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The energy of a vortex is measured at various temperatures by the technique of accumulating small 
energy losses in multiple production of a known number of vortices. 

INTRODUCTION 

The quantized vortices that are formed in helium IT 
have according to Onsager[lJ and Feynman[2J a circula
tion and an energy per unit length given by 

f = nf., f. = 2rr111 m "'" 10-' cm2/ seci (1) 

h' b / E = ne, e = Itp.,ln- _10-7 erg cm (2) 
, m ao 

Here n is an integer, ro the circulation quantum, m the 
mass of the helium atom, Ps the density of the super
fluid component, and b and ao ~ 3 x 10-8 cm the effective 
radii of the vortex (i.e., the region of the liquid encom
passed by the rotation around the vortex filament) and 
its core. 

The circulation quantization and relation (1) have 
been confirme'd by direct experiments.[3J So far as the 
quantity E is concerned, it has not yet been measured 
directly (because of its smallness), although there is 
indirect evidence of the validity of the expression (2), 
obtained from resonance experiments, in which there 
was measured the elastic constant 

v.=e/p.r, (3) 

that enters in the dispersion law of vortex waves: [4J 

k~2", =F(Q ± 2(0).) lv, 

(here n is the frequency of the oscillations and Wo is the 
angular frequency of rotation). The results of these ex
periments, carried out by Hall, [4J Andronikashvili and 
the author [5J and by Nadirashvili and the author [6J , are 
given below. 

In this paper we describe an experiment in which we 
have succeeded in making a direct estimate of the en
ergy of the quantized vortex, and also its dependence on 
the temperature of the liquid. 

MEASUREMENT METHOD AND RESULTS 

In carrying out the measurements, the small energy 
per unit length of the vortex was increased gradually by 
the multiple production of a number of vortices of the 
same length in a ring gap which executed oscillations 
with supercritical amplitudes. Two vessels of annealed 
copper were used (see Fig. 1). The walls of the vessels 
were carefully polished. In the first of them (I), a ring 
gap of the dimensions shown in Fig. 1 was made from the 
inner surface of the shell 1 and the polished outer sur
face of an aluminum cylinder located coaxially within it. 
In the second vessel (IT), an aluminum cylinder of 
smaller diameter was set up along with two additional 
thin (~0.1 mm) rings 3, located coaxially relative to the 
external and internal cylinders and dividing the space 
between them into three ring gaps of the same thickness, 
but with different mean diameters. The vessels were in 
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FIG. I. Schematic diagram of the apparatus: I-with a single ring gap; 
II-with three coaxial ring gaps (the dimensions are in millimeters). 
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FIG. 2. Amplitude dependence of the logarithmic damping decre
ment of the oscillations for apparatus II. 

thermal contact with the helium bath through aluminum 
fingers 2. 

The ring gaps were filled with He II through an open
ing of 0.5 mm diameter in the cap. An estimate showed 
that about ~0.02 cm3 of liquid flowed per hour through 
such an opening from the vessel along the film, which 
corresponds to a negligible decrease, ~0.01 mm, in the 
level of He IT in the gap. To fill the ring gap with liquid, 
we used a movable beaker which could be moved vertic
ally in the dewar by means of drawbars controlled from 
the outside. The liquid helium was drawn from the hel
ium bath by the beaker and the ring gap was filled by 
upward displacement of the beaker with the helium. The 
beaker was then lowered, so that the vessel was in the 
helium vapor and the aluminum finger 2 was in the 
liquid. The vessel was reliably insulated from external 
thermal radiation by means of polished copper screens 
that made contact with the helium. 

The vessel was suspended by phosphor bronze wire 
of diameter 100 f.J. 'and length 1 ~ 100 cm. The logarith
mic damping decrement of the coaxial torsional vibra
tions of the vessel was measured. The period of oscilla
tion was 154 sec and did not vary with the temperature 
of the liquid. The selection of a long period of oscilla-
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FIG. 3. Dependence of the half-swing An of the oscillations of the 
light spot on the number n of the half-period; <p-amplitude of the oscil
lations of the apparatus. The points are the experimental data. The arrows 
indicate the ends of the straight-line portions corresponding to the cuts of 
constant decrement in Fig. 2; the dotted line indicates the slope of these 
portions. 

tion was dictated,by the following considerations: it was 
known from the second-sound experiments of Hall and 
Vinen, [7J and also those of Andronikashvili et al. [8J that 
the equilibrium amplitude of the second sound was es
tablished within ~40-70 sec after the onset of motion 
of the radial resonator with supercritical velocity. This 
amplitude corresponded to scattering by the number of 
vortex filaments that is in equilibrium at the given veloc
ity. About the same time is required for the decay of 
the vortices upon cessation of motion of the resonator. 
The width of the radial resonator (which is a doubly
connected annular volume) in the experiments described 
above amounted to ~ 1.2 cm. Taking these data into con
sideration, and also the results of [9], in which it was 
found that the relaxation time of vortex production de
creases in proportion to the decrease in the width of the 
gap, one can conclude that in the case of the annular gap 
of width 3 mm used in the present work, an equilibrium 
number of vortices should develop after the time of a 
half-period of oscillation (~77 sec) in motion with 
supercritical velOCity. Conversely, if the velocity of the 
ring gap is subcritical, the vortices should decay within 
this time. Kiknadze and Mamaladze (private communica
tion) arrived at this conclusion on the basis of a theor
etical analysis of this problem. 

It is just this feature of our setup-the multiple pro
duction of vortices in the oscillations-that allows us to 
measure their total energy and to determine the energy 
of a single vortex. 

In the doubly-connected region, the first series of 
vortices, according to Fetter, [10J is formed at the angu
lar velocities 

2h d 
0>0= mdz Ina' 

where d is the width of the gap. This formula, which is 
valid for R/d » 1 (where R is the mean radius of the 
ring gap) gives, for d = 0.3 cm 

00. - 10-' rad /sec . 

In our experiments the critical velocities for both 
vessels vary in the range . 

5.6·\0-3 -7 1,02· 10-2 rad /sec 
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and turn out to be in fairly good agreement with the 
theoretical formula. 

We now derive the basic formula which we have used 
for the calculation of the energy of the vortex. As is well 
known, the logarithmic damping decrement Ii of the os
cillations is the ratio of the energy AE diSSipated over a 
half-period of the oscillation to the total energy E of tile 
oscillating system: 

6 = b.E I E. 

In our case, AE consists of the dissipation of energy in 
viscous friction in the vapor and in the liquid, Evis 
:= livisE, and of the energy Ev expended in formation of 
the vortices: 

6=6vis+ E• 1E; (4) 

here 

E. = Nle, (5) 

N is the number of vortices and l their length. If we use 
the expressions . 

N = 2nm<jJ,fl'1 Th, E = 2n'/<jJ.' IT', 

where C{Jc is the critical amplitude of the oscillation, 
R the mean radius of the ring gap, I the moment of in
ertia of the oscillating system, and T the period of os
cillation, we can get the following relation from (4) and 
(5): 

" = nhlrl-'H{Il-ll visl I mR'TI. (6) 

The experimentally obtained dependence of the logar
ithmic damping decrement on the amplitude of the os
cillation for the second vessel is shown in Fig. 2. The 
initial dependence of the logarithm of the amplitude Au 
of the oscillations of the light spot on the amplitude C{J of 
the oscillations of the apparatus is shown in Fig. 3, which 
is a photograph of the set of the corresponding experi
mental pOints. It is seen from Fig. 3 that in certain in
tervals of variation of C{J the logarithmic damping decre
ment is practically unchanged (Fig. 2). The three steps 
on the graph of Fig. 2 (after the amplitude-independent 
region, which extends to C{J.~ = 0.165 rad) correspond to 
the critical amplitudes in the first, second, and third 
gaps. The damping in the amplitude-independent region 
is Ii~is = 0.62 x 10-2, the damping after the first step 
is Ii = 0.88 X 10-2. 

The results of calculations with the use of Eq. (6), in 
which the experimental data are used (data similar to 
those given in Fig. 2), are shown in Fig. 4. The broken 
curve indicates the results of a calculation according to 

FIG. 4. Dependence of the vortex 
energy on the temperature: contin
uous curve-calculated from Eq. (2); 
O-results obtained with use of ap
paratus II; .-results obtained in ap
paratus 1. For T = 1.80o K, the results 
are given of a calculation of the vor
tex energy from resonance ex peri
ments: V, .-from [4]; ""-from [5]; 
D-from [6]. 
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Eq .. (2), in which the effective radius b was estimated as 
one-half the inter-vortex distance 21TR/N, which gives 
In (b/ao) ::::: 14. As is known, the quantity b is actually not 
determined, but rather the value In (b/ao), which depends 
slightly on the various possible variants of estimate of b. 
For example, if we use for b the width or half-width of 
the ring gap d = 3 mm, then In (b/ao) ~ 16. The values 
of E calculated from data on the resonance experiments, 
are plotted in the same Fig. 4 for T = 1.80° K. 

One can conclude from Fig. 4 that the Feynman form
ula generally give a valid determination of the vortex 
energy at all temperatures with the exception of the re
gion abbutting the '\point: beginning with T ~1.9°K and 
above, the experimental results somewhat exceed the 
calculated values of the vortex energy. 

It should be noted that the fact that the values ob
tained in our experiment exceed the theoretical ones is 
directly connected with the fact that the additional damp
ing A of the disk oscillations in rotating He n above 
1.9°K exceeds the temperature dependence expected at 
A ~ Ps' [l1J The additional damping of the oscillations 
of the disk in rotating He II is due to removal of kinetic 
energy of the disk oscillation by waves propagating along 
the vortices pinned to the disk. It is therefore propor
tional to the damping, i.e., to the energy. 

The author takes the opportunity to express his deep 
gratitude to E. L. Andronikashvili for interest in the 
research and fruitful discussions. The author also thanks 
Yu. G. Mamaladze for systematic discussion of the ex-
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perimental results, and N. I. Zil'bershteln for help with 
the experiments. 
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