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A space-time kinetic equation for electromagnetic fields is proposed, which describes variation of the 
statistical field properties on passage through a resonant medium. As examples, spontaneous emission 
with allowance for re-emission and a single-mode laser with distributed parameters are considered. 

INTRODUCTION 

The statistical properties of electromagnetic radia
tion can be exhibited in the most natural manner within 
the framework of quantum electrodynamics. For the 
description of these properties the method of the field 
density matrix is widely used, a method which allows 
to exhibit all the correlation characteristics of the 
field which are of interest. One can indicate as ex
amples some of the most interesting papers[1-3) in which 
this method has been applied successfully. Their au
thors dealt with a density matrix which describes one 
of several modes of an ideal resonant cavity. This ap
proach turned out very fruitful in many laser problems. 
However, in essence this method is temporal and is 
completely useless for those cases when one is inter
ested in the spatial variation of statistical properties of 
radiation. 

In the present paper we propose a method where in 
addition to the temporal aspects the spatial aspect is 
explicitly present. We shall show that one can introduce 
the density matrix pm(r, t) describing a field oscillator 
with propagation vector m, situated in the vicinity of the 
point r (the linear dimensions of the vicinity are much 
larger than the wavelength of the radiation). The equa
tion of motion for such a density matrix has the form 

.op. m 0Pm 
a;-+c-;;;:ih=Q· 

The quantity Q in the right-hand side of the equation is 
determined by the state of the medium through which 
the radiation propagates. The second term on the left 
describes the transport of radiation from one space 
point to another. 

In form and physical content the equation coincides 
with the transport equation of classical electrodynam
ics.[4) Therefore it makes sense to talk of a quantum 
equation and a quantum theory of radiation transport 
(or radiation transfer). 

It is most convenient to analyze the quantum trans
port equation in the diagonal representation of the 
density matrix introduced by Glauber.[S) This is related 
to two circumstances. First, in the diagonal represen
tation the kinetic equation becomes a partial differential 
equation, for which the usual methods of mathematical 
physics are adequate. Second, the description in the 
diagonal representation is in a language close to the 
classical, which considerably facilitates posing the 
boundary value problems. 

As an illustration of the method we shall solve the 
following problem. In a traveling-wave resonant cavity 
one introduces a resonant medium, consisting of two
level atoms. The losses of the resonator are concen
trated on one of the mirrors. We show that in each 
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resonator mode the radiation is equilibrium radiation 
with a temperature depending on the frequency of the 
mode and on the point of space where we measure it. The 
spectral line of the radiation is Lorentzian, with a width 
which does not depend on the spatial coordinates. If we 
reduce the losses in the resonator to such a degree that 
the number of photons decreases more slowly than the 
increase of the radiation of the atoms, then the spon
taneous emission will become generation. At the same 
time the statistical and spectral properties of the radia
tion change radically. In the same manner as in the 
papers of Lamb and Scully, [1) Kazantsev and Surduto
vich,r2) we find that the line-broadening is related to 
phase diffusion, the speed of diffusion being uniform 
along the generator. At the same time the field intensity 
may vary substantially from point to pOint. The formula 
for the spectral width of the line was here the same 
form as in[1,2), with the difference that the total power 
accumulated in the resonator must be replaced with the 
output power of the generator. In the paper by Malakhov 
and Sandler[6) a similar problem was solved for the 
generator. It was formulated in classical language with 
a phenomenological introduction of a source of noise. 
However, this paper contains certain inaccuracies, which 
explains the discrepancies between its results and ours. 

1. RADIATION TRANSPORT IN THE ABSENCE 
OF A RESONANT MEDIUM 

We describe the most common scheme of the ~uan
tum theory of the electromagnetic field (cf., e.g., 7)). In 
the normalization volume L 3 we expand the field into 
harmonic oscillators. The electric field strength oper
ator has the following expansion 

( kh )'" E(r,t)= I> 2L' [a.(t)e'"'-h.c.] 

• 
(we use a system of units where c = 1). The summation 
is over all eigenvalues of the propagation vector of the 
normalization box, forming a cubic lattice with lattice 
constant 21TL-1 in the wave number space. 

The operators aft and ak are the creation and an
nihilation operators for photons of propagation vector k. 
They satisfy the commutation relations 

[t;l.(t), a..{t) 1 = [a.+(t), a;.(t)] =0, 

[a.(t), a.,+(t) 1 = Il .... (1) 

An arbitrary operator F satisfies the Heisenberg 
equation 

ihP = [F, H]. (2) 

In order to be able to write this equation in explicit 
form one must know how F depends on all the ak and 
aft. The Hamiltonian is of the following form 
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For the special case F = ak it is easy to see that 

iii. = ka •. 

This scheme is very simple and intuitive. However, 
its use leads to considerable difficulties in problems 
with spatial inhomogeneities. Therefore we propose to 
change to a slightly different description. We split the 
space of propagation vectors into cells of linear dimen
sions ,-1 which are much smaller than the reciprocal 
wavelength of the radiation (we assume that we are in
terested in a sufficiently narrow frequency interval, 
emitted by the optical transitions of the atom) and is 
much larger than the reCiprocal length L- 1 (the dimen
sions of the normalization box are assumed to be con
siderably larger than the size of the inhomogeneities of 
the field), i.e., A« 1 «L. The position of these cells will 
be determined by the vectors m. Each of the vectors m 
coincides with one of the eigenvectors of the normaliza
tion volume, so that the set of vectors m forms in the 
space of wave vectors a cubic lattice. of lattice constant 
21Trl. In place of the variables ak(t) and ak(t) we intro
duce the new set of variables am(r, t) and ain(r, t) ac
cording to the relations 

a",(r,t) = E L-"·at(t)exp[i(k-m)r], 
t_m 

am +(r, t) = E L-"'at+(t)exp[ - i(k - m)r]. .-.. 
Here the summation is over the wave eigenvectors of 
the normalizing volume which are situated in the 
cell m. 

The commutation relations for the new dynamical 
variables are the following 

[a .. (r, t), am.(r', t)] = [a",+(r, t), am.+(r', t)] = 0, 
[a",(r, t), a",.+(r', t)] = 6m ... f(r _ r'), 

where the function f(r- r') is defined as follows: 

f(~ -r') = EL-"'exp[i(k - m) (r - r')]. 
t_m 

( 4) 

( 5) 

Functions cJ>(r) which are sufficiently smooth can be 
approximately or exactly written in the form (4). For 
such functions one can derive the following integral 
equation. 

f d'r' III (r')f(r - r') = III (r). 
(U) . 

The commutation relations with r;o' r' are essential for 
writing down the equations for an arbitrary operator F 
if we wish to find the explicit form of the commutator 
[F, H]. One can show that only functions of the indicated 
type will be involved. Therefore in the sequel we shall 
assume that f(r-r')= o(3)(r-r'). This makes it possible 
to interpret the operators ain(r, t) and am(r, t) as crea
tion-annihilation operators of photons with propagation 
vectors m at the point r. It will become clear in the 
sequel that in fact one should not talk about the point r, 
but about a vicinity of the point, the dimensions of which 
are much larger than the wavelength of the radiation. 

All operators of the dynamical variables have to be 
expressed in terms of the new variables. For the 
Hamiltonian we obtain the expression 

H""'H.+H" 

1I.=E J d'r (am+am ++) tim, 
JQ. (L~) 

E J m ( oa.. oam + ) 11,= d'r- -itiam+--+itiam-- . 
2m &r ilr 

m (L3) 
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This is an approximate expression, since in the transi
tion from the equation (3) to the latter expression we 
have made use of the relation k""m+m . (k-m)/m, which 
is valid in the cell m up to terms of order Ail« 1. All 
other dynamical variables can be similarly expressed. 
The approximation which was used means that we neglect 
the variation of the field over distances of the order of 
the wavelength. This leads to the appearance of space 
cells in place of space pOints, as indicated above. 

The operator limain(r, t)am(r, t) is the energy op
erator of an oscillator with wave number m located at 
point r. The Hamiltonian Ho defines the energy of the 
noninteracting oscillators at different space points and 
with different wave vectors. The Hamiltonian HI deter
mines the interaction of oscillators with the same wave 
number but situated in neighboring space points. 

The representation of quantum electrodynamics con
sidered here is the Heisenberg picture. The entire 
time-dependence is concentrated in the operators (cf. 
(2)). In order to complete the picture we must still in
troduce the state vector of the field. It will be useful to 
consider the density matrix Pm(r, t) describing the 
oscillator at the point r with propagation vector m. The 
equation for the density matrix is apmI at = O. A prac
tically more convenient picture is related to the Heisen
berg picture by means of the unitary transformation 

F=exP[F. lI,(t- :)]F'e~p[ _~ 1I,(t- :r)]. 
Since the operators Ho and HI commute, the new (primed) 
picture is the interaction picture, with interaction HI' 
The new equations of motion are 

itiP'=[F',H.], 

We have assumed the electromagnetic field to be lo
calized in an auxiliary normalization volume. Nothing 
prevents us from considering this volume to be infinite 
or finite, but with nonideally reflecting walls. Then the 
definition of the variables (4) will change (the summation 
over a cell will be replaced by an integration with 
weight (L/21T)3/2). The rest of the reasoning remains 
the same. 

2. BOUNDARY CONDITIONS IN THE QUANTUM 
THEORY OF RADIATION TRANSPORT 

In the preceding section we have written the kinetic 
equation for the field density matrix. It is clear that 
this equation involves spatial derivatives. And this 
means that we must pose for it a boundary condition. 
Here the problem is not as clear cut as in classical 
electrodynamics. In order not to complicate the reason
ing with unnecessary calculations we consider a more 
special problem. We shall assume that the field is in a 
traveling-wave resonant cavity, which can be considered 
one-dimensional (the x axis is directed along the per
imeter of the resonator). At the point x = 0 there is a 
semitransparent mirror which can be characterized by 
a reflection coefficient R = 1 R 1 exp(i<PR) and a transmis
sion coefficient T = 1 T 1 exp(iqJT) (there is the relation 
1 T 12 + 1 R 12 = 1). The length of the perimeter of the 
resonator is L. If we consider waves traveling in the 
positive direction of the x axis, the wave goes away 
from the mirror at the point x = 0 and arrives at the 
mirror at the point x = L. 

In the classical formulation the boundary condition is 
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in this case of the following form: 
which implies 

8(x=O, t)=R8(x=L, t), The quantity A=A1-A2 has the meaning of a linear gain 

(8(x = 0, t» = R(8(x = L, t)), (18(x = 0, t) I') 
= IRI'(18(x=L, t)I'> 

etc. (here 8 is the complex amplitude of the field). We 
can use this condition if we go over to the diagonal rep
resentation of the density matrix,(5] introduced accord
ing to 

pm(r,t)= Jd'aPm(a,r,t)la><al, 

d'a = da. da" at = He et, a, = Ima; 

here a and I a) are the eigenvalue and eigenvector of 
the photon annihilation operator, i.e., al a)= a I a). 

The introduction of the diagonal representation allows 
one to carry out the reasoning in a language close to 
the classical one. The role of the complex amplitude 
is taken here by the quantity a. It is easy to check that 
if we require for the denSity matrix the validity of the 
condition 

(6) 

then all the relations imposed above on the complex 
amplitude will be automatically valid. This entitles us 
to use the condition (6) as a boundary condition for 
our transport equation. 

The use of the diagonal representation of the density 
matrix allows us to solve the problem of finding the 
boundary conditions in more complicated three-dimen
sional problems and also in the presence of an external 
signal. 

3. THE QUANTUM RADIATION TRANSPORT 
EQUATION IN A RESONANT MEDIUM 

Let us now fill our one-dimensional resonator with a 
resonant medium. We shall assume that the medium 
consists of immobile two-level atoms, situated at a suf
ficient distance from each other, so that one may neg
lect the dipole-dipole interaction. The two working levels 
of these atoms (a is the upper level, b is the lower one) 
decay into lower levels with the constants Ya and Yb, 
respectively. At the same time there is stationary 
homogeneous pumping into these levels, so that in each 
spatial cell of the size -Z3 in the absence of a strong 
field there are Na atoms on the upper level and Nb 
atoms on the lower level. We shall assume that in each 
spatial cell _Z3 one can take into account the interaction 
of the atoms only with one field oscillator with index 
m. Such a way of posing the problem coincides with 
that of Lamb and Scully. (1] This allows us to avoid con
structing the variation of the field density matrix of the 
oscillator on account of its interaction with the resonant 
medium, and to make use of the results of (1]. Our equa
tion for the density matrix will coincide with the one in 
(1J is we change in the latter the time-derivative of the 
density matrix to the expression (a/at + a/ ax)pm. We 
write the equation in the diagonal representation for the 
density matrix: 

~+ ap .. = _~~[ 1 +iL1h, •• aPm] + A. _ff'_[!-Pm] +c.c. 
at ax 2 aa Z 2 aaaa' Z (7) 

H~re we have used the notations: 

A -2N I I' ( '+ ")-' B -A 41gl 1 
'( ,+ ")-' 1,2 - G,b g lab lab Ll. , 1,2: - 1,2 --lob 'Yab Ll t 

y.y. 

Z= 1+~(lal'-!-a~-!-a'~)' 
A 2 {Ja 2 aa' 
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factor per unit length of the resonant medium; B = B 1-B2 
determines the nonlinear properties of the resonant 
medium; Yab = (Ya + Yb)/2 is the transverse relaxation 
constant; ~ =Wo -w (wo is the frequency of the working 
transition of the atom, W is the frequency of the field 
oscillator) ; 

( m/i )'" g = i 2l' (d..e) e'·" 

is the coupling constant of the field oscillator at the 
point r with index m to the atom situated at the same 
point r. Later we will encounter the quantity N=Na-Nb, 
the difference in populations of the working levels in the 
cell -l3. 

4. TRANSPORT OF SPONTANEOUS RADIATION 

In this section we will be interested in the case when 
the nonlinear properties of the medium may be neg
lected. Then in Eq. (7) the coeffiCient B has to be set 
equal to zero. Information on spontaneous radiation 
from a resonator can be found, e.g., in (1,2,8] It follows 
from them that into each mode of the resonator a photon 
gas is emitted whose statistical properties are deter
mined by the equation 

p •• == exp ( - n:; ) [ 1 - exp (_ :; ) ] , (8a) 

where 

T=-/i(j) kln--'-[ A ]-. 
.C+A, 

is the temperature of the photon gas (the quantity C de
termines the speed with which the field disappears from 
the resonator). Thus the radiation differs from the 
equilibrium radiation through the fact that the tempera
ture depends on the frequency in a manner more com
plicated than a linear dependence (A1,2=A1,2(W)), The 
spectral composition of each mode is determined by a 
Lorentz shape centered at the mode frequency and 
with width C-A. 

Let us investigate to what degree these data change on 
account of the spatial nonhomogeneity in the form of the 
semitransparent mirror. 

One can verify that the solution of (7) for B = 0 with 
the boundary condition (6) can be written in the form 

( ) S ' (' 0) 1 (I a - a'vml' ) Pm axt = d'a Pm axt= --exp -----
nOm Om 

(8) 

where 

v .. = RtfL exp (~At - iL1 ~t), 
2 Yab 

= Na IRI' eAL + ITI' eA. -1 (1- IRI"IL eAt). 
am N 1-IRI'eAL 

In the case when the constant C = In I R I 2/L , having the 
interpretation of a loss coefficient per unit length, is 
larger than the gain coefficient of the medium per unit 
length, A, there exists a stationary solution of the prob
lem, in which we are usually interested. In the opposite 
situation, A >C, the parameters Vm and am increase 
without bound as functions of time; which invalidates the 
solution (8). 

The properties of the distribution (8) are well known 
(cf., e.g., (5,9]). This makes it possible for us to make 
the following assertions without further justification. In 
a generator of sufficiently high Q (for which the inter-
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mode distance is considerably larger than r = C - A) 
on each pulled mode frequency w + t:.' + t:." (t:.' = A/Yab 
is the frequency shift due to the dispersion of the reso
nator) there is centered a Lorentz line-shape with width 
independent of the coordinate and coinciding with the 
width given in papers which do not take into account the 
spatial inhomogeneity[l,2,8]. The integral power of the 
circuit is determined by the quantity am for t- 00: 

N.IRI'eAL +ITI'e"'-1 
Om = JIj 1-IRI'eAL 

Thus, taking into account the spatial inhomogeneity does 
not lead to a change of the width of the spectral shape on 
each resonator mode, but leads to a dependence of the 
total power on the coordinate. This dependence is the 
stronger, the closer the state of the medium is to the 
threshold (the closer the quantity A is to C). 

The statistics of photons emitted into a certain mode 
retains its form (Sa). However, the dependence of the 
temperature on the frequenty becomes more complicated 
and is defined by the following equation: 

T=!ico[kln(om-' + 1)]-'. 

In addition, as can be seen, the temperatures are differ
ent at different points of the resonator. 

In the limiting case of small gains and losses (AL, 
CL- 0) all our equations go over into the ones already 
known. 

Our results are valid for arbitrary values of the 
parameters R and T. In particular, for R = 0 and T = 1 
we obtain the formulas for the radiation of a resonant 
medium into free space. The quantity am then deter
mines the well known spectral line shape of spontaneous 
emission: 

As can be seen, due to the propagation of radiation 
through the medium, the spectral line stops being 
Lorentzian (we recall that the quantity A is propor
tional to the Lorentz spectral shape). 

5. TAKING INTO ACCOUNT THE SPATIAL 
INHOMOG~NEITY IN THE THEORY OF 
LINEWIDTH OF LASER GENERATION 

As is well known, the reason of broadening of the 
emission line of a laser are the phase fluctuations which 
occur on account of the quantum nature of the interact
ing atoms and the electromagnetic field (we shall not 
deal here with the problem of the technical linewidth). 
In the paper of Lamb and Scully, [l] which by its method 
is closest to ours, it was found that the line shape is 
Lorentzian with a width determined by the equation 

t.v = '/2C(N./ N}(n)-" 

(n) is the number of photons accumulated in the resonant 
cavity in the stationary regime. 

We would like to find out how this result is modified 
when the losses of the resonant cavity are concentrated 
in the mirror. 

We have to solve Eq. (7) with a boundary condition of 
the form (6). This cannot be done analytically. We use 
the following simplifying circumstance. In a single
mode laser the photon statistics is close to a Poisson 
distribution. Since this distribution is characterized by 
a small relative dispersion, the quantity can be written 
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in the form I Q! I = v n(x) + E where n(x) is the photon 
number distribution of stationary generation along the 
axis of the resonator and E«..J n(x). In Eq. (7), writt~n 
in terms of the variables r and cP (Q! = reiCP, Q!* = re-1cp) 
one can separate the variables in the form 

P.(axt) = 9I!(ext) cD (q>xt). 

The function <R describes the amplitude fluctuations. We 
shall not discuss them here, since they determine only a 
small background in the spectral line shape. 

The function <I> determines the phase fluctuations. Its 
equation has the form 

ocD ocD N. C(x} a'cD 
-+-=------
at' ax N 4n(x} acp' • 

(9) 

The boundary conditions follow from the boundary con
dition (6): 

cD(cp, x=O, t} =cD(q>'--CPR, x=L, t}. 

In the writing of the equation we have assumed that the 
mode frequency coincides with the frequency of the 
atomic transition (t:.=wo-w=O). We introduce the 
quantity C(x) == n-l(x)dn(x)/ dx. It is easy to find that 
for stationary generation we have the condition C(x) 
= A[l + BA-ln(x)r l . 

The solution of the equation (9) is written in the 
form 

cI) (cp, x, t)'" S dq>' cD (q>', x, t - 0) (no) -'I. exp [ _ (q>: V}'] , 
where 

v = q>'+ CPRt/L, 

t N. SL C N. 1 
O=-~ C(x}n-'(x}dx=---t=-tt.v. 

L 4N, 4n(L) N 2 

The dependence of the quantity v on time determines the 
shift of the generation frequency owing to the dispersion 
of the resonator (the shift due to the dispersion of the 
medium is absent since t:. = 0). The quantity a deter
mines the correlation law for the phase 

<[cP (t) - q>(t - 't) l'>,_~ = 20 = 'tt.v, 

which leads to a broadening of the monochromatic line 
and to the appearance of a Lorentz shape with width 

t.v = 'hC(N./ N}n-«L). 

This formula differs from the analogous formula of [1] 

in that the power (n) accumulated in the whole resona
tor is replaced by the output power n(L). Taking into 
account spatial inhomogeneity did not lead to a nonuni
formity of the linewidth along the length of the cavity. 

As was already noted in the introduction, Malakhov 
and Sandler[6] have conSidered a phenomenological 
model of broadening of laser lines taking into account 
the spatial inhomogeneity, but they have not taken into 
account the influence of the strong field of generation on 
the sources of stochastically acting forces. This led to 
a linewidth formula which differs from ours. 
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while writing it up, to S. G. ZeIger and I. V. Sokolov for 
well-meaning and useful criticism. 
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