defined by 
equations (1.5) and (1.6), the mixing property of the 
latter becomes immediately manifest in the randomness 
of the phase of the wave function. 

We put 

(2.15) 
B-1. 0... v 

S.(xo,LIE,p .. (y»~ L. ~ p!D) (y')dy' + ~ p~N) (y')dy'. 

The quantities Sx and Sy determine respectively the x 
and y components of the action. The number of steps 
N is a function of the same variables as Sx and S _ 
Rewriting (2.12) with allowance for (2.15) and (2.8), we 
obtain 

(2.16 ) 

In spite of their simple form, the obtained necessary 
quantization conditions call for a definite discussion. 

The system (2.16) defines two two-parameter 
families of quantities: 

E=E(M.,M.), p",=p",(Y,M.,M.). (2.17) 

In the case of a plane boundary, the quantization condi
tions take the form 

E = E(M., M.), p", = p. = p.(M.) , 

whel'e the momentum Px is an integral of the motion 
(px = -mOY, where Y is the distance from the center 
of the circle of the glancing electron to the plane x = y, 
Le., to the boundary). In this case, the integral of 
motion Px decays because of the stochastic instability_ 
The second relation in (2.17) then expresses the connec
tion between the initial value of the momentum Pxo and 
the initial coordinate y on the trajectory corresponding 
to the proper wave function with quantum numbers Mx 
and My. Just as in the plane case, the set of eigenfunc
tions and eigenvalues turns out to be of the two-parame
ter type, although the two parameters now define one 
integral of motion and not two. Since there is no de
generacy (the degeneracy is lifted in the magnetic field 
even in the case of a plane boundary), different pairs of 
the numbers Mx and My correspond to different values 
of E and Pxo(y)- ' 

3. STATISTICAL CHARACTERISTICS OF THE 
ENERGY LEVEL DISTRIBUTION 

The conditions (2.16), which quantize the energy 
spectrum of the particle, contain in the left-hand side 
the random quantities Sx and Sy. This causes the dis
tribution of the energy levels to constitute a certain 
random sequence of the energy values. As already 
noted in Sec. 1, the pOSition of the point xo (and hence 
also the point Xo + L) with respect to the phase of the 
boundary corrugation determines the concrete configura
tion of the system. The spectrum corresponding to a 
gi ven configuration will be called the representative of 
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the statistical ensemble of the levels of the problem, or 
realization. The entire ensemble is made up of repre
sentatives (realizations) corresponding to all possible 
configurations. The fact that the introduced ensemble is 
statistical follows immediately from the properties of 
the particle trajectory mixing, since the change in the 
position of the point Xo leads to a perturbation of the 
initial conditions in Eqs. (1.5) and to stochastic insta
bility of the values of Sx and Sy. 

The main task of the present section is to estimate 
a quantity connected with the probability that two levels 
in one realization, with energies E and E + ~ E, are 
neighbors. Namely, let the level with energy E be the 
eigenvalue of a certain realization, (Le., the eigenvalue 
of these realizations falls in the interval (E, E + dE». 
Let us find the probability P(E I ~E) that there are no 
other energy eigenvalues for the same realizations) 
in the (E, E + ~E) interval. We consider two asymp
totic forms of P(E I~E): 1) ~E -0, 2) ~E large 
enough. 

Let the pair of numbers Mx and My correspond to 
a pair of solutions E and pxo of the system (2.17), and 
let another pair M~ and MY correspond to the pair of 
solutions E' and p~ . We assume that E' - E ?: ~E 

, 0 
that E is upper level closest to E. From (2.16) we 
have 

( IlS. ) ( IlS. ) 7""'E ~E + -- ~p .. = nft"., 
u p~ {jp:u. Z 

(3.1) 
( IlS. ) ( IlS. ) -E ~E + -- ~p", = nft"., 

ll.x. IIp.. E 

where Ilx and Ily are certain integers that do not 
vanish simultaneously, ~ px = p~ - px , and the sub-

o 0 0 

scripts at the parentheses indicate the corresponding 
partial deri vati ves. From the definitions of Sx and Sy 
it follows that in the statistical sense they are equi va
lent. This means that they satisfy identical distribution 
laws with moments of the same order of magnitude. 

We determine ~E from (3.1): 

~E = nft ".(IlS,IfJp .. )" - Jl.y(IlSjfJp .. )., . 
(fJSjllE).", (fJS,IfJp .. )" -(IlS,IlJE) .",(fJSj(jp",) " (3.2) 

From the definitions of Sx and Sy it also follows that 

Hence 

( IlS. ) ( (jS. ) ( fJS. ) ( M. ) 
(jP.. ,,- "6P: If' TE. - '6E p • .. '" 

(3.3 ) 

where Il ;c 0. As ~E - ° this means that a small 
change of the parameter E by an amount ~E should 
lead to a large change of the action Sx (or Sy)' Only in 
this case can the deri vati ve (oSx / oE )px become large, 

satisfy the condition (3.3), and by the sa;he token en
sure the appearance of a level near the energy E + ~E. 
It is now obvious that for very small perturbations of 
the parameter E the condition for strong instability of 
the function Sx(xoLI E, Px ) should indeed determine 
the sought probability. 0 

We consider the first equation of (1.6) for a fixed 
configuration with fixed px . A change in the parameter 
E (or R) by an amount ~E °leads to 'a change of the 
initial condition 

~~- ~E I LmQ'a'E./ 2J'h. (3.4) 

Since the system (1.6) describes motion with mixing, the 

321 Sov. Phys.·JETP, Vol. 38, No.2, February 1974 

initial difference a~ between the trajectories with en
ergy E and E + aE increases with each step of the 
transformation. The number of steps No after which the 
difference between the phases ~ of the trajectories be
comes of the order of unity is determined from the 
condition KNoa~ ~ 1, whence 

No-In (1 / ~t) /lnK. (3.5) 

After No steps, the correlations of the phases of the 
trajectories with energies E and E + aE become un
coupled, and subsequently the trajectories become 
statistically independent. This means that regardless of 
the value of Sx(xo, LI E, Px ) there exists a nonzero 

o 
probability that Sx(xo, LIE + aE, Px ) has an arbitrary 

o 
prescribed value (in the interval dSx ), provided that the 
segment of path traversed after No steps is smaller 
than L. Hence the probability P(l(No) > L; E, Pxo) that 
a path l( No) > L will be traversed after No steps is in
deed the probability that if E is the eigenvalue of a 
gi ven configuration, then the distance to the next higher 
eigenvalue in the same configuration is not smaller than 
~E. Indeed, if 1 (No) > L, then the number of steps sub
tended by L is smaller than No, the instability of Sx 
does not have time to develop within the length L, and 
Sx does not experience the change necessary for a new 
state to be produced. To the contrary, the quantity 

P(I(No) < L; E, P .. ) = 1- P(I(No) > L; E, P .. ) 

determines the probability that if E is an eigenvalue of 
a gi ven configuration, then at least one other eigen
value falls in the interval (E, E + ~ E). 

It is useful next to bear in mind the following two 
circumstances: 1) if the probability P(l( No) < L; E, 
Px ) is very small, then it determines a quantity close 
to the probability for the appearance of a Single level 
in the interval (E, E + a E), since the probability of the 
appearance of more than one level can be neglected; 
2) if furthermore P( l( No) < L; E, Px ) decreases suf
ficiently rapidly as aE - 0, then it d~termines a quan
tity that is close to the probability of the appearance of 
the next higher level to E in a narrow region close to 
E + aE. 

We proceed to calculate P(l( No) < Lj E, Pxo)' Let 
In be the length of the particle path along the x axis 
after n steps. From (1.5) it follows that 

In+! = In + d.. dn = 2R sin q>n. 

USing (1.15) for lengths l >lD (see (1.16», we have 
(neglecting the quantity acp « 1) 

-/' 
<Ill> = <d> = 2R S sin q> w (q» dq> = nR12, . 

(3.6) 
«~l)') = <d'> = 'I,R'. 

From (3.6) follows an expression for the probability 
density q, (l, n) that the path segment traversed along 
the x axis by the particle after n steps lies in the in
terval (l, l + dl): 

( 8 -". 
ell (I, n) = "3nR'n) exp { (l-nRnI2)' }. 

16n'n13 
(3.7 ) 

Hence 
.. 

P(I(No) < L; E,p .. ) = J dl(fJ(I,N.). (3.8) 
• 

We are interested in the asymptotic behavior as ~E 
- 0, Le., No -00. If No(d) » L, then we obtain from 
(3.6)- (3.8) the sought probability: 
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I' ' , , L { N. <cl>'} 
P(E !;.E)=P(l(No)<L;E,p .. )1>J (n<d'>No/2)'h exp -T<d'> 

or after substituting (3.5): 

P(EI!;.E) I>J L(~InK)'" 
. '16nE 

'{ !;.E 1/"nK !;'E 
x. (mQ'a'E/2)"'] [In (mQ'a'E/2)'" 1-": (3.9 ) 

2 ,2ex' (2E )',. 
K=7Rex =~ -;;;- . 

We have obtained for the probability an expression 
of the Dyson type[8], namely, as AE - 0 the probability 
of appearance of at least one level in the interval (E, 
E + AE) tends to zero mainly in proportion to some 
power of AE. This power is determined essentially by 
the mixing parameter K. In general, as seen from the 
entire derivation of (3.9), the power law in P( E I A E) is 
due to the property of mixing of the classical trajec
tories. The formula (3.9) expresses the appearance of 
"pushing asunder" of the levels when they come closer 
together 2) . 

We now consider another limiting case, when 

No « L I (d)'" (N), (3.10) 

i.e., at sufficiently large A E. After a small number 
(~No) of the first steps, the trajectories corresponding 
to the eigenvalues E and E + AE become statistically 
independent. The probability that within the length L of 
the fixed configuration the quantity Sx( xo, LIE, PXo) 
falls in the interval (1iliMx , 1TUMx + dSx ) is equal to 

P(EIS.) = [ ~ L( (!;.~')' )J -'I. 
(3.11 ) 

xexp { - (s,,-< ~s.) 10 L)' / ~L< (!;.~')') jdS., 

where ASx and d are given by 

!;.S. = pod = mQRd cos <p, d = 2R sin cp, (3.12 ) 

and the averaging is carried out with the aid of the 
distribution function w( 'P). The subscript E at the 
averaging brackets shows that all the parameters that 
depend on the energy are taken at the value E. In ana
logy with (3.11) we can write 

P(E + !;.E 1 So') = [~L( (!;'so')') ]-'" 
2 d E+"" 

xexp { - (s.' - L ( !;'~o' ) E+"" )' [ 2L ( (!;.S;') , ) E+"" ] -. } dS.'. 

(3.13 ) 

The probability that the difference S~ - Sx assumes 
a given value S~ - Sx = 1TUtJ.x independently of the value 
of Sx is 

P(EIE + !;.E; ",.)= J dS.P(EIS.)P(E + !;.EIS. + nil",.) 
o 

( L )"., { L [(I!S_) (!;.s.) nhlLo]'} 
= 2nD. exp --w: d 10+,. - d .---r- ,,' 

D.=+[( (!;.~')' ),,+"" +( (!;.:')' ).]. (3.14) 

Finally, the probability that the level will appear at 
a distance AE in a realization with an eigenvalue lying 
in the interval (E, E + dE) is determined at fixed tJ. x 
and tJ.y in terms of expression (3.14) in the following 
manner: 

P(EIE + !;.E; jI.., "'0) 
=P(EIE+!;.E; ILo)P(EIE+!;'E; "'0) (3.15 ) 

where P( E I E + AE; tJ. y) is determined with the aid of 
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expressions analogous to (3.11 )-(3 _14). If the quantities 
iIx and iJy characterize certain mean values of the 
quantities tJ.x and tJ. y for two neighboring levels with 
energies E and E + AE, and if the inequality 

1(' ~) -(&) I >.::!!:... 
d 10+';:" d" L Ilz . ., 

is satisfied, then at large values of AE we obtain from 
(3.15) the following estimate of the probability 
P(E IE + AE) of a specified distance between two neigh
boring levels E and E + AE: 

P(EIE +!;'E)- P(EIE+ !;.E; jI..=O, "'0=0) 

L {L (!;.E )'} 
I>J 2n (D.Do) 'I. exp - '1 l( ~ (3.16 ) 

(Y is a numerical constant of the order of unity), i.e., a 
distribution of the Gaussian type. 

Thus, in the considered model the distribution of the 
distances between levels turns out to be closer in its 
physical properties to the Wigner hypotheSiS [8J than to 
the Dyson hypotheSiS for levels of heavy nuclei: a 
Gaussian distribution for large AE and a power-law 
distribution at small AE, ensuring the "pushing asun-
der" of the levels. . 

4. REMARKS 

1. In the investigation of the spectra of complicated 
systems, the analysis is usually carried out for certain 
series of levels [8,8,15J. In our case we consider a series 
of levels corresponding to a set of intermixing trajec
tories of "glancing" electrons. A much smaller frac
tion (on the order of K- 1) are stable conditionally
periodic trajectories. The series of levels correspond
ing to trajectories lying in the stability islands can ap
parently be treated by a suitable renormalization of the 
Hamiltonian. 

2. Our problem is of the so-called "billiard" type, 
since the particle motion is analogous to the motion of 
a billiard ball. In this case we have a billiard table 
with walls of negative curvature. 

3. We have used a quasiclassical approximation in 
the derivation of the quantization conditions (2.16). 
However, the inclusion of small corrections cannot 
change the statistical properties of the distribution of 
the quantities Sx, SY' and E. The reason is that the 
considered series of levels is defined on classical mix
ing trajectories. 

In conclUSion, we are grateful to Yu. A. Kravtsov, 
Ya. G. Sinai, and R. G. Khlebopros for useful discus
sions. 

l)It is useful to compare (2.12) with the quantization rules obtained in 
[12] ; where conditions similar to (2.12) are imposed on the phase as a 
result of the uniqueness of the definition of a certain canonical operator. 

2)Por a one-dimensional system with a random potential, the "pushing
asunder" between levels is exponential [14] : 

P(ElaE) _ exvI-const/ (aE)'), M-+O:, 
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