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A method based on the scale-transformation theory and on thermodynamic fluctuation theory is 
proposed for finding the correlation functions of the fluctuations of the scalar ordering parameter 
near critical points in the presence of external fields. The general theory is used to investigate the 
correlations of critical density fluctuations in a gravitational field and to describe critical 
opalescence in such an optically inhomogeneous medium. 

In describing critical fluctuations one usually as
sumes that the system is isotropic, making it possible 
to express the fluctuational part of the free energy in 
terms of the corresponding scalar invariants[I-S]. In 
general, because of the anomalous increase of the 
susceptibility in the near-critical state, switching on an 
external field destroys the isotropy of the problem un
der consideration. In this case, the fluctuational non
uniformity of matter near phase-transition points and 
critical points depends not only on the proximity to the 
critical temperature but also on the characteristic 
field variable for each concrete problem. 

On the basis of the theory of scaling laws [4-7], we 
develop in this paper a method for describing the cor
relation properties of matter in external fields near 
critical points. Together with the correlation length 
Hc of the order-parameter fluctuations, which de
scribes the "internal" nonuniformity, in treating this 
problem it is necessary to introduce also an "external" 
length Ho characterizing the nonuniformity created by 
the field. Below, the correlation properties of the sys
tems being studied will be examined within a volume V 
satisfying the inequality V» H~ » as, where a is the 
intermolecular distance. An equi valent criterion Ho 
» Hc is assumed to be fulfilled for the length charac
terizing the external non uniformity , i.e., for the length 
associated with the characteristic functions of the prob
lem that are dependent upon the external field. 

PROBABILITY OF FORMATION OF ORDER· 
PARAMETER FLUCTUATIONS NEAR THE 
CRITICAL POINT 

We shall assume that the free energy of an isothermal 
system with nonuniformity brought about by the existence 
of an external scalar field and by the presence of fluc
tuations can be represented in the form of a functional 
series in the corresponding scalar order parameter 
characterizing the given phase transition[8]: 

• n 

is the free energy of the nonuniform system in the ab
sence of fluctuations. 

In the quadratic approximation in A1), the probability 
of formation of fluctuations of the scalar order 
parameter in the presence of an external field near 
phase-transition points has the form 

W - exp{-.£.[ S K,(r,) at] (r,) dr, 
k81 v 

+ H K,(r .. r,)aTJ (r,)aTJ(r,)dr, ar, n, 
v . 

(3 ) 

where C is a dimensional constant which is determined 
by the specific type of phase transition. On the basiS of 
the condition for thermod,{namic equilibrium of a sys
tem in an external field[2 

~ I = I'«t](r»)+ U(r)=const. 
/It] (r,) "(')-("('ll 

where J1. « 1) (r)) is the "chemical potential" conjugate 
to the order parameter I) (r) and U( r) is the potential 
of the external field, and also on the basis of the 
reasonable equality 

jt](r)dr= J <t](r»dr. 

the term linear in A1) in the exponent is zero. 
In the quadratic term, the functional derivative is 

represented by the formula 

6'F' 6 
6TJ(r,)6TJ(r.) = 6'1 (r,) WaG(y(r,)}-/'(r,)V'TJ(r,)]. (4) 

which takes into account the nonlocal spatial depend
ence of /J.(1)) in the sense of Lebowitz and Percus[9] 
and uses the scaling-theory equation of state[4-7j 

I'«TJ(r». t) -1'('1" t) =t"aG(y(r»; 

<TJ(r»~TJ' T-T. 
y= t=-T. ' TJ,t& 

where G( y) is the scaling function, and f3 and I) are 
critical indices. 

F(t](r»= E S .. JKn(r ...... rn)II aTJ(r.)dr •• (1) From formulas (2) and (4) and the relations 
6'1 (r,) 
-(-) =6(r,-r,). 'Y=~(1i-1) 
6'1. r, 

1 6nF I K.(r ...... r.)= • 
nl 6'1 (r,).. 6t] (rn) "(')_("(')) 

(2) it follows that 

The kernels K are symmetric in the variables 
rl, ... , rn inside the volume V, and A1)(ri) is the 
dlj!viation of the order parameter from its equilibrium 
value (1) (ri). The condition rl( r) = (1) (r» means that 
the fluctuations of the order parameter are put equal to 
zero after the functional derivatives in (2) have been 
calculated. Then it follows from (2) that Ko = F( (I) (r) ) 
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, K.(r .. r,) = Ih6(r, - r,) [tvG/(y(r,» + bV" V •• 1. (5) 

It can be shown that the quantity b = f*«1)(r), t), 
which is related to the range of the intermolecular in
teraction(9,IO], depends weakly on the field and tempera
ture variables. In fact, estimates made in accordance 
with scaling-law theory lead to 

b-[R,(t.z)]"·, z,= <t](r»-TJ,=yt". 
'I, 
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The function 

Rc- t { t-V 
X-1 , 

By virtue of the assumed smallness of the critical 
index 71 ' (in the 3-dimensional ISing model, 71' ", 0.06, 
v", %, and ~ ", 2.16), this justifies neglecting the de
pendence of b on t and < 7j( r) compared with the 
strong temperature and field dependence of the suscep
tibility of the system 

x- [t'G.'(y(r»]-', 

whic h for < 71) = 71 c, is proportional to t -Y, and on the 
critical isotherm is proportional to x1- o. In obtaining 
(5), we have used the criterion Ro» Rc and a relation 
of the type I V7j (r ) I » l V < '/ (r» l which follows from 
this criterion. 

Finally, the macroscopic distribution function of the 
order-parameter fluctuations takes the form 

W-exp{- 2~ TJ [t'G,'(y(r, t})I1TJ'(r}+ b(VTJ(r»']dr} (6) 
s v 

The distribution function of the Fourier components of 
the order-parameter fluctuations, corres ponding to 
formula (6), is represented conveniently in the form 

W - exp{ ~ 2~VT I: [<Poz(kk') 6 .. , + <p, (k- k') ]TJoTJo'-}. (7) 
B k,k' 

<Poz(kk'} = AtV + bkk', 

<p,(k-k'}= ~J At'[A-'G.'(y(r))-1]e'(O-O'I'dr; 
v 

A is the value of Gy in the absence of the external field. 
It should be noted that the expression (6) can also be 
obtained by another method, based on the use of the 
method of the local-equilibrium distribution developed 
by Zubarev[ll] 

CORRELATION FUNCTIONS IN AN EXTERNAL 
FIELD 

We introduce the correlation function 
CV 

g •• , = ksT (1]'TJo"), 

associated with the covariance < 7jk7jk/) of the Fourier 
components of the order-parameter fluctuations, where 
< ) denotes averaging over the distribution (7). The 
function gkk ' satisfies the integral equation 

I: [<Poz (kk,) 6.0, + <P, (k - k.) ]go,o' = 600', (8) 

" 
the solution of which, in the case of weak nonuniformity 
(CP1 « CPOZ), can be written in the form 

where ko = k and kn = k/. 

Fourier transformation of (8) leads to the following 
equation for the cor_re lation function g( r, r ') in the 
coordiIfate representation: 

L(R;r',t)g(R,r')=- ~6(R), (10) 

. L(R; r', t) =V R ' - x'[1 + f,(R + r', t} 1. 
R=r-r~, x'=At'/b, f,(r, t) =A-'G.'(r, t} -1; 

f1 is the field function describing the effect of external 
forces on the correlation properties of the systems 
being investigated; f1 is symmetric under inversion of 
the spatial coordinates and possesses the properties 
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!.(r=O, t *' 0) =0, f,(r*'O, t = 0) > O. 

Eq. (10) is the generalization, in the presence of an 
external field, of the well-known differential equation of 
the Ornstein-Zernike (OZ) theory[1-3 1. 

In the case of smooth nonuniformity characterized by 
the inequality 

I RV "f. (r', t) 1<:1, 
f,(r', t) 

(11 ) 

which in k-space is equivalent to assuming that small 
differences ki - kj make the main contribution to 
cP d ki - kj), the correlation function identified with the 
Singular part of the Green function of the operator 
L(R; r', t) takes the form 

. Vi· 
g,(r, r') = Tnb Ir _ r' lexp[ - (b-'tvG.'(r', t) )"'Ir - r' 11. (12) 

and the effective correlation length of the order
parameter fluctuations in the external field is found to 
be equal to 

. [tVI ]-". R(t} 
R, err (r, t) = b v.'(r, t} = [1 + f.'(r. t} )". 

In the absence of an external field (fdr, t) = 0, 
Gy = A), the expressions (9) and (12) for the correla
tion functions go over into the corresponding results of 
the OZ theory and the surfaces of equal correlation 
lengths at each point of the system are spheres, all of 
the same radius Rc(t) = (b/ATI')1/2. "Switching on" 
the field leads to the result that the correlation between 
two fluctuations at the points rand r' is found to de
pend not only on the relative distance but also on the 
position in space of the two fluctuations for a given R. 

In the case when the inequality (11) does not hold, 
for g1 = g - go we can write a conVOlution-type integral 
equation of the form 

g.(R, r/} =L-'(R; r', t}x'[f.(R+r', t} -f.(r', t)]g,(R, r'}. (13) 

Solving (13) by means of Fourier transformation with 
respect to the coordinate R in a sufficiently large vol
ume, for the correlation function g(R, r/) we have 
finally 

(R, r')= (R, r') + _1-J g,.(r') !Il.(r')e-.... ds 
g g, (2n) , 1- !Il.(r') 

where gOs(r/) and <1>s(r/) are the Fourier transforms 
of go(R, r/) and of the function <1>(R, r') = bK2Lft{R 
+ r', t) - fdr', t)]go(R, r')jV. 

It should be noted that the expression (12) for the 
correlation function go(r, r') is a solution of Eq. (10) 
when the inequality (11) is fulfilled with "zero" bound
ary conditions at infinity. If we take into account the 
finite dimensions of real systems, the subsequent use 
of this expression requires specific justification. In the 
Appendix, a calculation is performed of the correlation 
function for a plane-parallel layer with reasonable 
boundary conditions. The Fourier transform of this 
correlation function is given by an expression of the 
following form: 

go (k, k') = _1_ ~ ei(k'-klr' {1- cos k,L, } dr' 
Vb v x~rr (r', t) + k' ch [x~rr (r', t) + k' -kz'l'''L, • 

(14) 
It follows from (14) that, for a system of sufficiently 
large volume V in the sense of the inequality 

V", ~R""'" f.(r, t} / I V/.(r, t} I >R" 

the correlation function (14) goes over into the Fourier 
transform of (12). 
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To conclude this Section, we note that the theory 
proposed here of critical fluctuations in external fields 
(applications of which will be considered below) has 
been developed on a thermodynamic basis, in the sense 
that the characteristics of the correlation functions of 
the order-parameter fluctuations are determined in an 
essential way by the scaling function G(y) characteriz
ing the equation of state near the phase-transition 
points, Naturally, suc h a phenomenological theory re
quires a microscopic justification, 

DENSITY FLUCTUATIONS IN A 
GRAVITATIONAL FIELD 

The anomalous increase in the susceptibility to ex
ternal forces which appears in the immediate vicinity 
of second-order phase-transition points and critical 
points can lead in a number of cases to pronounced 
spatial nonuniformity of the substance, and this makes 
it possible to apply the general method developed above 
for calculating order-parameter fluctuations to the 
study of the correlation properties of these systems, 

The most characteristic example of such a situation 
is, evidently, the critical point of a classical liquid 
situated in a gravitational field, The order parameter 
of such a system is the dimensionless deviation t.p of 
the denSity from its critical value, and the field variable 
is the height z (measured from the level with the maxi
mum denSity gradient), which is connected with the 
scaling function G( y) by the relation 

z' = p,gz;' P, = -t"G(y), (15 ) 

The function G( y), which is known in scaling-law 
theory only for the limiting cases y « 1 (the vicinity 
of the critical isochore) and y » 1 (the vicinity of the 
critical isotherm), has the following asymptotic 
forms[7J: 

(16a) 

~ 

G(y ~ 1) =.L, bny'-n/~ (16b) 

(an and bn are parameters of the substance in the 
critical state), which can be used to calculate the cor
relation functions of the density fluctuations in a gravi
tational field on the basis of the method described in 
the preceding Section, 

Vicinity of the critical isochore (I z* I « t (3fJ, t > 0), 
In this limiting case, it follows from (7), (15) and (16a) 
that 

( , t)= p(z',t)-p, 
yz, p,t~' 

Iz'l 
-~signz·, 

a,t 

(17) 

For a layer of substance bounded in the z direction by 
the planes z = ± L, the function qJl (k) can be calculated 
easily, In the case of weak nonuniformity, the covari
ance (PkPk') of the Fourier components of the density 
fluctuations is, in accordance with formula (9) in the 
first apprOximation in qJ d qJO Z, equal to 

kBT {6' 3a~L'Z6(k •• k.')6(kv.k:) 
VP,(a,t' + bk') •• ' a,Zt~(HI) (a,t' + bk") 

fSindk'L'(1 2) 2C08,dk'L']} 
x L ~ - dk"L" + dk"L" ' 
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where 

dk' = (k, - k:)P, I p,g, 

and L* is the result of putting z = L in (15). Here the 
role of the dimensional constant C in the distribution 
(7) is played by the critical pressure Pc. 

From the general formula (12) for the correlation 
function go (r, r') in the vicinity of the critical iso
chore, we have 

V 1 1 3a z'" 'f, 
g,(r,r')=-,----exp [---::.(a,t'+-'-) Ir-r'I], (18) 

4nb Ir - r' I 'I b a,'tH '+!) 

whence it follows that the long-range character go( R) 
~ R-1 is conserved only at the critical point itself, 
when z* - 0 and t - 0 simultaneously, with the condi
tion I z* I « t (3 fJ. The correlation length of the density 
fluctuations 

[ a,t' 3a,Z"] -'I. 
R, eff = -b-+ ba,'t~('+') 

does not vary at a given height and decreases as we 
move away from the level with maximum density 
gradient. 

In the case of the smooth nonuniformity created by a 
graVitational field, the use of the correlation function 
(18) leads to the following expression for the covariance 
of the Fourier components of the density fluctuations: 

. k T a 't~(O+') 
(p.p.,') =_B __ '_'_6(k •• k.')6(k." k:) 

P,V 3a,L' 
1 3a 'f, 1 '~('+') 

X {-(-'-) ,[ 1+_dk,,_a'_(a,t'+bk')] 
a,t' a,t' + bk' . 2 3a, 

, L' ( 3a ) 'f. 1 } x arotg- ' --dk"L" 
a,t' a,t' + bk' 2 ' 

in the derivation of which only small differences k - k' 
have been taken into account. 

In the vicinity of the critical isochore, the effect of 
the gravitational field is characterized by the function 
fdz*, t) = 3alzH/a~e{3fJ; in connection with this, the 
length Ro of the "external" nonuniformity turns out to 
be of the order of the field variable z« lOSt (3fJ cm. At 
the same time, the length associated with the "internal" 
fluctuational nonuniformity coincides in magnitude with 
the correlation length Rc(t) ~ (b/aotY)1/2"" 1O-7t-Y/ 2 
cm. Thus, for t"" 10-4 and the critical-index values of 
the 3-dimensional Ising model, the vertical coordinate 
(I L I < 10-5/ 3 cm) of the boundaries of the region inves
tigated is still considerably greater than Rc "" 10-9/ 2 
cm, so that the use of the correlation function go( r, r') 
determined by formula (12) can be considered to be 
justified in this case. As the critical temperature is 
approached in the limiting case y « 1 under considera
tion, the length Ro of the "external" nonuniformity 
decreases and the length Rc of the "internal" non
uniformity simultaneously increases, so that the method 
proposed in this paper for calculating the critical fluc
tuations carinot be used. 

Vicinity of the critical isotherm (I z"'l » I t I (:JfJ). 
From the formulas (7), (15) and (16b), we have the fol
lowing expressions: 

, ~~ ( Iz'I,) ,/0 [ b, (1::'1) -",. ] y(z,t)=-t -- 1--- _ + ... signz'; 
. b, M~-I/" ~ 

<i>oz = bk', T ..... Too 

6b 1/' 

<i>,(k)=~ S Iz'I'-I/·e'bdr. 
v 

(19 ) 

If the expressions (9) and (19) are taken into account, in 
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the a~proximation of weak nonuniformity the covariance 
(PkPk') in the volume of the system bounded by the 
planes z = L1 and z = Lz has the form, for T - Tc , 

< ") = ~ {II ,_ 1lb!,6 11 (k., k:)II(k., k:) (iLlk')-H">. p-p- VPobk'" 4(L,'-L,')bk" 

)([1-(-1)-'+1"][1(2 -1/11,iM'L,')-1(2-1/11, - tM'L;) 

-1 (2 - 1/11, iLlk'L,') + 1 (2 -1/11, - tLlk'L.-)], 

where 'l'(n, x) is the incomplete gamma-function. 

In the limiting case y » 1 under conSideration, the 
dependence of go(r, r') from (12) on the field variable 
is given by the expression 

, V 1 {' Ir-r'l} g,(r,r )=--.-. --exp --- , 
4nb Ir-r'l R,. 

and is, naturally, stronger than for y « 1. The long
range character of the correlation function go( R) and 
the singularity of the correlation length 
Rc = lb//ib~//iz'*(l-l//i)]1/2 are found at T = Tc only at 
the level with maximum density gradient, where 
z'* = O. 

(20) 

Near the critical isotherm, the length of the 
"external" nonuniformity created by the gravitational 
field is Ro ~ z » 10St J3 /i cm, whereas the correlation 
length of the density fluctuations is Rc (z* , 0) 
~ 1O-7/z*(/i-1) 1215 cm. On decrease of the value of the 
field variable, the increase of Rc and decrease of Ro 
lead to violation of the inequality Ro» Rc , which de
termines the position z = L1 of the lower boundary. 
The choice of coordinate z = Lz of the upper boundary 
is dictated by the requirement L~« bo, which ensures 
that one of the parameters of the theory (Llp(z*, t)) is 
small. 

Vicinity of the coexistence curve (I z* I « I t I i3/i, 
t < -.Q). This limiting case can be treated analogously to 
the case of the vicinity of the critical isochore, if, as 
has been done previouslyl1z,13J, we assume that it is 
possible to sum the prinCipal singularities of the 
asymptotic expansions (16a) and (16b). The correspond
ing calculation of the correlation function in the coordi
nate representation gives the following result: 

g,(r,r,)=~_1_exp{_~[ (6-1)a,ltl' 
4nb Ir-r'l 'Ib 

+6'-''''-1) (:: )'/('-') Iz;:1 r'lr-r'I}. (21) 

Formulas illustrating the behavior of the correlation 
functions in the k-representation can also be obtained 
easily. As can be seen from (21), the function f1( r, t) 
(and also, consequently, the positions of the boundaries 
of the region investigated) differs only by a numerical 
factor from the corresponding expression in the case 
y « 1. 

CRITICAL OPALESCENCE IN AN OPTICALLY 
NONUNIFORM MEDIUM 

The above treatment of the correlation properties of 
matter near a critical point in the presence of an ex
ternal field is a basis for the study of molecular scatter
ing in the near-critical state. A consistent account of 
the spatial nonuniformity induced by the unlimited in
crease of the susceptibility to external forces requires 
also the solution of the corresponding electrodynamic 
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problem of the propagation of electromagnetiC waves in 
such an optically nonuniform medium. Features of the 
transmission and scattering of light near the critical 
state of indi vidual systems in a gravitational field have 
been investigated previously[l41• Solving the Maxwell 
equations in which the height dependence and tempera
ture dependence (associated with the experimental and 
theoretical investigations of the gravitational 
effect[lS-17,12,131) of the dielectric permittivity of the 
substance are taken into account leads to the following 
expression for the Poynting vector of singly scattered 
light: 

<S) =_c_ (!!l..)'(p as)' _l_Re SS dR'dr' exp(-ik,e;I'n,R). 
IBn 4n ap T L,' v 

_'I, [ Lls(z', t) ] 
)(g(R,r')s, (z',t) n;(1+cos'-(})+--s-,-(m,costt-n,cos'tt) . 

x{IAHI' exp[ik,e:' (z', t)m,R]+ IA<+>i' exp[ - ik,s:'(z', t)m,R]). (22) 

Here mo and no are unit vectors in the direction of the 
incident light beam and the light beam scattered through 
angle J, Ll € = 3rc Pc Llp is the deviation of the macro
scopic dielectric permittivity €o( z, t) from its critical 
value €c = 1 +3rcPc, rc is the critical refractive 
index, ko = 21T/A, and A(-) and A(+) are the amplitudes 
of the forward and backward waves which propagate in 
the plane layer of thickness Llz » A being studied; in 
connection with the latter, interference terms are 
omitted in (22), 

Using the density-fluctuation correlation functions 
g(R, r') obtained earlier for the different limiting 
cases, we shall study the effect of nonuniformities 
created by a gravitational field on the integral intensity 
(22) of scattered radiation near a critical point. 

In the limiting case corresponding to the viCinity of 
the critical isochore, integration of the expression (22) 
over the relative variable R with the correlation func
tion (18) gives 

V L' IAHI' 
<S(t,~»= 2L' Rel,J,(z·;t,-(}) L'(t)+d'Z"+q_'(I+d,Z')' 

+ ------.. dz' . 
IA(+)I' } 

x'(t)+ d,z" + q+'(1 + d,z') , ' (23) 

J, =_C_(!:!"')' ~ (p~)' e;'I'{n~(1 +cos'-(}) 
IBn 4n bP,L,' ap T 

+~(m,cos~-n,cos'~) }, 
E, 

'( ) a,t' d 3a,j d, = 3r,p./ 
x t = -b-' ,= a,'bt"'+!) , 2e,a,t" 

f = 1 in the presence of the field and f = 0 in its absence, 
and 

q", ~ 2'I'k,s;' (1 OF cos~) 'I, 

is the wave-vector transfer in the directions of the 
forward and backward waves. The differential cross 
section (s (z* ; t, Il» from (23) for radiation scattered 
at a given level displays a pronounced height depen
dence, with a maximum at z * = 0; this is fully con
firmed by the experimental investigations [18,19,12). An 
analysis of the angular dependence of (8 (z*; t, J» 
shows that, as the critical point (z* = 0, t = 0) is ap
proached along a direction I z* I « I t I P/i, the scatter
ing cross section should increase anomalously not only 
at zero angle but also in the backward direction,') = 1T. 

The expression for the projection of (S > on the 
direction of observation no at small scattering angles: 
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. .( L"d-d q ') <8 ... (q_',t» = <8(q_',t»oz 1-~ ~. ,- , 
' 3 x' t) +q_' 

goes over in the absence of the external field to the 
well-known result of OZ theory[ID]: 

~V ( oe)' kBT(1 +cos't}) 
<8(q_',t»oz =I'2L,'"' ' Pap T P,(a,tY + bq_') , 

which determines the scattering power of a macro
scopically uniform and isotropic medium. 

(24) 

In the limiting case of the critical isotherm, use of 
the correlation function (20) in a volume bounded by the 
planes z = L1 and z = L2 leads, in the expression for 
the Poynting vector: 

V L,' IAHI' IA(+)I' 
<s(t,t})> =-.--. ReS l,(z·;t,t}) (-Q-+-Q-) dz', 

L, -L, _ + 
L,' 

(25) 

to the singularities noted above in the height and angu
lar dependences of < S(z"; t, .9-) for t - 0, z" - 0 
(I t 1/36 « I z* i). In the direction of small scattering 
angles for boE « Eo, it follows from (25) that 

, . ' i.[ ( 6 26~ 1, ) 
<8(q_',O»/<8(q_"0»oz = L,-L,' .L,"F 1'6-1";~; ~x, 

( 6 26 -1 )] 
-L,'Pl, 6~f;6~1; -x, , 

'illl 
_ lib, f L .('-,/.) (26) 

XI,! - bq_ 2 1,>3 t 

where F(a, b; c; x) is the hypergeometric function. 
The deviation, caused by switching on the external field, 
of the scattering cross section (26) from the corre
sponding result of the OZ theory is determined by the 
expression 

<8(q_',0» ... 1 ,f!'b:/'t L;(I-I/')-L:('-I/') (27) 
<8(q_',O»oz (~6- ~)bq_' L,' -L,' 

in which the correction to the OZ theory increases with 
decreasing q~ for fixed dimensions of the scattering 
layer. 

In the vicinity of the coexistence curve, using the 
correlation function (21) we obtain from the general 
formula (22) the following expression: 

<8(q_',t<0» 11 ,[i\r,P,( a,),/{o-,) ~ 2 

<8(q_',t<0»oz - (6-1)x'(ltl)+q_' ~ 6b. fltl q-

1 . ( b ) '/('-I)] ( ) +2L·Il'-1/(··I),.~. , /ltr-'. 28 

The dependences, determined by formulas (24), (27) 
and (28), of the reciprocal of the scattering intensity on 
the square of the wave-vector transfer are, generally 
speaking, nonlinear. Deviations of this type from OZ 
theory, which are usually described by introducing a 
critical index 1/ I, can be related naturally to the in
creasing effect of the nonuniformities caused by the 
external forces as the critical state is approached. We 
should expect that a linear dependence of < S (q~)-l 
will be observed in experimental investigations of the 
critical opalescence in the layers of "local nonuni
formity" defined by the appropriate criterion from [14]. 

APPENDIX 

We shall consider a plane-parallel layer with 
parameters - "" < x, y < "", -L::s z::s L. The dela-func
tion constructed from the orthonormal eigenfunctions 

A( ') 2 2 ( I ) of the operator L 0; r ; t = V'R - Keff r ,t of the 

302 Sov. Phys . .JETP, Vol. 38, No.2, February 1974 

eigenvalue problem with "zero" boundary conditions at 
the boundaries z = ±L, with the condition that the 
eigenvalues of the given operator satisfy the relation 

,,' = k.> + k,' + k,' +: x:rr (r', t), 

(where K~ff(r', t) = K2l1 +fdr', t)], kx and ky vary 
continuously from - 00 to 00, and kz runs over the 
discrete series of values ki = n 2rr2/4L2 (n = 0,1, 
2, ... )), has the form 

1 ~.. ..' n~ 
6(R)=8n'L 1...1 Sf (1+{~ 1) nH]cos uR,exp[/(k.R.+ k.,R,) ldk~dle •• 

, ,,_a':". 

Then, for the singular part of the correlation function 
go(R, r'), we have the expression 

( ') V 
g. R, r = 8n'Lb 

. ~ S~S'n exp(ik • .p cos <p) [1 + (-1) n+']cos(nnR.l2L) 
)( 1...1' k '+ n'~'/4L' + x' (r' t) k,.dk .. d<p, (A.1) 

11_0 0 0 %¥ eff 1 

in which we have transformed to polar coordinates 

k.R. + k.,R. = k • .p cos <p, P == (R.' + R.') '\ k •• = (k.' + ky') 'I" 

We 'lote that the uniqueness of the division by the opera
tor L(O; r', t) implies h~re the rejection of the uniform 
solution of the equation Lgo(R, r') = -V6(R)/b. 

Performing the integration in (A.l) by taking into 
account the well-known relations for cylindrical func
tions [21] 

etA, 00 •• = l.(kp) +.21 cos <pI, (kp) + 21' cos 2<pI, (kp) + ... , 0 < <p < 2~, 

we obtain 

S~ kl,(kp) dk == K ( a) 
k'+a' ,p, 

• 

V ~ [ (n'n')'!'] nn g.(R, r')=TnLbI...l K. p x:rdr',t)+4LT [1+(-1)n+']cosUR,. 
n=O 

(A.2) 

The Fourier transform of (A.2) 

g.(k, k') =~, Sf g.(R, r')exp !i[kR +(k' - k)r']l dRdr' .. 
after transformation to polar coordinates and integra
tion over the angle cp takes the form 

1 ' ~ ~ 

g.(k, k') 7' VLb S {E,[ 1+(_1)n+'] (S K.[ P (x~rr<r" t) (A.3) 
v n_O 0 

n'~' ) 'I,] , ) L nn . } . . 
+4L' l.(k..p)pdp ScosuR,cosk.R,dR, e'(k-k)'dr'. 

• 
Using the relations 

- [ n'n') 'I,] [ ~'n' ] -, S pK, p(x~ff(r',t)+w l.(k .. p)dp= k • .'+x:rr(r',t)+4LT ' 

and 

i1 [1+(-1)n+']cosnx _ n h-' an h( an' ) 
~ n2+a2 -Tac 2 5 T- ax , 
n_' 

O<x<n 

and integrating (A.3) over Rz , we finally obtain the 
formula (14) determining the correlation function in 
the bounded region. 

The authors are grateful to M. Sh. Giterman, D. N. 
Zubarev, F. M. Kuni and I. Z. Fisher for their interest 
in the work and useful discussions on a number of 
questions touched upon in the article, and also to A. A. 
Migdal for valuable critical comments. 
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