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Solutions of the Korteweg-de Vries equation which are asymptotically correct for t .... 00 are obtained 
for the problem of decay of the initial discontinuity and for the problem of overturning of the front 
of a simple wave. In both cases there is an oscillation region which expands in time and is bounded 
at two sides in space by singularities. 

1. FORMULATION OF THE PROBL.EM. THE 
BASIC EQUATIONS 

As is well known, processes in nondissipative media 
with weak nonlinearity and weak dispersion (e.g., in a 
plasma with Te »Ti) are described quite well by the 
Korteweg-de Vries equation[ll: 

01]. 01] 0'1] 
-+1]-+-=0. at ax ax' 

So far, the solutions to (1) which have been most 
thoroughly investigated are those corresponding to 
problems in which the perturbation at the initial mo­
ment of time sufficiently rapidly decreases with in­
creasing I xl: 

1] -+ 0, Ixl -+ 00 

( 1) 

(so that foo 1]dx has a finite value). In particular, in [2] 

Karpman'determines the number and the amplitudes of 
the solitons into which such a "local" initial perturba­
tion breaks up in the limit at t-oo. A convenient method 
of solving such problems, which is based on the connec­
tion between the Eqs. (1) and the Schrodinger equation, is 
expounded by Garner et al. [3] (see also [4]). 

In our opinion, one of the most interesting questions 
connected with Eq. (1) is the question as to what corre­
sponds in the collisionless case to the shock wave of 
ordinary hydrodynamics. As was shown by Sagdeev, 
such a collisionless shock wave has an oscillatory char­
acter (see [5,6]). The problems that have thus far been 
solved cannot however give a quantitative answer to 
this question. Indeed, it is a priori clear that any local 
perturbation will asymptotically, as t-oo , disperse in 
the same way as it would attenuate in ordinary hydro­
dynamics because of viscosity. The mean (over the 
period of the oscillations) value of 1] in a local perturba­
tion tends to zero in time. 

In order to investigate the structure of the "shock 
front" with the aid of (1), it is necessary to consider 
the problems in which the perturbation is sustained at 
all t by appropriate boundary conditions at x-±oo. In 
other words, we must consider those problems in which 
in ordinary hydrodynamics there exists a shock wave of 
temporally nondecreasing intensity. 

The aim of the present paper is to solve two such 
problems. First, we shall consider the problem in which 
the quantity 1] undergoes at the initial moment of time a 
finite jump at the point x = O. In hydrodynamics a shock 
wave of constant intensity would be produced in this 
case (see, for example, [71, Sec. 93). Secondly, we shall 
consider the situation in the vicinity of the simple-wave 
breaking point. The exact formulation of this problem 
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will be given below, at the beginning of Sec. 3. In hy­
drodynamics, a shock wave whose intensity increases 
in time is produced behind this point (see [7], Secs. 
94 and 95). 

Let us emphasize that each of these two formulations 
of the problem is important in its own right. The first 
formulation is often realized under real experimental 
conditions, while the second describes the general case 
of collisionless shock wave "generation." 

Qualitatively, the picture of the solution has the same 
nature in both cases. There is at any t» 1 a finite 
region in space occupied by oscillations, the solution 
being smooth to the right and left sides of this region 
(see Figs. 2 and 9 below). 

In Sagdeev's terminology /5] the above-described 
picture corresponds to a "collisionless laminar shock 
wave." In this case, however, a shock front of definite 
width is not produced. The resulting oscillation region 
expands in self-similar fashion in time. The region is 
bounded by first-order discontinuities, the first-order 
discontinuity at the leading edge of such a collisionless 
shock wave being of a singular nature. Let us empha­
size in this connection that our formulation of the prob­
lem with the assumed total nondissipation differs radi­
cally from the problem of the effect of disperSion on the 
structure of a dissipative shock wave. In the latter case, 
according to Sagdeev, [5] a stationary oscillating shock 
front of width determined by the particle mean free path 
is produced (see also [8]). 

We shall construct the solution for large t, when the 
length of the oscillating region is much larger than the 
characteristic wavelength of the oscillations. In this 
case it is natural to use Witham's quasiclassical 
method [9]. In the limit as t-oo , the solution obtained 
in this way will be asymptotically exact. 

Let us summarize the results of Witham's work[9] 
that will be required below. As is well known, Eq. (1) 
has an exact solution in the form of a stationary running 
wave: 

2a [( a ) '/' ] 1](x,t)=7 dn' "6s'(x-Vt),s +y. (2) 

where dn(y, s) is the Jacobi elliptic function of modu­
lus O:=:; sS 1 (see [10], pp. 910-914). The parameters 
a, s, and yare arbitrary constants, a determining the 
amplitude of the oscillations: 

2a = T)ma:J: - llmin. 

The velocity V is equal to 

2-8' 
V=2a~+y_ 
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According to the properties of the elliptic functions, the 
wave vector of the wave, defined as 21T/A, where A is 
the wavelength, is given by 

n ( a)'" 
k= K(s) 6s' . 

The value of 1) averaged over the period is equal to 

- _ +2aE(s) 
t] - y s'K(s)· 

Here K and E are the complete elliptic integrals of 
the first and second kind respectively. 

(4) 

(5) 

We shall seek the solution in the form (2), assuming, 
howeve·r, that the parameters a, s, and y (and, conse­
quently, V, k, and 7j) are slowly varying functions of x 
and t. According to Witham, these functions should 
satisfy definite equations. It is convenient to write 
these equations for three new functions: 

connected with a, s, and y according to 

2 Ta- r , 
s=--, 

T3- T, 
(6) 

The velocity V and the maximum and minimum values 
of 1) in the wave are then equal to: 

v = 1/3 (r.-+ r, + r.), 
1]"11. = r, + 71 - Tit 1}min = 7. + T, - rl. 

The equations for ra have the forml) 
{Jr. {Jr. 
at+ v.a;= 0, 0;= 1,2,3. 

(There is no summation over a. in this formula and 
everywhere below.) 

The three "group velocities" va. are equal to: 

v = r.+r.+r. ~(r -r) K.(s) 
• 3 3 2 • K(s)-E(s) 

r. +r,+r. 2 (1-s')K(s) 
V,= 3 '3(r,-r')E(s)_(1_s')K(s) 

v.= r.+r,+r, ~(r.-r.)1 (1-s')K(s) 
3 3 B(s) 

(7) 

(8) 

(9) 

The Korteweg-de Vries equation (1) is invariant un­
der the transformations 

t] ..... Ct], x ..... x I C'\ t ..... t I C'I, (10) 

(C is an arbitrary constant) and 

x ..... x + Ct, t] ..... t] + C. (11) 

And the averaged equations (8) are also invariant under 
the transformation 

x- Cx, t-Ct. (12) 

Let us write out for reference the approximate for­
mulas for the functions K(s) and E(s) for s-O and 
s-1. We have 

K(S)"'~(1+~+2..s'+ ) 2 - 4 64 ... , (13) 

E(s)"'~(1-~-~s'+ ) s<1 2 4 64 ... , 

and 
1 16 

K(s) "'-In--
. 2 1-s' ' 

1 (16 ) E(s) '" 1 +4(1-&,) In 1-s' -1 , (1- s')< 1. 
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As has already been noted, the parameter r2 can 
vary from rl to r3. Therefore, it is natural to assume 
that the oscillation region is bounded on one side by the 
point x-(t) at which r2 = rl' The amplitude a and the 
parameter s vanish at this point. On the other side, the 
oscillation region is bounded by the point x+(t) at which 
r2 = r3, so that s = 1 and, according to (4), the wave vector 
k vanishes. In both problems considered by us x+ >x-
and therefore we shall call the point with a = 0, s = 0 the 
trailing edge and the point with s = 1 the leading edge. 
This corresponds to the usual picture, when the higher­
amplitude solitons move with higher velocity. It is nec­
essary, however, to emphasize that the existence of 
solutions with the indicated properties is by no means 
obvious: it is a hypothesis, the validity of which can be 
verified only by the actual construction of the solution. 

2. DECAY OF THE INITIAL DISCONTINUITy2) 

Let 1)(x) have at the initial moment of time t = 0 
a finite discontinuity, i.e., 1) = 1)- for x < 0 and 1) = 1)+ 
for x >0. We shall first assume that 1)- >1)+. We shall 
discuss the opposite case at the end of this section. 
Notice that we can with the aid of the transformations 
(10) and (11) always reduce the initial conditions to the 
form 

t-O, { 1, x<O 
11= 

0, x>O' (14) 

For the averaged equations (8), such an initial condition 
should be imposed on 7j and the amplitude a should be 
assumed to be zero at t = O. The most important point 
of the solution is the fact that the initial conditions (14) 
remain invariant under the substitution x-Cx. Then, 
as is easy to understand, in virtue of the invariance 
under (12), the solution should contain x and t only 
in the combination 

T = xl t. ( 15) 

The situation here is the same as in the ordinary hy­
drodynamics of an ideal fluid. 

Thus, we shall assume that 

r,. = r .. (T). ( 16) 

The boundary conditions expressed in terms of the 
variables T should, according to the above-described 
general picture, have the following form. At the 
"leading edge" of the oscillation region, where T= T+ 

we should have 
S{T+) - f, 

i.e., 

r;{,;+) =r,(T+) =r.+. (17) 

On account, however, of the continuity of the quantity 
7j( T), we should have 

ij (T+) = o. ( 18) 

Further, for T> T+, we simply have ra = O. At the 
trailing edge, where T = T - , we should have a = 0, so that 

r,(-c) = r.{T-) = r.-, 

ij(T-) = 1. 

For T < T- , a = 0 and 7j = 1. 

Substituting (16) into (8), we obtain 
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(20) 

(21) 
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It is easy to understand that a sensible solution can 
be obtained if we equate to zero the expression in one 
of the pairs of round brackets in (21) and assume ra 
= const. in two other equations. It is evident that the 
boundary conditions (17) and (19) can be fulfilled only if 
r2 depends on T. Therefore the solution of interest to 
us has the form3) 

V2 = 't', r1 = const, rs = const. (22) 

Notice first of all that it follows from (5) and the fact 
that a/s2"'r3-rl that for a-O 

fj = r,. (23) 

Then, according to (20), r3 = 1. At the leading edge, we 
have for s-1 

so that rl = 0 and S2 = r2' As a result 

1 +s' 
V=-3-' 1 = -(1-s'). 

Substituting these values for the parameters into (2), 
we obtain 

f] (x, t) = 2dn' [ ({-) 'f, ( x _ 1: s' t) , s] _ (1 _ s'), 

and the formula (22) can be rewritten in the form 

1+s' 2 s'(1-s')K(s) x 

3 3 E(s)-(1-s')K(s) t 

(24) 

(25) 

(26) 

The formulas (25) and (26) in the parametric form (the 
parameter s) completely solve the set problem. Let 
us emphasize that the quantity 17(X, t) itself certainly 
does not depend on T only. On T only depends the 
slowly varying parameter s. 

Let us specially investigate the behavior of the solu­
tion in the vicinity of the leading and trailing edges. At 
the trailing edge we easily find for a -0, using the for­
mulas (13), that 

or 
-1 + '/,s' = ,;, 

,;- = -1, a = s' '" '/.,;' 

(,;=,;- +,;' = -1 +,;'), 

(27) 

so that the amplitude tends to zero as T- T- according 
to a linear law. The mean value 1), on the other hand, 
tends, as can be seen from (5), to unity quadratically. 

At the leading edge', instead of (26), we obtain for 
s-1 

2 1- s' 16 
----In--''',;. 

3 3 1- s' 

Hence we find that 

,;+ ='/ •. 

The law according to which 1- S2 tends to zero has the 
form 

(1-s')ln~=31,;"1 1- S2 t 

where 

't = L++ ",", 'til < 0, 

or, with logarithmic accuracy, 
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(28) 

We see that as s-1, the wave vector k tends to zero 
according to the law 

k"'- -1 ( 2 )'" 1 
n 3 In(1/1"1''' I) 

(29) 

(neglecting the terms -In lnl T" I/lnl T" I). 

Finally, as s-l, the mean value 1) behaves as 

- 1 
f] = 4I1n T?T' 

The function 1)( T) has at T = T+ an infinite derivative, 
so that this point is a peculiar Singular discontinuity. 

Figure 1 shows the plots of the quantities 1), a = S2 , 
and the wave vector k given by (25) and (26). In Fig. 2 
we present the values of the unaveraged quantity 17(x, t) 
for t= 50 and t= 100.4 ) It can be seen that the width of 
the region occupied by the oscillations increases rapidly 
in time. Here the expansion occurs owing mainly to an 
increase in the number of oscillations, while the wave­
length changes insignificantly . Nevertheless , in the 
vicinity of the leading edge the period increases gradu­
ally and isolated solitons are discharged. According 
to (29), the distance between these solitons logarith­
mically increases in time, and this can be seen in Fig. 
3, which shows the leading edge for t = 100, 1000, and 
10000. (The scale along the x axis is given at the 
bottom of the figure.) 

We now note that the transition from a "unit" dis­
continuity to a discontinuity with arbitrary 17_ is, ac­
cording to (10), realized by multiplying the values of 17 
by 17_ and simultaneously dividing the values of x by 
17~/2 and the values of t by 17:12 • (Such a scaling law is 
valid for all t and not only in our asymptotic region.) 
The values of T are then multiplied by 17_. For ex­
ample, for a discontinuity with 17_ = 2, the plots in Fig. 2 
correspond to t= 17.7 and t= 35.4 with a corresponding 
change in the scale along the axes. We point out in this 
connection that the condition of applicability of the ob­
tained solution for a discontinuity with an arbitrary 17_ 
has the form 

f]~'t > 1 (30) 

(actually the solution is fairly accurate if 17:/2e 6). 

The evolution of the initial discontinuity was con-

-I 
r- o 

FIG. 1 
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sidered by Washini and Taniuti[12] on the basis of Eq. 
(1), which they linearized by dropping the second term. 
The solution obtained by these authors, however, de­
scribes only the initial phase of the process when 
1]:/2t « 1 and the nonlinear effects are weak. Subse­
quently, the process should be described by the above­
obtained solution, in which the dispersion and non­
linearity effects are of the same order of magnitude. 

Let us now discuss briefly the evolution of a discon­
tinuity of the opposite sign with 1]- < 1]+. (We can, without 
loss of generality, set 1]- = 0 and 1]+ = 1.) It is clear that 
we cannot describe such a discontinuity with a solution of 
the form (26), since r3 > rl and it follows at once from 
(23) and (24) that 1]- >1]+. However, Eqs. (8) then have a 
trivial nonoscillating solution. 

{ 
0, -r<O 

T)=T)= -r, O<-r<1. 
1, -r>O 

(31) 

This solution has two first-order discontinuities-at 
T= 0 and T= I-and corresponds to the neglect of dis­
persion, i.e., to the neglect of the term with the third 
derivative in Eq. (1). DisperSion will be important only 
for the determination of the structure of these discon­
tinuities. We shall not give an account of the computa­
tion. We only note that this structure has an oscillatory 
character. The width of the discontinuity can be estimated 
by comparing the terms a1] / at and a31] / ax3 in this equa­
tion. It turns out to be -e/3 (see similar arguments at the 
end of Sec. 89 in [7]). Since, according to (31), the whole 
picture expands linearly with the time t, the discontin­
uity can be assumed to be infinitely narrow at suffi­
ciently large t. 

We note that if we tried to apply the formula (31) to 
the discontinuity with 1]_ > 1]+ considered earlier, we 
would obtain the meaningless ambiguous solutionrepre­
sented by the dashed curve in Fig. 1. 

We recall in conclusioiJ. ,that· the Korteweg-de Vries 
equation (1) describes perturbatiolls running in only one 
direction. If an initial density discontinuity (the dashed 
curve in Fig. 4) is assigned in some real medium-for 
example, in a plasma-then two perturbations are gen­
erated which propagate in opposite directions. The struc­
ture of one of them will be described by the formulas 
(25) and (26), while the structure of the other will be 
described by (31) (see Fig. 4). It is obvious that in or­
der for the Korteweg-de Vries equation to be applicable 

FIG. 3 

\'------·-1-l-___ ------_n~ 
FIG. 4 
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at all, the initial discontinuity should be sufficiently 
small. 

To the experimental investigation of the decay of a 
small discontinuity in a plasma at T e/Ti - 20 is de­
voted Taylor, Baker, and Ikezi's work.[13] The observed 
picture is qualitatively similar to our solution. A 
quantitative comparison is, however, impossible due, in 
particular, to the insufficiency of the observation time, 
which, under the conditions of [13], was limited by 
collisions [14] 

3. THE APPEARANCE OF OSCILLATIONS IN 
THE VICINITY OF THE FRONT·BREAKING 
POINT 

Let us consider some perturbation whose initial 
dimension L» 1. Then dispersion can be neglected in 
the beginning in Eq. (1). The nonlinear effects will in 
due course lead to the growth of the slope of the pertur­
bation front, so that a1] / ax will become infinite at some 
moment of time (see the curves a and b in Fig. 5). At 
this moment there occurs "a breaking of the front," so 
to speak, and upon the subsequent increase of t the 
solution of (1) obtained upon the neglect of dispersion 
formally becomes three-values (see the curve c in 
Fig. 5). 

In ordinary hydrodynamics, there arises after the 
breaking of the front a second-order discontinuity - a 
shock wave (the dashed line in Fig. 5c). In Eq. (1), on 
the other hand, dispersion becomes important in the 
vicinity of the breaking point and there is formed after 
the breaking an expanding region filled with oscillations 
(see Fig. 5d). 

To describe the phenomena in the vicinity of the 
breaking point, we note first of all that we can, after 
neglecting dispersion, i.e., the term with the third 
derivative, write Eq. (1) as 

aT)/at ( ax ) 
aT)/ax =- --at "=-T), 

so that the general solution has the form 

x=T)t+P(T), 

where P(1]) is an arbitrary function. At the breaking 
moment, when the point with 

(32) 

(33a) 

appears first, we should also have at that same point 

(33b) 

it being always possible to choose the reference pOints 
for t, x, and 1], such that t=x=1]=O at this pOint. Ex­
panding P(1]) near this point and taking (33a) and (33b) 

a) t<o 'I 

FIG. 5 

A. V. Gurevich and L. P. Pitaevskii 294 



into account, we find that 

P(T)} ... :-ILT)', . 

it being always possible to choose JJ. = 1 with the aid of 
the transformation (10).5) 

Finally, the solution in the vicinity of the breaking 
point is described by the formula 

x=T)t-T)'. (34) 

It is shown in Fig. 6. It becomes nonunique at t >0 
(dashed curve). In fact, oscillations appear at t >0. 
We shall again assume that they occupy a finite region 
of space. In this region, the solution is described by 
Eqs. (8). Outside the oscillation region, however, (34) 
is valid as before, so that 1) there has. the form 

T]=t'''e(z}, z=x/t'/" 

where 11 is determined by the equation 

z=e - e'. 

In order to join the solutions (8) and (36) at the 
boundary of the oscillation region, we must set6 ) 

ra=t"'I.(x/t'I,} =t"'[.(z}. 

(35) 

(36) 

(37) 

Thus, in this case the region occupied by the oscilla­
tions expands -e/2 , while the amplitude of the oscilla­
tions increases for a fixed z as e/2 • Substituting (37) 
into (8), we obtain for la a system of three ordinary 
differential equations: 

a= 1, 2,3, (38) 

where ua = va/e/2 , so that the ua can be expressed in 
terms of the la by the same formulas (9) that give the 
va in terms of the rO!o 

In order for the self-similar solution (37) to be 
valid, the size of the region occupied by the oscilla­
tions should be large compared to the wavelength and 
small compared to the dimension L of the initial 
perturbation. As we shall see (see formula (46) below), 
to the boundaries of the oscillation region correspond 
values of z - 1. Returning to the case JJ.,e. 1, the condi­
tion of applicability can be written in the form 

til. 
.. 'I'<x~~<L 
.. /1"'. 

(39) 

The system (38) cannot, of course, be solved in 
quadratures. It requires a numerical integration. We 
shall now investigate the form of the solution near the 
trailing and leading edges of the oscillation region. 

Let us begin with the trailing edge. At the trailing 
edge, as z-z-, we should have a=O, i.e., ll=l2' Then 
Ul = U2. It is a priori clear that the denominators of the 
right hand side of (38) in the equations for it and l2 
should vanish at this point. In the opposite case, we 
would obtain for small values of the difference l2 -ll 
a homogeneous linear equation with constant coefficients 
whose exponential solution cannot vanish. The vanishing, 
however, of the denominators creates in the equations a 
situation of the type of the quantum mechanical "fall to 
the center ," as a result of which the wave amplitude 
vanishes at such a singular point. 

For l2 = it = li , we have 

FIG. 6 

FIG. 7 

On the other hand, according to (23), for a-O, 

9- = 1,-, 

and from the condition for matching with the solution 
(36), we find 

z- = 1.-[ 1 - (1,-)'], (41) 

it being necessary to choose values of l3 > 0, since the 
solution should be matched with that branch of the 
function l1(z) that stretches to z=-ao(see Fig. 7). 

To determine the law according to which the ampli­
tude of the oscillations tends to zero, we write out the 
equations for the small quantities If and U: 

I. = 1.- + I.', t, = 1.- + I,'. 

Investigation shows that the vicinity of the point z = z-

II,' -1.'1 ;» Ii,' + 1,'1, z' (z = z- + z'). 

Expanding in terms of l~ and If and setting l; "'-lL we 
obtain 

whence 

. (1,')' "" -I.-z', 
21 I.-z' 1'" 8 2 = ___ . 
1,--1.-

Since at the trailing edge we should have z' >0, it 
follows from (42) that li < O. 

(42) 

Further, it can be seen from (42) that the amplitude 
of the oscillations tends to zero as z-z- according to 
a root law. However, since, as can easily be verified 
with the aid of (5), only the square of the amplitude 
enters into the expression for the mean value 1J for 
s-O, e tends to its limiting value according to a linear 
law. 

so that 

z- = '/,1.- - '/,1,-. 

Let us turn to the investigation of the leading edge, 
where at some value of z = z + we should have s = 1, i.e., 
l2 = l3 = l;. Besides, it is easy to show that at this point 

(40) U2 = U3 and the denominators of the right hand side of the 
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second and third equations of (38) should vanish. Since 
U2 = Us = %l; + %l~ when s = 1, we obtain from this relation 
a relation connecting t and Z; with z+: 

The condition of continuity of e with allowance for 
(24) gives 

(43) 

(44) 

To determine the law according to which I-s tends 
to zero, we must write out the equations for 

la" = lJ -.l3+, l/' = 12 -13+. 

It can be shown that again for s-1 

il," -1,"1 :> II," + 1,"1. Iz"l 
(z" = z - z+ < 0). 

In this case it is sufficient to restrict ourselves in the 
equations to the first two terms of the expansion in 
powers of (1-s2)ln[1/(1-s2)]. We obtain 

dl:'~ = ~ __ l,+_[ ± (1- S')'n~) -. _~]. 
dz 2 1,+ -1,+ 1- s' 4 

The equation for l; -l2' then has the form 

d(l," -I,") 

dz" 

Integrating, we find the law according to which 1-S2 
tends to zero: 

(1 ')'(' 16 +1)_ 61,+z" 
- S n 1- s' 2 - - (l,+ -1,+)" 

z"<O,I,+>O. (45) 

As in the preceding case, the wave vector k tends to 
zerp in proportion to (In I z" I ) -1 as z" -0, The mean 
value e also tends to its limiting value, as z" -0, ac­
cording to the law (In I z" I )-1. Therefore, O(z) again 
has at the leading edge a singularity with an infinite 
derivative. Adding the equations for 13' and 7';", we obtain 

1"+I1T=_~~ 
, , 4 1,+ -l, +' 

The Eqs. (38) for the determination of the values of 
la in the whole oscillation region were solved numeri­
cally. The results are shown in Fig. 7. We see that 
is> 0 and II < 0 at all values of z. The parameter 12 , on 
the other hand, changes its sign at some point zoo This 
point is a singular point. Indeed, it can be seen from the 
equation for 12 that this quantity can vanish only at the 
point where the denominator 3z - 2U2 vanishes. It is easy 
to show, however, that the singularity at the point Zo is 
quite weak. Not only the quantities la, but also their 
first derivatives, are continuous at this point. Never­
the less , the existence of such a singularity is important: 
the boundary conditions, it turns out, can be satisfied 
only because of its existence. The point is that the for­
mulas (40)-(41) and (43)-(44) impose four conditions on 
the solution, whereas the general solution of the system 
(38) contains only three arbitrary constants. The miss­
ing constant is provided owing to the existence of the 
singular point zoo In order to understand how this oc­
curs, we shall construct the solution from both sides­
from the a priori unknown points z- and z+. After 
satisfying (40)-(41) and (43)-(44), we shall be left 
with two arbitrary constants, and as these constants we 
can choose, for example, the values l3 and 1~. Let us 
set one of them so that the vanishing of l2 from both 
sides occurs at one and the same point Zo and choose 
the second so that the quantity 13 is continuous at 
z = zoo Then the continuity of 11 will be guaranteed auto-
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matically due to the fact that 

3z, = 2u. for z = zoo 

The solution was in fact constructed precisely in this 
way. 

The curious similarity between the graph of la(z) 
and the formal three-valued solution to Eq. (36) should 
be noted. (The graph of the three-valued function O(z) 
is shown in Fig. 7-the dashed curve.) Such a Similarity 
between the graph for r a and the three-valued solution 
for TJ can also be seen in Fig. 1. Thus, the existence of 
solutions with oscillations is intimately connected with 
the existence of a region where the solution of the dis­
persionless equation is nonunique. 

The graphs of Fig. 7, together with the formulas (2), 
(6), and (37), solve the set problem of the determination 
of TJ(x, t) for the case when the front breaks. 

The computations yield the following values for the 
coordinates of the singular points of the solution: 

z- = -1,41, z+ = 0,117, Zo = -1,11. (46) 

The amplitude of the leading soliton is equal to 

2a+ = 2(12+ -l,+)t'/' = 3,69t'/'. 

It can be seen from the self-similarity relations (37) 
that the mean value 1j, the amplitude a, and the wave 
vector k. can be represented in the form 

ij=t'/'!l(z), a=t"'b(z), k=t'''x(z). (47) 

The plots of the functions e(z), S2(Z), b(z), and K(Z) 
are shown in Fig. 8 (let us emphasize that the function 
K(Z) tends smoothly to zero as z-z+). It can be seen 
that as z-z+, the quantities e, and consequently 1j, 
undergo a singular jump at the leading edge of the wave. 
Figure 9 shows the dependence of 17 on x for t= 5.06 
and 8.35. It can be seen that in time, there occur a 
rapid expansion of the oscillation region, the growth of 
the amplitude of the oscillations, and the decrease of 
the wavelength. 

The breaking of the wave front has been experiment­
ally investigated by Alikhanov, Belan, and Sagdeev. [15J 

Again, there is in this case a qualitative agreement 
with the theory, while a quantitative comparison is 
impossible. 

In conclUSion, let us note that the case investigated 
in this section of the appearance of oscillations in the 
vicinity of the point where the front breaks in the 
Korteweg-de Vries equation is of quite general im­
portance, since this equation is always valid in the 
vicinity of the breaking point provided the dissipative 
effects are unimportant. In particular, the obtained 
solution also describes the breaking'of a simple wave 
constructed in kinetics using the self-similar solution 
of the expansion of a plasma into a vacuum (see [16J). 

Notice also that the constructed solution is a nec­
essary step in the determination of the solution that is 
valid during an arbitrarily long interval of time after 
the breaking moment, when the condition (39) is already 
broken and the self-similarity relations (37) are not 
valid. In this case our self-Similar solution should be 
taken as an initial condition for the Eqs. (8) at some 
moment of time t > 0 close to the breaking moment. 
(A rough, but qualitatively correct, estimate of the so­
lution for all t can be obtained if we formally construct 
the nonunique solution (32) and identify the upper branch 
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with r3, the middle branch with r 2, and the bottom branch 
with r1') It is clear that as long as the Eqs. (8) have a 
unique solution, the oscillation region will be bounded by 
singular discontinuities similar to those which are 
described in our case by the formulas (42) and (45). We 
recall in this connection that the possibility of the exis­
tence of solutions to the system (8) which have second­
order discontinuities of the type of shock waves in or­
dinary hydrodynamics is postulated in Witham's paper.[9J 
The reality of such discontinuities is, however, quite 
problematic. It can be seen from the foregoing that in 
the considered range of problems first-order singular 
discontinuities at s = 1 and s = 0 are sufficient and that 
second-order discontinuities do not arise. 

We are very grateful to L. V. Pari'iska for carrying 
out the numerical computations. We are grateful to V. E. 
Zakharov for a useful discussion on the questions con­
sidered in the paper. 

I)In [9] Eq. (I) was written with a coefficient 6 in front of the nonlinear 
term, whence the slight difference in the form of the formulas. 
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2) A brief account of the results of this section has been published in [11]. 
In the present paper, in comparison with [11] , we make the change of 
notation: ra .... 2ra· 

3)The system (21) also has solutions of the more general form: r3 = const., 
rl = const., and x = v2t + P(r2), where P(r2) is an arbitrary function. 

4)In the computations with the formula (25), 7J = 2 for T = T+, but the 
shape of the first "hump" turns out to be distorted in that the front 
half is "sheared." A more detailed investigation shows that at the 
leading edge the vibration waves always have the shape of solitons. 
Therefore, in the plots the leading hump is constructed like a soliton 
of amplitude 2a = 2. This circumstance is connected with the insuffi­
cient accuracy of the formula (25): the asymptotic nature of the 
theory does not allow the determination of the exact phase of the 
wave (25) for not too large values of t. Therefore, the whole picture 
shown in Figs. 2 and 3 can be moved through a distance of the order 
of a soliton width (the same thing pertains to Fig. 8). 

5)To return to the case J.I. '* I, it is sufficient to multiply in the final result 
the values of 7J by J.I.- 2/', the values of x by J.l. 1/;" and the values of t by 
J.I. 3/'. The values of z are then multiplied by J.I.-1Z. 

6)In the general case the Eqs. (8) have self-similar solutions of the form 
ra = tP/,,(x/t 1 + P), where p is an arbitrary exponent. 
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