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Kink instability of a current-carrying highiy-conducting column in a strong magnetic field is 
considered in the general case without assuming the linear approximation. It is shown that helical 
perturbations should grow into "bubbles," i.e., plasma-free helical plaits that penetrate below the 
surface of the plasma column. The relation between this process and the so-called disruptive 
instability is discussed. 

1. INTRODUCTION 

Kink instability of a current-carrying plasma filament 
in a longitudinal magnetic field was one of the first in
stabilities to be investigated theoretically[1,21, and its 
stabilization by a strong longitudinal field is the basis 
of systems of the Tokamak type [3]. The longitudinal 
field is made strong enough to reach the so-called 
Kruskal-Shafranov limit. In other words, the quantity 
q = rBo/RBe is chosen to be larger than unity (Bo is 
the longitudinal field, Be is the azimuthal field, R is 
the major radius of the torus, and r is the distance 
from the magnetic axis). Although usually q is chosen 
with a large margin and the principal mode of the 
helical instability m = 1 is stabilized, weaker higher 
modes can develop in the filament, especially on its 
boundary. In particular, it has been suggested [4,5] that 
the very unpleasant so-called "disruptive" instability, 
which is manifest in the form of downward spikes on 
the loop-voltage curves and corresponds to a small but 
rapid jump of the self-induction of the plasma filament, 
meaning its sharp expansion, is due precisely to the 
development of helical instabilities. An analysis of the 
helical instability in the quasi linear approximation[6] 
did not yield voltage spikes of the required sign, at 
least in the simple variant without allowance for the 
small toroidality effect. The question whether this is 
a defect of only the quasi linear approximation or is due 
to the erroneous idea that the disruptive instability is 
connected with the helical instability still remains 
open. It is clear that this question can be answered 
only after a more detailed investigation of nonlinear 
he lical perturbations, without the use of the quasilinear 
approximation. The investigation of helical perturba
tions of large amplitude is of interest also from the 
point of view of the estimate of the danger of the kink 
instability, when it is predicted by the linear theory .. 
The present paper is devoted to a study of the evolutlOn 
of nonlinear helical perturbations of a current-carrYing 
plasma filament in a strong longitudinal magnetic field. 

2. FUNDAMENTAL EQUATIONS 

As is well known kink instability is not very sensi
tive to the plasma p~essure (since it is caused by the 
longitudinal current and not by the plasma pressure) or 
to the toroidal bending of the filament. We therefore 
start out immediately with a certain simplified model, 
namely we consider a straight plasma filament of radius 
a situated inside an ideally conducting jacket of radius 
b. We assume the plasma to be an ideally conducting 
gas with negligibly small gas kinetic pressure. The 
region between the plasma and the jacket is assumed to 
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be a vacuum. The filament is assumed to be of un
limited length, but it is assumed that all the perturba
tions have a longitudinal period L = 21TR, thus imitating 
a toroidal filament of large radius R. We assume that 
the longitudinal field Bo is much stronger than the 
azimuthal field Be prqduced by the longitudinal current. 
This is precisely the situation in Tokamaks. As is well 
known, the greatest interest in the case of helical in
stability lies in perturbations that vary slowly along 
the force lines. Consequently it suffices to consider 
perturbations that vary slowly along the longitudinal 
coordinate z of the cylindrical coordinate system r, e, 
z. In such perturbations the z-component of the 
velocity is small, so that we can assume approximately 
that the motion in each cross section is planar, i.e., it 
suffices to consider only the transverse velocity com
ponent V1. USing the condition B1/Bo« 1, we attempt 
to simplify the equation of motion of ideal magnetohy
drodynamics : 

dvl B' B' )' (1)* p-=-[rotBB]=-V.L-+-(hV h, 
dt 4n 8n 4n 

where V 1 = V - h(h' V), h = B/B, and p is the density. 

We assume now that the longitudinal field is almost 
homogeneous, i.e., its small deviation B~ from homo
geneity is of the order of Bi/Bo. Accordingly, th~ 
quantity B2 in (1) can be expressed in the form Bo 
+ 2BoB~ + Bf. We neglecting B~2 and retain only quanti
ties of first order in B1/Bo; thus, with the same ac
curacy, we can take A 1 in (1) to mean simply the 
gradient in the plane z = const. The quantity h, accu
rate to small quantities of first order in B1/Bo, is 
equal to h = ez + B1/Bo, and the quantity a/az should 
also be regarded as a small quantity of order (B1/Bo). 
Accordingly, neglecting the small quantities or order 
B1/Bo and higher and assuming Bo = const, we rewrite 
(1) in the form 

~=-V (2BoB,'+B.L')+~..!...B.L+_l_(B.LV)B.L (2) 
p dt .L 8n 4n az 4n 

It is clearly seen from this equation that the flow v can 
be regarded as planar, since all the forces in the right
hand side of (2) lie in the plane z = const. 

We consider now the equation describing the freezing
in of the magnetic field in the plasma 

8B / at = rot [vB]. 

Putting B = Boez + B1 and assuming v = V.i, we can 
transform (3) into 

OB / iJt = -Boe, div v + BoiJv / az + rot [vB.L]' 

From the z-component of this equation we get 

Copyright © 1974 American Institute of Physics 

(3 ) 
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div v = -Bo -laB,' / at, 

but the quantity in the right-hand side is of the order of 
B i /Bg, i.e., we should neglect it. Consequently, the 
transverse flow of the pla~ma is incompressible 

divv = o. (5) 

Further, it is necessary to neglect the small quantity 
B~ in the equation div B = div Bl + aB~/az = 0, so that 
we get 

divBL =0. (6) 

We proceed now to consider the helical flOWS, i.e., 
we assume that all the components of the vector quanti
ties vr, ve, Br , Be, and p considered by us depend 
only on the two variables rand e - a z. In other words, 
we put ajaz = -a a '/ ae, where the prime indicates that 
we differentiate only the vector components but not the 
unit vectors e e and er . Then Eqs. (2) and (4) become 

dv ( 2BoB,' + B~' ) Bo a'BL 1 
P-=-VL --a--+-. -(BLV)BL, 

dt 8n 4n as 4n 

aBLI at = -aBoa'vl as+ rot [vBL1. 

We introduce the auxiliary transverse field 

(7) 

(8) 

(9 ) 

Then, as can be easily verified, Eq. (8) with allowance 
for div v = 0, can be expressed in the form 

aB. I at = rot [vB.], (10 ) 

i.e., it takes the form of the condition for the freezing
in of the two-dimensional field B", in a plasma that 
executes planar motion with velocity v. Taking (6) into 
account, we have 

divB. =0, (11) 

from which it follows that we can introduce the stream 
function 

B. = [e,V",l 

and Eq. (10) then takes the form 

d", / dt = a",1 at + vV", =0, 

(12 ) 

(13 ) 

i.e., it shows that the flux if; is transported together 
with the plas ma. In particular, if we agree to assume 
that if; = ° on the unperturbed plasma surface, then this 
condition remains in force for all helical motions of the 
plasma. 

This same condition if; = const on the boundary can 
be obtained also from the relation B·n = 0, where n is 
the outward normal to the plasma boundary. In fact, 
taking helical symmetry into account, we have accurate 
to small first-order quantities 

VF VLF+e,aF!az 
n = I V FI = LV.LFJ Dol - rxrneeZt 

where F = const is the equation of the boundary and 
nl is the transverse component of the normal. This 
yields n· B = nl 'Bl - arBono = B' nl = O. In other 
words, B", is tangent to the plasma boundary, and conse
quently if; = const on the boundary. 

We turn now to Eq. (7). We note first that 

a'BL a'B. 1 a'", /7'", 
ae=~=--;:-a6'e,+ araS e •. 

Taking this into account, we can easily verify that Eq. 
(7) can be reduced to the form 

dv 1 
P"dt+ VP=t;;(B.V)B., (14) 
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where the quantity 

P = _1 (2BoE,' + BL' + 4a'r'Bo') + aBo '" 
8rt 2n 

assumes the role of pressure. 

Thus, the problem of plasma motion has been re
duced to that of two-dimensional flow of an ideally 
conducting incompressible liquid with a frozen-in field 
B*. The fundamental equations for the internal part of 
the filament are (10), (11), (5), and (14). 

We proceed now to the vacuum region outside the 
filament. Here, too, B~ is negligibly small, so that 
div Bl = O. Accordingly, outside of the plasma we can 
also introduce the auxiliary field B* and the stream 
function if;: 

(15 ) 

Since in vacuum we have curl Bl = 0, it follows that 

rot,B. = ~'" = -2aBo. (16) 

Since B· n = 0 on the outer boundary of the plasma, 
we again have if; = const on the plasma boundary. With
out loss of generality, we can put if; = 0 on the plasma 
boundary, in such a way that if; is continuous on the 
plasma boundary. On the conducting jacket, B likewise 
has no normal component and if; = if;b = const at r = b 
(butifJb can depend on the time). 

We consider two variants of a boundary-value prob
lem for if;. If we assume that the jacket is ideally con
ducting and closed, then 

a) ",,(t) = ",,(0), (17) 

i.e., if;b on the jacket should retain its initial value at 
all time, corresponding to a constant magnetic flux on 
the outside of the plasma. 

In Tokamak experiments, however, it is usually the 
total current flowing in the plasma which is kept con
stant. Then the magnetic flux in the region between the 
plasma and the jacket is not constant, it can be intro
duced from the outside through a cut in the jacket. The 
condition for the constancy of the current I Signifies 
that 

tf- 4n 
'f B.L.dl = -c- l = const, 

where the integral is taken over any contour enclosing 
the plasma filament. If the contour is taken to be the 
plasma boundary, then we obtain a boundary condition 
for the derivative aif;/an with respect to the outer 
normal to the plasma boundary: 

b) tf- a", dl = tf--B.Ldl-tf- arBoe.dl = ~l- 2aS,JJo = ~1-2na.a'Bo, 
'f an 'f 'f c c 

p P P (18) 

where Sp is the area of the plasma cross section, equal 
to 1Ta 2 for all incompressible deformations, and the 
symbol p under the integral sign denotes integration on 
the plasma boundary. 

The same condition for the contour along the jacket 
boundary takes the form 

b ' ) <ji a"'"1 . 4n I ' -d =- -2nab Bo. 
an c 

(19 ) 
, 

If we put I = caBa /2, then conditions (18) and (19) are 
expressed in terms of the initial value of the azimuthal 
field Ba on the filament boundary. 

We note that the magnetic flux ~ e of the poloidal 

B. B. Kadomstev and O. P. Pogutse 284 



field outside the filament per unit filament length can 
vary with time at a constant current 1. It can be ex
pressed in terms of the quantity I/lb, the value of the 
stream function 1/1 on the jacket. To this end we con
sider a surface with helical symmetry, which "parti
tions off" the space between the plasma and the jacket. 
If we choose a cylinder of length Lo = 21T/a, then on 
mOving along the filament the surface is rotated in 
azimuth through an angle 2a over this length. We con
sider now the flux 4>* = IB 'ndS through this surface. 
Since n = nl - arn{jez on the helical surface, this flux 
is equal to 

<I)' = Lo S Bndl = Lo S B.nol dl = Lo1jl" 

where the line integral is taken along a line from the 
plasma to the jacket in the cross section. On the other 
hand, 4>* = Lo4>e - Bo1T(b 2 - a 2 ), since the longitudinal 
magnetic field passes through the helical surface, and 
the projection of this surface on the plane z = const is 
equal to 1T(b2 - a 2) = const. We thus obtain 

(20) 

In order to make the system of equations closed, it 
remains for us to find the boundary condition for the 
pressure P on the plasma boundary. Just as in all in
compressible motions, this condition can be expressed 
accurate to a constant. To find P on the boundary, we 
use the condition that the magnetic pressures be equal 
on the plasma boundary 

2BoB,; + Bol? = 2BoB,,' + Bol.', (21) 

where the subscripts i and e pertain respectively to the 
internal and external regions. We recognize that the 
field outside is potential, so that B = V Cp, where cp is 
the potential of the magnetic field, which we should re
gard as a function of r and of e - a z. Consequently, 
B~ = acp/az = -aacp/ae = -arBe. Substituting this ex
pression in (21) and expressing Ble in terms of B;, 
we obtain 

2BoB,,' + Bol" = -2rxrBoB. + Bol' = B • .' - rx'r'Bo'. 

But since 1/1 = 0 on the plasma boundary, we get in ac
cordance with (14) 

1 
P=g;(V1jJ.)', (22) 

where both quantities are taken on the plasma boundary, 
P inside and (Vl/le)2 outside the plasma. 

Thus, the prob lem of nonlinear he lical perturbations 
of the plasma has been reduced to a study of two-dimen
sional motions of an ideally conducting incompressible 
liquid, described by Eqs. (10), (11), (5), (14), and (16) 
with boundary conditions (17), (18), and (22) and with 
the condition 1/1 = 0 on the plasma boundary. 

3. ENERGY INTEGRAL 
We shall show that we can obtain from this system of 

equations an expression for the total energy 0, which 
is conserved as the plasma moves. The expressions 
for li are somewhat different in the cases 4> e = const 
and I = const. Accordingly, we denote them by &4>and 
01' Multiplying (14)by v and (10)by B*/41T and adding, 
we obtain 

o (V' B.' ) v' op v' at P2+g; -TTt+ P(vV)2+ div (vP) 

v 
- ~(B. V) B. - B. rot[ vB.] = o. (23) 
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We have used here the incompressibility condition, 
from which it follows that ap/ at = -v' V p. Using in 
addition the conditions di v v = 0 and di v B* = 0, we 
can reduce (23) to the form 

o v' B.' ) {V' B.' 1 } -(p-+- +div pv-+vP+v-+_B.(vB.) =0. at 2 &I 2 8n 4n 
(24) 

We consider now the derivative of the integral over the 
plasma cross section Si 

.!....S (p~+ B")dS 
ot B, 2 8n 

where the first integral on the right-hand side is due 
to the differentiation of the integration limits, while the 
second is obtained with the aid of (24). We see that 

fJS( u' B.') ~ ~B . .' - p-+- dS=- Pv.dl=- --v dl ot 2 Bn 8n n , (25) 
B, P 

which is perfectly natural, for the term on the right- -
hand side corresponds 'to the work performed by the 
plasma. Since according to (22) we have 

1 1 
P=g;(V1jl.)' =s;-B • .' 

on the plasma boundary, this work can be expressed in 
terms of the change of the field energy in the vacuum 
outside the plasma. To this end we transform the 
quantity 

where ~ = al/l/at and the first term on the right is due 
to the differentiation of the integration region. 

We consider the second integral in (26) for the case 
4>e = const, i.e., IJib = const. We take into account rela
tions (16) and (17) as well as the condition 1/1 = 0 on the 
plasma boundary, from which it follows_that (dl/ll dt) p 
= (al/l/at + vnal/l/an)p = O. Recognizing, in addition, that 
on the plasma boundary the normal n, which is directed 
out of the plasma, is the inward normal with respect to 
the outer region, we have 

S . If, .o¢ If, . a1jl S . 
V1jlV1jJdS='j'1jl-dl-'j'¢-dl- ~1jl¢dS 

{}n on 
8. b p Be 

( o1jl)' 0 = If,vn - dl+2rxBo-S 1jJdS. 
'j' on oj (27) 
p • 

Substituting the resultant expression in (26) and using 
(25) as well as the condition (al/llan)2 = (VI/I)2 on the 
plasma boundary, we obtain the energy conservation 
law a ~ 4> lat = 0, where 

S v' S ' B.' aBo S &., = p-dS+ '-dS~4-, 1jldS. (28) 
Sf 2 8,+8 , Bn 2n 8, 

The last two terms in this expression play the role of 
the potential energy. 

For the case I = const, the expression for the energy 
is even simpler. Namely, integrating by parts and then 
taking into account the boundary condition (19), we ob
tain 

SV1jJV,j,dS=~¢ (}o1jJdl_If,1jJ~~dS=1jJ'_aa l~dl=O. 
n 'j' t 'j' on 

s, b B. b 

(29) 

Accordingly, we obtain with the aid of (26) and (25) 

(
V' Bf Bo' 

&,= J P-+-)dS-S-dS. 
s, 2 8n ,s, 8n (30) 
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It can be readily shown that (28) coincides, apart from 
a constant, with the quantity 

(31 ) 

which is to be expected at constant Bo and at a frozen
in azimuthal magnetic field. In fact, taking (15) into ac
count, we can replace B! in (28) by 

olP '. 
B.' = B1.' - 2a.rBQTr - a'r'Bo' = 111.' ,- 2cd1' div(rlP) +4aB.1P --: a'r'B.'. 

(31' ) 

The integral of the second term of (31') then reduces to 
a surface integral and is independent of the time if 1fib 
=const, the integral of the last term is simply equal to 
a constant, and the integral of the third term over the 
outer region cancels out the last term in (28). The 
quantity I if! dS, as can be easily shown with the aid of 

Si 
(13), is independent of the time. Thus, (fj q, = 04> + const. 

As to expression (30) for ItI, it is not so simply 
connected with the energy of the external and internal 
magnetic fields, for at constant I the energy of the 
outer circuit also comes into play and leads, in particu
lar, to a negative sign of the integral of B! /81T over 
the outer region in expression (30). 

4. "BUBBLES" IN A PLASMA 

In the expressions (28), (30), and (31) for the energy, 
we can easily separate the terms corresponding to the 
potential energy, which we shall designate W. Obviously, 
our system will evolve in a direction of minimum W. If 
this minimum is reached not in the fundamental cylin
drical symmetrical state, then the plasma in the initial 
state will be unstable either to linear perturbations if 
W has a maximum in the initial state, or to finite
amplitude perturbations if the absolute minimum of W 
is separated from the local minimum of the linearly 
stable initial state by a potential barrier. In any case, 
it is desirable above all to know the absolute minimum 
of W, since the equilibrium near this minimum should 
certainly be stable. 

We start the analysis with the case of constant I, 
i.e., we use the expression 

BnW,=S B.'dS-S B.'dS. (32) 
s, s. 

In our approximation, Le., neglecting small terms of 
order B2/B~, the deformation of the magnetic field in
side the plasma is always connected with an increase 
of the energy. It is therefore desirable to start the 
analysis from the most favorable case, when B* inside 
the plasma is equal to zero. This means that the cur
rent inside the plasma is homogneous, and the magnetic 
field is 

B, = arB.. (33) . 
A linear distribution of the field corresponds to a 

margin factor q = 1/ a R which is constant along the 
radius. If the perturbations are m-th order symmetry 
with respect to the angle e, then all the functions 
should be periodic with period 21T with respect to the 
variable m( e - az) = me - maz. On the other hand, 
since we deal with a toroidal filament with large radius 
R j we should regard the perturbations as periodic in z 
with period 21TR, so that ma = l/R, where I is an inte
ger. Thus, 

a=llmR (34) 

286 Sov. Phys.-JETP, Vol. 38, No.2, February 1974 

and consequently the condition (33) is satisfied when 

q = mil. (35) 

It is easily seen that under this condition we are dealing 
with flute perturbations of the plasma; these perturba
tions are constant along the force lines, and all the 
force lines have one and the same pitch along the fila
ment.' 

Thus, under conditions (33)~(35) the potential energy 
is determined only by the vacuum region outside the 
plasma. We need to find the minimum of this expression 
under incompressible deformations of the plasma and 
under the conditions !:o. if! = -2Q: Bo, 1fib = const, and if!p 
= O. 

Obviously, equilibrium (and a stable one at that) 
should obtain at the minimum of W. But P is constant 
at equilibrium, Le., according to the boundary condi
tions the quantity (V if!)2 should be constant outside the 
plasma. The simplest configuration of this type is 
realized when the outer boundary of the plasma is a 
cylinder that is concentric with the jacket. We denote 
the radius of this cylinder by a*. If a* is larger than 
the initial plasma radius a, then vacuum helical 
"braids," which look like "bubbles" in cross section, 
must of necessity exist inside the plasma. Let us ex
amine the properties of these bubbles. Let the bubble 
be a circle of radius Po. Since !:o.if! = -2o:Bo inside the 
bubble and if! = 0 on its boundary, we have 

IP = I/.aB. (po' - p'). (36) 

Let us find the bubble energy WPo' Recognizing that 
(Vif!)2 = div (if!Vif!) + 2o:Boif! and I/J = 0 the plasma bound
ary, we obtain 

1 S ' aBo S a'B.' • W •• =-- (VIP) dS=--. - IPdS=---p •. 
8n 4n 16 

(37) 

We see therefore that the bubble energy is the same for 
constant I and constant q, e. , 

It is easy to see that when the shape of a bubble of 
given cross se'ction Spo = 1TP~ changes, the value of if! 
decreases and the bubble energy increases. Conse
quently, each bubble should be circular. From the same 
considerations it follows that when the bubbles coalesce 
the energy decreases, Le., the number of bubbles 
should be minimal. At a symmetry of order m, the 
minimum number of bubbles is equal either to m if the 
bubbles exist separately, or to unity if they coalesce. 
Since the total area of N bubbles is equal to N1TP~ 
= 1T( a! - a 2), it follows that their energy is equal to 

(38) 

When the bubbles coalesce into one, this energy de
creases by a factor N. In our approximation, the bubbles 
do not interact with one another at all prior to coales
cence, and can be arbitrarily disposed within the limits 
of the symmetry of order m. However, inclusion of the 
terms of next order of smallness should apparently 
lead to attraction of the bubbles to one another. After 
coalescence, provided N was not equal to unity from 
the very outset, the single bubble should be located on 
the axis of the filament, so that the plasma cross sec
tion becomes annular. 

It follows from these considerations that the mini
mum of the potential energy is reached for a tubular 
plasma configuration with outside radius a* and inside 
radius po = (a! - a 2 )1/2, where a* is determined from 

B. B. Kadomtsev and O. P. Pogutse 286 



the minimum-energy condition. For the sake of greater 
generality, however, we carry out the analysis for N 
bubbles and put N = 1 where necessary in the final 
formulas. 

Let the initial azimuthal magnetic field on the fila
ment boundary be Ba = ~aaBo. If ~ = 1, then the field 
goes over continuously into the field inside the plasma, 
and consequently we have on the surface q = mil, Le., 
the small perturbations are flute-like also with respect 
to external perturbations. It is known that in this case 
the filament has neutral stability, i.e., the perturbation 
growth increment vanishes. This is easily seen from 
the equations obtained by us: since the magnetic field 
B* = aBa/r - arBo vanishes on the boundary of the 
unperturbed plasma at ~ = 1, the work of the external 
forces in (25) vanishes in the approximation quadratic 
in the perturbation if the perturbations are small. At 
~ > 1 the value of q outside the plasma decreases, 
q = mil ~ < m/l, and the plasma becomes unstable in 
the linear apprOximation (if i; is not very large). This 
follows quite naturally also from our expressions, 
since the external "pressure" B! /8rr decreases away 
from the plasma boundary. To the contrary, at ~ < 1, 
Le., q = m/l~ > mil, the external pressure increases 
away from the plasma boundary, and the plasma is 
stable in the linear approximation. We are interested 
primarily, however, not in linear perturbations but in 
strongly nonlinear perturbations that lead to formation 
of bubbles in a plasma. 

At constant I the magnetic field B* outside a fila
ment with cylindrical external surface retains its initial 
value, so that W is obviously determined by the rela
tion 

where 

B. = aBoa(~al r- rl a). (40) 

We introduce the quantity p' = -8aW/aa!, which char
acterizes, as it were, the effective "pressure" of the 
bubbles: they tend to expand at p' > 0 and to contract 
at p' < O. From (39) we get 

pl=ct'a'Bo'{~ (::' -1)- (:: - :.)'). (41) 

At a" = a we have p' = -a2 a2 Bg(i; - 1)2:00 0, Le., at 
~ ¢ 1 there is an energy barrier to bubble formation, 
and consequently bubbles can develop only from some 
other perturbations, for example from linear perturba
tions in the region of linear instability. 

The case of one bubble (N = 1) is somewhat special, 
since the terms quadratic in a" cancel in (41), which 
consequently becomes proportional to (2~ = -1 
- ~ 2a 2/a!). We see therefore that if ~ > 7'2, the radius 
a* increases without limit after passage through the 
barrier, and there is no second stable equilibrium 
state. 

At N ¢ 1, the force p' becomes negative at suffic
iently large a*, i.e., large bubbles should contract. 
The dependence of W on a! for N"" 1 is shown quali
tatively in the figure. The potential energy has a mini
mum that lies certainly below the initial energy W 0 at 
~ = 1, when there is no potential barrier. When ~ "" 1, 
a barrier appears, and at the same time the value of W 
at the minimum can change. The equilibrium value of 
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Potential energy W of plasma filament 
as a function of the size of the bubbles: I) 

at ~ = I; 2) ~ = ~6 3Hc < ~ < ~e; 4H = ~e; 
5) energy in the case of a single bubble; Po 
is the bubble redius and N is the number 
of bubbles. 

w 

a* corresponding to the minimum of W is determined 
from the conditions p' = 0 and ap'/aa" < 0, and is 
equal to 

a.' I a' = 1+ {2~ -1 + [1+ 4N~(~ -1)]'i'} 12(N - 1). (42) 

Expression (42) becomes meaningless at 
1 + 4N;( ~ - 1) < O. The minimum on the plot of the 
potential energy against a" then vanishes, as seen in 
the figure. The limiting value of ~ for which a minimum 
still exists will be deSignated i;e: 

(43) 

Even if the minimum does exist, it is of interest to 
determine under what conditions it is absolute, i.e., it 
lies below the energy in the initial state. The critical 
value of ~ at which the minimum COincides with W 0 

will be deSignated ~c. It can be easily obtained with the 
aid of (39), but in the general case the expression for 
~c is very cumbersome, and we present only the 
asymptotic expression: 

~,=1+(3±2-Y3)/2N, a.la=1+3(2±-y3)/4N, N~1. (44) 

We note also that in the linear apprOximation the 
filament considered by us is unstable according to[1J, 
when (a/b) m « 1, in the interval 

1<~«m+1)/(m-1). (45) 

Comparing expressions (44) and (45) at large N = m, 
we easily see that the region of linear stability is 
narrower than the region in which the presence of m 
bubbles is energywise favored. This means that in the 
region of linear stability, but at ~C1 < ~ < ~C2' the so
called "hard" onset of bubbles can take place, which is 
connected with the passage of the bubbles through the 
energy barrier. The region ~ > ~e, where W has a 
minimum and the bubbles are in the metastable state, 
is still much broader. 

We note that according to (.42) and (44), the equili
brium value of the bubble radius Po = [(a2 _ a 2)/N]1/2 
turns out to be of the order of a/mat N = m for values 

. of ~ where the potential energy is minimal, i.e., of the 
order of the transverse wavelength of the perturbation 
of the mode m. Accordingly, perturbations with suf
ficiently large amplitudes can "grow" in the case of 
nonlinear instability into bubbles of optimal radius Po, 
so that the region of the potential barrier in the figure, 
corresponding to very small bubbles, can be easily 
jumped through in the case of real perturbations with 
transverse wavelength ~ aim. 

We determine now the change of the azimuthal mag
netic flux <I> 8 per unit filament length following forma
tion of a bubble. According to (20), we have 0<1>8 = ol/!b. 
But the value of the stream function on the jacket is 
altered by the fact that when the bubble is formed the 
function l/! at the point a* decreases to zero, Le., ol/!b 
= -l/!(a*). Consequently, taking (42) into account, we 
easily obtain 

2 { 1+(1+4m~~)'/'} 1+(1+4m~~)'I. 
1)11>, =-ctaBo ~6- .-.... ,---;---

. 4m. 4m 
(46) 
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where Ll.~ = ~ - 1. We see that l54>e reverses sign at 
Ll.~ = 314m, i.e., approximately at the midpoint of the 
linear-instability region 0 < Ll.~ < 21m. At Ll.~ > 314m 
the formation of bubbles leads to a decrease of 154> e, 
i.e., to a crowding out of a certain fraction of the mag
netic flux outside the jacket, which should correspond 
to negative spikes on the loop voltage. At Ll.~ < 314m, 
the bubble formation should be accompanied by capture 
of a fraction of the poloidal flux into the bubbles. 

We have considered so far the case of constant I. It 
turns out that at constant 4> e the picture remains ap
proximately the same, but the plasma stability in
creases somewhat. In fact, the bubble energy (39), as 
can be easily verified, does not depeJ.ld on whether 
expression (28) or (30) is used for the energy. The 
energy (28) outside the filament differs from (30). But 
if the deri vati ve of W with respect to a* is calculated, 
recognizing that the expression for B* outside the 
filament can be expressed in the form (40), where ~ 

should be regarded as a function of a* determined 
from the condition i/b = const, we obtain exactly the 
expression (41), where 

{ b 1(a Z 
)}( b)-' ~(a.)= 6.ln--;;-T -;;'-1 In-Z ' 

The dependence of ~ on a* leads to an increase of the 
energy W( a*), so that the bubble dimensions decrease 
somewhat. In addition, at constant 4>e there appears a 
minimum in the potential energy of the filament with 
one bubble, i.e., N = 1. A~cordingly, we can obtain the 
equilibrium stable value of a* of a hollow filament. If 
the jacket is close to the filament, b - a « a, then the 
stable value of a* is given by the relation 

b - a. = (b - a) 'I, 1l'2a. (47) 

Thus, at constant 4>e the mode m = 1 is not catas
trophic, leads only to a certain expansion of the fila
ment, and brings its boundary closer to the jacket with
out the two touching. 

We now forgo the limitation B* = 0 inside the plasma. 
Bubble formation should then be accompanied by a per
turbation of the magnetic field inside the plasma, and 
accordingly by an additional growth of the energy. Near 
the limit of the helical instability, however, when B* 
is close to zero on the plasma boundary, bubble forma
tion under the surface of the plasma continues to be 
energywise favored. In fact, the change of the energy of 
N bubbles following variation of the radius Po can be 
represented in the form 81TI5W = (B! e + AB!i 
- B!p)21Ta*da*, where B*e is the field outside the 
filament on its boundary, B*i is the field inside the 
plasma in the region where the bubbles are located, A 
is a numerical factor of the order of unity and depends 
on the shape of the bubble, and B*p is a certain effec
tive field of the bubble, given by B!p = a 2 a 2 Bg(a! la2 

- 1) N-1 • The value of B!p is proportional to the bubble 
area, so that sufficiently large bubbles are energywise 
favored. Addition of the quantity B;i ~ B!e does not 
change the qualitative picture of bubble formation, and 
only leads to a certain increase of the barrier for their 
production, and prevents the bubbles from moving 
freely through the plasma. 

5i FORMATION AND EVOLUTION OF THE 
BUBBLES 

In our idealized scheme with a homogeneous current 
and a sharp plasma-filament boundary, the range of ~ 
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in which the bubbles are energywise favored is wider 
than the region of linear instability. Outside the stabil
ity region, however, bubble formation calls for over
coming a certain potential barrier, so that bubble for
mation in the stability region is not very probable if the 
plasma is quiescent. In the instability region, i.e., for 
m» 1 at 0 < Ll.~ < 21m, bubbles can arise from linear 
perturbations that increase in time, if no potential bar
rier is again encountered in their path, i.e., if no 
equilibrium with a wavy helical surface can be pro
duced. Near the limits of the instability interval, the 
equilibrium with helical symmetry can be sought by 
expansion in the small perturbation amplitude. Such an 
investigation was carried out in[61• It has shown that 
near the right-hand stability boundary, Ll.~ = 21m, when 
the jacket is far away, (alb) m « 1, the higher-order 
terms correspond to a stabilizing but very weak effect, 
so that equilibrium exists only very close to the insta
bility boundary. On the other hand, if the jacket is 
located nearby, then hard excitation takes place, and 
the terms of higher order of smallness lead to a faster 
growth of the perturbations. Near the left-hand bound
ary, Ll.~ = 0, under the condition that B* = 0 in~ide the 
plasma, there is no equilibrium with wavy boundary, 
which likewise corresponds to "hard" excitation of 
helical perturbations. 

Thus, within the framework of the model with homo
geneous current, bubble formation can be expected in 
the entire region of linear stability, and can be accom
panied in this case by either capture or expulsion of the 
azimuthal flux. However, if the approach to the insta
bility region is connected with contraction of the plasma 
filament and a decrease of q on the filament boundary, 
then the bubbles should be produced near the boundary 
~ = 1, where their formation is connected with capture 
of the azimuthal flux. Moreover, were we to assume a 
more realistic model with low current denSity on the 
plasma boundary, then the instability region would be 
narrowed down as a result of the approach of its right
hand ~ boundary to the value ~ = 1, i.e., the entire 
linear-instability region would correspond to positive 
spikes of the loop voltage when bubbles are formed. 

In experiment, however, only negative spikes are ob
served. It must therefore be concluded that the negative 
spikes are not connected directly with bubble formation. 
However, the fact that rapid expansion of the plasma 
filament does accompany the spike in experiment, or 
more accurately, takes place ahead of the spike itself, 
can be very naturally attributed to the formation of 
large-amplitude helical perturbations such as bubbles. 
As to the spike itself, it can be due to the toroidal char
acter of the filament, i.e., to the displacement of the 
filament along the major radius due to the change of the 
equilibrium conditions when the minor radius is in- . 
creased. More natural, however, is another mechanism, 
connected with the filament touching the walls (or a 
diaphragm). 

In fact, we note that when a bubble is formed, say 
when ~ =1 on the original filament boundary, the 
quantity o</!Ion becomes different from zero on the 
plasma boundary, namely positive in the bubble and 
negative on the outer boundary of the filament. If B* = 0 
under the plasma surface, this means the appearance of 
a longitudinal surface current, which is positive on the 
bubble boundary and negati ve on the outer boundary of 
the plasma. If a plasma filament with negative surface 
current touches a diaphragm, then this negative surface 
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current should "drop" because of the abrupt cooling of 
the edge of the filament and the 'rapid decrease of its 
conducti vity. But the vanishing of a negati ve current is 
equivalent to transfer of a positive current from the 
plasma to the edge of the filament, Le., to a decrease 
of the inductance and to ejection of a fraction of the 
magnetic azimuthal flux to the region outside the jacket. 
From this point of view, a negati ve spike should occur 
at the instant when the filament touches the diaphragm, 
in agreement with the experimental data. As to the 
process of formation of he lical perturbations, in a 
real experiment it apparently proceeds more smoothly 
than in our model with an abrupt filament boundary. 
This may be due to the effect of finite conductivity, 
which produces an admixture of the Thirring mode, and 
also owing to the presence of a field B* ., 0 inside the 
plasma, which prevents the bubble from collapsing 
completely and from becoming separated from the 
vacuum region. It is possible that the experimentally 
observed growing helical perturbations ahead of the 
spike are indeed bubbles that penetrate from under the 
plasma surface. 

The slow evolution of the already produced bubbles 
should be determined by current-redistribution pro
cesses resulting from the finite conductivity. When the 
finite conductivity is taken into account, the equation 
for I/! takes the form [7] 

4:n:a ( alj> ). 4:n:aE. 
- -+vVIj> =~1j>+2aB.---, 
~ at c 

(48) 

where Eo is the longitudinal electric field and (J is the 
conductivity. 

When very slow evolution is considered, the velocity 
v in (48) should be determined from the equilibrium 
condition, which according to (14) can be easily shown 
to redq.ce to the equation 

~1j>=F(1\1), (49) 

where F is an arbitray function of I/!. 

Let us consider again the very simplest case when 
we have in the initial state B. = 0 inside the plasma 
and (J is constant, i.e., Eo = aBoc/2cnr. Assume that 
development of helical instability in the filament has 
caused a bubble to be produced under the filament sur
face. Neglecting the slow diffusion of the plasma, to the 
interior of the bubble, the bubble evolution at a skin
effect time can be described by Eqs. (48) and (49). The 
former can be interpreted as the equation of thermal 
conducti vity for a certain "temperature" I/!. At (J "" "", 

as seen from (48), it is necessary to take into account 
the finite "specific heat" 41f(J/ c 2. In vacuum, the equa
tion retains its form (27) and, as noted above, the quan
tity fll/J/fin has opposite signs on the plasma boundary in 
the bubble and on the external boundary. Accordingly, 
the bubble will ''heat'' the plasma, and the outer bound
ary will "cool" the plasma, i.e., the fluxes from these 
regions have opposite signs. Less formally, we can 
state that surface currents having opposite signs on the 
bubble and on the outer boundary will diffuse to the in
terior of the plasma. But currents flowing in opposite 
directions repel each other, so that the bubble should 
start to move away from the plasma boundary into the 
interior of the filament. At B* = 0, the penetration of 
the bubble to the interior of the plasma should be suf
fiCiently rapid, and at B", .". 0 it proceeds first at the 
skin-effect rate, and then, when the surface current 
becomes completely smeared out, the bubble motion 
can slow down. 
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All this can of course be obtained also purely 
formally from (48) and (49), from which it follows that 
di/J/ dt is a function of I/! only. Consequently, the contour 
I/! = const will move with the plasma in such a way that 
I/! along the contour remains constant but dependent on 
the time. On the bubble boundary, I/J is likewise only a 
function of the time, first increasing with time and then 
assuming a certain limiting equilibrium value. 

Thus, the bubble exhibits no tendency to be pushed 
out of the plasma. The repeating process of helical
instability development and penetration of bubbles into 
the plasma can lead to an increased plasma diffusion 
from the peripheral sections of the filament. 

6. CONCLUSION 

We have thus shown that if we consider the helical 
instability of a current-carrying plasma filament in a 
strong longitudinal magnetic field, without confining 
ourselves to a linear approximation, then the penetra
tion of helical cavities to the interior of the plasma be
comes energywise favored. These cavities have bubbl3-
like cross sections. The number of bubbles in the cross 
section coincide with the number m of the helical
stability mode. Most favored energywise are configura
tions with a single cylindrical cavity inside the filament, 
where all the bubbles coalesce into one (or if the mode 
m = 1 develops from the very outset). At a given cur
rent, there is no energy minimum in such a filament at 
all, and the filament expands all the way to the wall. If 
a jacket without a transverse joint is used, such a mini
mum does appear, and the filament can stop growing 
without reaching the jacket even when the Kruskal
Shafranov limit is reached. At q > 1, when higher modes 
develop, bubbles of radius po ~ aim should develop (a 
is the filament radius and m is the number of the 
mode). If the helical perturbation had initially a pitch 
equal to the pitch of the force lines on the plasma 
boundary, then as the bubble dimensions increase the 
bubble gathers in its interior the force lines that are 
farther from the boundary, with smaller pitch, and thus 
this leads to a drawing in of a certain fraction of the 
azimuthal flux from the vacuum region into the bubbles. 
A surface negative current then appears on the outer 
boundary of the plasma. When the filament touches the 
diaphragm, this surface current vanishes, owing to the 
decrease of the conductivity, and a negative spike should 
appear on the plot of the loop voltage. It seems to us 
that it is precisely these processes which occur in the 
case of the so-called disruptive instability of the plasma, 
although under real conditions they become somewhat 
more complicated because of the toroidal character of 
the filament and its finite conductivity. 

*[rot BBJ == curl B X B. 
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