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The possibility of gravitational wave emission under terrestrial conditions is considered. A qualitative 
formula is derived which yields the upper limit for the gravitation radiation flux from an arbitrary 
source with a small gravitational potential. The formula takes into account the coherence of the 
source and "focusing" of its gravitational radiation. As a concrete emitter, an electromagnetic cavity 
is considered. It is shown that an emitter whose parameters seem to be quite reasonable from a 
technical viewpoint can create a gravitation energy flux of the order of 10-7 erg/cm'sec over an 
area of 1 cm' at a distance of 103 cm from the emitter. The possible parameters of the emitter are as 
follows: a superconducting resonant system with a total volume of about 109 cm3 in which a 
standing wave 4 cm long exists, the mean energy density of the electromagnetic field being 1010 

erg/cm3• 

At the present time the main hope for detecting 
gravitational radiation is directed at relativistic astro­
physical sources. This is understandable, since a large 
power in gravitational radiation can be produced only 
by processes which are accompanied by substantial 
changes of the space-time metric. It follows from 
Hawkings' results[11 that when two collapsing rotating 
masses m collide, an amount of energy of the order of 
mc2 can be emitted in the form of gravitational radia­
tion. Taking into account the fact that this energy is pro­
duced over a characteristic time interval rg/ c = 2Gm/ c3 , 
we obtain for the power of the gravitational radiation 
Wz 1059 erg/so This magnitude does not depend at all on 
the mass and represents in a certain sense the maximal 
possible power of a source of gravitational wavesYl 
Assuming that the colliding collapsars are situated in 
the nucleus of our Galaxy, we obtain for the flux den-
sity of gravitational radiation energy on Earth the value 
1013 erg/s-cm2, i.e., a colossal quantity, exceeding by 
16 orders of magnitude the flux denSity of electromag­
netic energy coming from the nucleus of the Galaxy. 

Of course, this optimistic estimate should be treated 
with utmost caution. One must take into account the 
hypothetical character of the very existence of collap­
sars and of their collisions, their rarity (about once a 
year) and the short duration (_10- 5 s) of their possible 
radiation, the indeterminacy in the interpretation of 
observations, to say nothing of the fact that the radia­
tion process cannot be controlled. Therefore it seems 
quite reasonable to look for artificial terrestrial 
sources of gravitational radiation. Such source could, 
apparently, guarantee a larger flux density than many 
manifestly existing astronomical systems (e.g., double 
stars), which have a gravitational potential small com­
pared to c2. In this connection it is worth remembering 
that two of the most troubling predictions of general 
relativity, gravitational waves and collapsing objects 
(and also black holes), are distinguished by the fact 
that gravitational waves follow from the relativistic 
theory of gravitation already in the weak field approxi­
mation, whereas black holes can be realized in princi­
ple only in extremely strong gravitational fields. 

We give an estimate of the maximal flux of gravita­
tional energy on which one can count, in principle, from 
a source with small gravitational potential. As is 
well known/3,41 under the assumption that the gravita­
tional field is weak one can reduce the Einstein equa-
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tions in a harmonic coordinate system to the following 
system of wave equations: 

where hik are the deviations from the flat-space 

metric and Tf consists of the components Tik of the 
energy-momentum tensor of matter if all of them are of 
the same order of magnitude, or it also contains terms 

which are quadratic in <P~ if the components of Tik dif­
fer strongly from one another. At time t and at a point 
defined by the direction n and the distance R which is 
large compared to the characteristic dimensions 1 of 
the system, the solution of Eq. (1) has the form of the 
retarded integral 

4G S 1Jl"=-TR h· .. ]dV, 

where the integrand is taken at the earlier time 

t = t - R / c + rn / c. 

(2) 

If the dimensions of the system are small compared 
to the wavelength of the gravitational waves emitted by 
it, the retardation at the source is the same for all its 
points, 1 z t-R/ c, and in the final count the computation 
of <Pa(3 reduces to the determination of the (time-de­
pendent) moments of inertia of the system, on account 

of the equation T~'k= O. Essential use is being made 
here of the assumption that the source is isolated. The 
energy flux density in the wave zone (for R» x) deter­
mined from the energy- momentum pseudotensor has a 
quadratic expression in terms of <Pa(3, and consequently 
increases as the characteristic frequency w of the mo­
tion of the source increases (for a fixed amplitude 
Tik(O) in the expression Tik = Tik(o)eiwt). The increase 
of the flux with the growth of the frequency will go on 
until X z c/ w becomes of the order of Z. If all the di­
mensions of the system and their variations are of the 
order of X, and the average energy density of the energy 
in the system is €, the flux density of gravitational en­
ergy at distance R is G€2 X4/C3R2. At the boundary of 
the wave zone, for R= X, we obtain G€2,\2/C3. For wZ/c 
»1 one can no longer neglect retardation inside the 
source, since the contributions to <Pa(3 from different 
parts of the system may compensate one another. Under 
these conditions an increase in w will generally lead 
to a decrease of the flux. 

Copyright © 1974 American Institute of Physics 215 



... 

In order that all parts of the source with dimensions 
Z »A yield _a positive contribution to the gravitational 
field in the wave zone, it is necessary to ensure the co­
herence of the whole volume of the radiator .1) In other 
words, one must realize at the reception point addition 
of the amplitudes coming from all the elementary radia­
tors which make up the system. For this the equal­
phase surfaces of the oscillations of the elementary 
emitters must be concentric spheres, centered at the 
reception point (we call this "focusing"), and the phase 
shift along the line of sight must correspond to a wave 
traveling in the direction of the observer with the speed 
of propagation of gravitational waves in the source 
material, i.e., practically with the speed of light (co­
herence along the line of sight). If these conditions are 
satisfied the radiation is collected in a spot of area of 
order A2. Then the limiting flux density (at distance 
R = Z) is determined by 

where v is the characteristic speed in directions per­
pendicular to the line of sight, !ff = El3 is the total energy 
stored in the source, 

W=-e' - '),' G (V)' 
c' c 

is the power emitted by one elementary emitter of char­
acteristic dimensions A, N = Z3/A3 is the number of ele­
mentaryemitters. 

The expression (3) establishes an upper limit for the 
gravitational energy flux density which can be obtained 
if one takes into account coherence and focussing of the 
radiation from a source with small gravitational poten­
tial. If the characteristic dimensions of the system are 
different along different axes, the flux denSity of gravi­
tational energy at the focal point situated at a distance R 
from the center of the system can be rewritten in the 
form 

dl _ G • ( v )' (' l, ). ( t.). ( t. )' , 
R'do - c'R' e c T T T '),. (4) 

The equations (3) and (4) are applicable both for 
mechanical and electromagnetic systems. In the latter 
case the factor v/ c is to be replaced by 1. As can be 
seen from (3) and (4), other conditions being equal, it is 
convenient to make use of short waves. This circum­
stance, together with the relative simplicity of construc­
tion seems to give some advantage to systems making 
use of alternating electromagnetic fields over mechani­
cal systems. 

Below we consider as emitters electromagnetic 
cavity resonators. Since the energy-momentum tensor 
of the electromagnetic field is quadratic in E and H 
a standing electromagnetic wave of frequency W will 
emit a gravitational wave of twice that frequency. It is 
obvious that two standing electromagnetic waves of fre­
quencies W1 and W2 will emit, in addition to the har­
monics 2W1 and 2W2, also gravitational waves of the 
frequencies W1-W2 and W1 +W2. A wave of frequency W 

will in the presence of a constant external field be able 
to emit gravitational waves of the same frequency w. 
In the terminology of quantum theory one can describe 
these processes as the production of a graviton by a 
photon pair, or as graviton production by a photon in an 
external field, etc. (it is clear that on account of the 
cavity walls the conservation laws are satisfied). 
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The alternating electromagnetic field of the resonant 
cavity interacts with the walls of the cavity via the sur­
face currents and forces these walls to oscillate and 
emit. One may say that in this case the gravitons are 
produced by phonons. The variable elastic stress tensor 
uaf3 of the shell of the cavity is of the same order of 
magnitude as the components Taf3 of the energy-mo­
mentun tensor of the electromagnetic field, however the 
contribution of ua f3 to the gravitational field in the wave 
zone is small compared to the contribution of T a f3. 

In Secs. 1-3 we consider a spherical resonant cavity. 
In this case the problem of oscillations of the shell can 
be solved relatively simply. The conclusions obtained in 
Sec. 2 relative to the radiation of the shell of the resona­
tor are generally applicable to mechanical systems. A 
spherical cavity does not have a noticeable directivity of 
radiation, therefore the gravitational energy flux density 
is small in all directions. The total energy losses of the 
resonant cavity on account of gravitational radiation are 
so small that one can hardly separate them indirectly on 
the background of losses due to the nonideal character of 
the cavity, i.e., ohmic losses in the walls, its dielec­
tric, etc. 

Section 4 considers a flat resonant cavity. The con­
tribution of the walls to the gravitational radiation is 
not taken into account. It is shown that systems that can 
apparently be produced within the limits of present 
technological capabilities are able to generate a flux of 
gravitational radiation approaching the threshold of 
sensitivity of detectors which have been proposed re­
cently. The idea of using a gravitational-electromag­
netic resonance has been proposed by BraginskiT and 
Menskfi[7] and this question has been discussed in de­
tail in [8]. 

1. THE ELECTROMAGNETIC FIELD IN A 
SPHERICAL CAVITY AND THE OSCILLATIONS 
OF ITS SHELL 

We assume that the walls of a spherical cavity of 
radius ro are perfect conductors and the medium inside 
the cavity is a perfect dielectric. For definiteness we 
conSider inside the cavity oscillations of the magnetic 
type (TE waves) with the condition Er == O. The Max­
well equations reduce to an eigenvalue problem with the 
boundary conditions EO = Ecp = 0 for r = ro. The solutions 
of this problem can be written (here we have corrected 
a typographical error in EO as given in the book by 
Koshlyakov et al. [9]): 

ik 1 av ik av 
E,=O, E'=-c-sin6 a;p' E.=--c-ae' 

H,=~r (~+~) + k'rv, (5) 
ar ar r 

H, =~ (~+~) H.=_1_~(~+~) 
a6 ar r' sin 6 aq> ar r' 

where v is determined by the equation 

( n )',. 1 ( ) Vmn="2 ---;;;;-'n+'I.(kr)Pnm (cos6)cos (mq>+>!Jm), 6 

and, because of the boundary conditions, k is one of the 
roots of the equation In+~ (kro) = O. The time-dependence 
of the field is given by the exponential exp(-iwt) (w = kc). 

The interaction of the electromagnetic field inside 
the cavity with the surface currents leads to the appear­
ance of a force acting on the walls of the cavity. If na 
is the unit vector along the external normal to the 
sphere r = const, the force is determined by the equa-
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tion Fa'" T afl(ro)nfl , where T afl(ro) are the components 
of the energy-momentum tensor of the electromagnetic 
field at the pOints r= roo For a field of the type under 
consideration F () = F cp = 0 and F r = (1/87T)H21 r=ro' The 
solution (5) is written in terms of the so-called "natural 
components", therefore H2 = H~ + H~ + H~. Since Fa 
contains the square of the vector H the force consists 
of two terms, a term which does not depend on time, 
and a term which is harmonic with frequency 2w. The 
first term produces a constant strain, which does not 
interest us here and the second one produces alternating 
stresses, which together with the electromagnetic field 
are the source of the gravitational radiation. 

We assume that the shell of the cavity consists of a 
homogeneous spherical layer of density p and external 
radius rl. In order to determine the deformation vec­
tor u which determines the behavior of the cavity shell 
it is necessary to solve the equation of motion with the 
following boundary conditions: U a flnfl = 0 at the outer 
boundary and uaflnfl=-Fa at the interior boundary. We 
consider the stationary regime of oscillations, with 
u-exp(-i2wt). Introducing the wave numbers kZ=2w/cZ 
and kt = 2w/ Ct for the longitudinal and transverse waves, 
respectively, we write the equations of motion in the 
form[lO] 

~u, + k.'u, = 0, ~u, + k,'u, = 0. (7) 

The displacement vector is 

u = (u, + u,) e-'·'·'; div u, "" 0, rot u, "" 0. 

Following the Kelvin method described in [11] , the 
solution of the problem can be expressed in terms of 
spherical harmonics, considered as functions of the 
cartesian coordinates. Then the general solution of the 
equations (7) is 

1 a{) "{( ax. ax.) (I) (') u.=-kla;+ ~ YTz-zTy [0;. 1\1.(k,r)+o;. ~.(k,r)] 

+ a<pn+l[A (I).h (kr)+. (')~ (kr)]- n+ 1 k'r'n+'~( <Pn+l) (8) ox jJn+i't'n t r'n+t~n t n + 2 t ax rZn+3 

X[~~~,l\1n+2(ktr) + ~!~I~'+' (k,r)] }. 

Here we have used the notation 

() = div u, = L,oon[-yn (11\1. (k,r) + "(n(')~n (k,r) ], 

wn, CPn, Xn are the so-called "solid spherical har­
monics" of order n, which can be represented in the 
form rnyn , where r=(x2+y2+z2)l/2,and Yn(e, cp) is 
the usual spherical harmonic; the functions z/!n and ?;n 
are defined by 

( 1 d )'Sinx ~.=(~~)'~ 
I\1n(X)= -;'Yx -x-' xdx x 

and can be expressed in terms of Bessel functions of 
order (n +~) and -(n + lh), respectively; an' fln' Yn with 
the superscripts (1) and (2) are arbitrary constants 
which have to be found from the boundary conditions. 
The expressions for the y and z components of the 
vector u are obtained from (8) by cyclic permutation of 
the coordinates x, y, z. 

The terms of the vector u containing Xn describe 
the displacements which are orthogonal to the radius. 
The displacements related to this function can exist only 
as natural modes of the spherical shell, since they are 
independent on the external force, which in our case 
acts only along the radius. We do not consider these 
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oscillations, i.e., we set a~t = a:':> = O. The boundary 
conditions allow one to find also the other arbitrary 
constants. Thus, the formulas written down here solve 
the problem of forced vibrations of the shell under the 
action of an arbitrary electromagnetic field (5), (6). 
However, the determination of the undetermined coeffi­
cients in their general form involves cumbersome calcu­
lations. We restrict ourselves to the case of the Simplest 
angular dependence of the field. 

Let the potential v be independent of cP, and assume 
its e-dependence is determined by a factor cos e. This 
assumption corresponds to the choice m = 0, n = 1 in the 
expression (6). Then the field components take the form 

E,=O, E.=O, 
k 

E. = A -(kr) 'I'",,(kr) sin 0 sin oot, 

H.=O, 

r . 

H, = 2A ~(kr)'I''''.(kr)cos 0 cos oot, ,... 
H. = -A ~~«kr)",,,,,(kr) )sinO cos oot. 

r ar 
The constant A is related to the total energy accumu­
lated in the resonant cavity 

by the relation 

B=~J (E'+H')dV, 
8n 

1 . 
3;t A 'k'r, sma kr, - B. 

The natural frequencies of the field oscillations in 
the cavity w = kc are determined from the condition 
tan(kro) = kro, from which it follows that kro > 1. The 
force Fr is expressed in the following form: 

(9) 

F, = 1/se[1-P,(cos 0) + cos200t-P,(cosO) cos200t]. (10) 

Here E is the average energy density, E = B /V, where 
V is the cavity volume. The first two terms in (10) 
create constant stresses and the third and fourth are 
alternating, the third corresponding to spherically­
symmetric oscillations of the shell which do not pro­
duce gravitational radiation. The term of interest to 
us is 

F, = _l/seP,(cos 0) cos 200t (11) 

and describes quadrupole oscillations of the shell, dur­
ing which it is alternately elongated along the z axis, 
contracting in the equatorial plane, and then is con­
tracted along the z axis accompanied by bulging out in 
the equatorial plane. From the boundary conditions and 
the explicit form of the force (11) it follows that u can 
be expressed in terms of the single function 

00, = r'P, (cos 0) = z' - '/2X' - 1/2y'. 

In the sequel we shall omit the subscript n= 2. 

Let us write out the explicit form of the deformation 
vector. For this purpose we recognize that in the shell, 
i.e., at ro::S r::S rl, the following relations hold: 

1 1 (ro) ( Ct) 1 -';;;:=2 --;: -;- Tr:'<1, 

The functions of r which enter into the boundary con­
ditions will be expanded in powers of these parameters. 
Then in the leading approximation in l/kr and l/ktr, 
the x component of the vector u can be written in the 
form 

1 k,r, 
u. ="3" epe.' sin k, (rl - r,) 

cos k, (r. - r) 
(k,r) , xP,(cos a) cos 200t. (12) 
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The components of Uy, Uz can be obtained by replacing 
in (12) x by y and z, respectively. 

In spherical coordinates ucp:= 0, in the leading ap­
proximation (-I/kr) Ur equals 

1 r. cosk,(r, - r) 
u'=-3 e ,. k( )' P.(cos 6) cos 2Cilt, 

pc, sm , r, - r, , k,r 

and uo vanishes in this approximation. 

The condition of applicability of the equation of small 
vibrations (7) can be written in the form divu« 1. In 
our case 

S r, 
Il=divu= 3. ' . k ( ) sink,(r,-r)P,(cos6)cos2Cilt, 

PC, SIn I rt-To r 

which leads to the restriction 
1 1 

.:1=-e , <1 
3 pc,' sin k, (r. - r.) . 

The resonance factor sin-1kz(r1- ro) characterizes the 
deviation of the frequency of the forced vibrations from 
the natural frequency. 

2. THE GRAVITATIONAL FIELD IN THE WAVE 
ZONE 

We first consider the gravitational field produced in 
the wave zone by the alternating electromagnetic field 
in the cavity. Since all components of the energy-mo­
mentum tensor Tik of the electromagnetic field have 
the same order of magnitude, Tik in (2) consists simply 
of Tik. It makes sense not to calculate all the com­
ponents of </Iik, but only the "physical" ones, i.e., those 
which cannot be removed by coordinate transformations 
that preserve the condition of harmonicity. It is just 
these components (and only these) which enter into the 
expression of the gravitational energy derived from the 
energy- momentum pseudotensor of the gravitational 
field.2) 

Introducing the quantities 
\;.~ = 1jl., - 1/31l.~(1jlu + 1jl" + 1jl,,), 

one can express the energy flux density in the direction 
n in the form 

(13) 

This quantity depends on the off-diagonal components of 
the tensor </Iik and on the differences between its diag­
onal elements. 

The radiating system considered here exhibits axial 
symmetry and therefore the gravitational field depends 
only on the coordinates rand 0, and in order to deter­
mine it completely it suffices to consider a vector of 
the form n={sineo, 0, cos eo}. Substituting this vector 
directly into (13), or (equivalently) rotating the coor­
dinate system so that the direction of n coincides with 
the z axis, we find the energy flux density in the direc­
tion n: 

(14) 

;jh, - ,p;, = (1jl" - 1jl,,) - cos' a.(1jl83 - 1jlu) - 2sin ao cos 80 1jl18, (15) 

. Let us compute, for example, </133-</122; the other func­
tions entering into (15) are computed in a similar man­
ner. We introduce the notation ~=kr. The Cartesian 
components of the electric and magnetic field intensi­
ties will be 
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Ex = -Ak's-"'/';,(s)sin a sin q> sin Cill, 
E. = Ak"s-'i./,;, (~) sin e cos q> sin Cill, 

H. = Ak's-"'0, (s) sin 8 cos a cos q> cos Cill, ( 16) 
H. = Ak'~-'I·/,;,(S) sin8 cos a sin q> cos Cill, 

E,=O, H,=Ak's-"'[20.(s) '--/'/,(s)sin'a] cOSCilI. 

The alternating part of the difference T33-T22 
=(41Jr1(-H~+Ey+Hy) can be written in the form 

A'k' 1 
T .. - T .. = ---(M + N cos 2q»cos 2Cilt; 

8n 6' 

M = - 4!;l""(s) + ('/,s,/,/:(s) - '/'S3/,/~W +4S'/';,(6M/,(6) ) sin' a 

- '/,s'/';,(s) sin' a, 

N = - '/,s'(/'~,W+/.;,(s) ) sin' a + '/,S'/·;, (6) sin' a. 
The integrand in the expression (2) equals 

. A'k 1 
r' sin a draa dq>[T" - T,,]=---sin a ds da dq>(M + N cos 2q» 

. 8n ~' 
XCOS[2Cilt' - 2s(sin a cos <psin 80 + cos a cos 80)], 

Here and in the sequel t'=t-R/c. 

The integration of this expression with respect to cp 
from 0 to 211" leads to the Bessel functions Jo(2~ sin 0 sin 00 ) 

and J2(2~ sin 0 sin eo). The integration with respect to 0 
from 0 to 11" leads finally to integrals that can be found 
in tables [12J 

n/' f sin' a cos(2s cos a cos 80)/.(2s sin8sin ao)de 

= (~)'" (26 sin 8 ). /'+'1. (2s) 
2 0 (2s)'+'" . 

Thus, there remains the integral with respect to ~ 

from 0 to kro of a relatively complicated combination 
of Bessel functions of ~ and 2~. It is more convenient 
to integrate with respect to ~ directly for the whole ex­
pression /P33-/P22' As regards /P23, it vanishes identi­
cally, since </112 and </123 vanish already upon integrating 
the appropriate terms with respect to cpo We finally 
obtain the alternating part of the gravitational field in 
the wave zone 

4G- A'kl'~ 
;p" -;p" = -;;vr (2)"/' B sin' ao cos 2Cilt', 

1 sin' kr~ ·s" ds , 

( 17) 

B=--=---+ --I,/,(s)/.,.(2s). 
nl'2n kro 0 .(2s)"· 

. In the computation of B it was taken into account that 
the integration with respect to ~ extended from 0 to 
kro, which is one of the roots of the equation J3/2(kro) 
= O. For large kro we have 

Approximate ly 

7 1 1 
B",,--=-, sinkro""1. 

8n l'2n kr, 

7n G sro' 
;p" - iii" = 2~ (kro) , sin' ao cos 2Cilt'. (18) 

Substituting (17) into (14), we find the average (over 
one period) energy flux density 

dI G e'r' G _ 4 0 B2 . .. a _ 2 2'1 Z • .. 8 
R'd - -.R2:Jt --:-:--k SIn 0""" ----S-Rz8 ro"" SIn 0, 

o C SIn fo C 
(19) 

where A is the gravitational wavelength: A=1I"C/W. The 
factor sin400 determines the angular distribution of the 
radiation. The radiation does not depend on the angle cp 
and vanishes in the direction of the poles. The polariza­
tion of the radiation is the same everywhere. 

Comparing the expressions (19) and (4) we see that 
in a spherical resonant cavity only part of the volume 
radiates effectively: namely a volume with one charac-
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teristic dimension ro and two characteristic dimen­
sions of the order >< (an annulus of radius ro of thick­
ness and width -><, containing the z axis in its plane). 
If, for illustration we set E = 1010 erg/cm3 and ro = 103 cm, 
we obtain at the upper limit for >< '" ro and R'" ro in the 
equatorial plane of the emitter a flux density clI/R2do 
'" 10-13 ergls-cm2 • The total radiated power is W'" 10-7 

erg/so 

We now consider the radiation from the shell of the 
resonator. Since the vibration of the shell are considered 
small, in the linear approximation with respect to the 
small parameter- the ratio of the amplitude of vibra­
tions to the wavelength of the acoustic wave-the space 
components of the energy-momentum tensor of the 
solid, 0ik, reduce to the components of the elastic stress 
tensor 

( au~ au, ) ( 2) , 
a~'=f1 ~+~ + K- 3 f1 divu6~" 

where Il and K are the elastic moduli. The tensor uO/{3 
is of the same order of magnitude as the tensor T 0/{3 of 
the electromagnetic field (at the boundary r = ro their 
normal components coincide). However, the contribution 
to the gravitational field 1/!0/{3 is determined by a volume 
integration, for which the spatial dependence of the 
tensors is important. We shall show that the contribu­
tion of uO/{3 is, generaliy, small compared with that 
of T 0/{3 and consequently the gravitational radiation 
from the shell is small.3) 

The components 00/{3 are small compared with 0 00 

and 0 0 0/' In these conditions one must generally take 
into account in the right-hand side of Eq. (1) for 1/!0/{3, 
in addition to 00/{3, also terms which are quadratic in 
the derivatives of I/!oo and 1/!00/ (as happens in gravita­
tionally coupled systems of the type of binary stars). In 
this case we are entitled to neglect these terms, since 
the gravitational potential of the cavity shell rp - GM/r1 
where M is its mass, is small compared to the square 
of the speed of sound. 

Let us find the gravitational radiation produced by 
the elastic stresses. The angular dependence of the ra­
diation is similar to (19) and has no singularities, there­
fore we consider the flux only in the direction of the x 
axis. We make use of the components of the displace­
ment vector (12) and determine Uzz-Uyy in the leading 
approximation in 1/kor: 

sink,(r,-r) , 
a" - a .. = 2f1M. '(cos' 0 - sin' 0 sin' Ql)P, (cos O)eos 2rot. 

r 

Integration of this expression, taken at the instant 
t=t-kr sinexcosrp, with respect to rp leads to the 
Bessel functions J o(2kr sine) and J1(2kr sine). As a 
result of subsequent integration with respect to e there 
appear Bessel functions of half-integer order of the 
variable 2kr, which can be reduced to sin 2kr, cos 2kr, 
and powers of kr. Finally, the integral reduces to the 
form 

1 .. 
J[au-a .. ldV=2j£M0"kcos2rot' J F(r)dr; 

'. 
F(r)= sink,(r, - r) [( - 2(!r)' + 8(:r)') sin 2kr + (3 + 8~:~') cos 2kr] . 

Since kZr1» 1 and kZro» 1, the integral is approxi­
mately equal to 1/kZ. Then, taking into account that 
Il= peE and setting ct '" cZ = Cs, one can write I/! 33 -1/!22 
at large distances in the following form: 
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G ,ro 2' 1jl,,-1jl,,"'"--pc,.1.-cos rot "'" cOR kk, 

G ero' c, . , 
Pl$ ......-- 2 ,I cos 2rot . 

c R ,(kr.) c sin k,(r. - to) 

In a regime far from the resonance, i.e., for 
sin kz(r1- ro) "" 1, 

G eros c, , 
1jl" -1jlu "'"..--R -(k )' - cos 2rot . c . ro c 

(20) 

This quantity is cs/c times smaller than the quantity 
(18). Since 1/!23 == 0, the average over a period of the 
energy flux in the direction x equals 

dl G (C )' G ( C )' --"'"--(pc')'.1.' ~ ro'A.·=~(jic·)' ~ ro'').,.'. 
R'do c'R' c c'R' c 

(21) 

Here p denotes the amplitude of the alternating part 
of the density p = tlp. Equation (21) is universal for the 
calculation of the radiation generated by elastic stresses. 
This expression may still contain a large factor (Z/><)2, 
but only under the condition that the source be coherent. 

It is interesting to note that Eq. (20) illustrates the 
possibility of using an insignificant electromagnetic 
field in a regime close to resonance as a mechanism 
capable to excite effectively and synchronously masses 
situated at a distance. 

3. A SPHERICAL RESONANT CAVITY WITH A 
CONSTANT MAGNETIC FIELD 

We consider a standing electromagnetic wave in a 
cavity in which a static homogeneous magnetic field is 
present. (We, of course, do not pay attention here to the 
technical difficulties of realizing a magnetic field in a 
cavity with superconducting walls.) In this case the 
components of the magnetic field strength (16) will have 
the additional term HC. In the energy- momentum tensor 
there will appear, in addition to the enumerated terms 
proportional to cos 2wt, also cross terms varying like 
coswt, with which we deal now. 

Since HC does not depend on the coordinates and 
time, the calculation of I/!ik reduces to the computation 
of retarded integrals of the magnetic field of the wave, 
J[H]dV. If n is a unit vector pOinting to the observation 
pOint, one can write the result of the integration in the 
form 

S [H.ldV = an.n, cos rot', J [H.ldV = an,n, cos rot', 

S [H.ldV = a(1- n,') cos rot', 

where we have used the notation 

(22) 

From the quantities (22) it is easy to construct the 1/!0/{3: 

1jl .. _1jl" =2Ga [H,' (1- n,') - H,'n,n.jcos rot' 
nc'R 

1jlu = ~[H,C(1- n,') + H,Cn,n, 1 cos rot', 
nc'R 

1jl1l -1jl .. = 2Ga [H,C(1- n,')- H,Cn•n, 1 cos rot', 
nc'R ' 

1jlu = Ga [H,·(1- n,') + H,cn,n,lcos rot', 
nc'R 

2Ga [HC HO 1 ' 1jl1l -1jl" ~ nc'R • n,n, - • n,n, cos rot , 

1jl .. ~ Ga [H,"n,n, + H,cn.n,lcos rot'. 
nc'R 
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There is no radiation in the directions of the poles on 
the frequency w as well as on the frequency 2w, and in 
other directions the radiation on the frequency w de­
pends on the orientation of the magnetic field. We de­
termine the average over one period of the energy flux 
in the direction of the x axis: 

dI ,G " •. , _G" --= 2n --,:;-(H, ) ero SIll kTo - -- Be To , (24) 
R'do c'n' c'R' 

where EC is the energy density of the constant magnetic 
field. 

The presence of Ea in this formula allows one, in 
principle, to reduce the intensity of the alternating field 
increasing accordingly the intensity of the static mag­
netization field. It is clear that the general form of (24) 
(the product H C instead of E2) is characteristic not 
only of the concrete problem under consideration, but 
also in the general case of radiation in the presence 
of an external field. 

4. THE GRAVITATIONAL RADIATION OF 
RECTANGULAR ELECTROMAGNETIC 
RESONATOR 

In a rectangular parallelepiped of dimensions ll' l2' 
l3 the electromagnetic field is of the form 

E. = A, cos k,x sin k,y sin k,~ cos l1)t, 
H. = B, sin k,x cos k,y cos k,z sin oot, 
Ey = A, cos k,y sin k,z sin k,x cos oot, 

H. = B, sin k,y cos k,z cos k,x sin oot, 
E, = A, cos k,z sin k,x sin k,y cos oot, 
H, = B, sin k,z cos k,x cos k,y sin oot. 

The components of the propagation vector are 

k,=m,nll" k,=m,nll" k,=m,nI13, 

(25) 

where m1, m2, m3 are natural numbers and ki+k~+k; 
= k2 = w 2/ c2. Of the six constants Aa and Ba only two 
are independent, since 

B, = -k-' (A,k, - A,k,), B, = -1k-' (A,k, - A3k ,) , 
B, = -k-' (A,k, - A,k,), 

B,k, + B,k, + B,k3 "" 0, A,k, + A,k, + A3k, = o. 
The total energy fS contained in the cavity is 

fS = _1_I,I,I,(A" + A: + A,'), 
64n 

if all ka '" 0, and 

fS = _i_l,I,loA.', 
32n 

if ka = O. Obviously, the field inside the cavity vanishes 
whenever any two components of the propagation vec­
tor vanish. 

The time-dependent terms of the components of the 
energy-momentum tensor are 

T"-T,, = - ~ cos 2oot[sin' k,x(A,' cos' k,y sin' k,z - A,' cos' k,z sin' k,y) 
8n 

- cos' k,x (B,' sin' k,y cos' k,z - B,' sin' k,z cos' k,y) ], ( 
i 26) 

T" = --cos 2oot(A,A, sin' k,x - B,B, cos' k,x) sin k,y cos k,y . 
8n 

. sin k,z cos k,z. 

The other components are obtained by cyclic permuta­
tion of the variables. 

Let qa be a vector of length k directed to the ob­
servation point. Then, as a result of the integration we 
find the gravitational field at distance R: 

G sin q,l, sin q,l, sin q,l, 
1jJ .. - 1jJ .. = 16 'R '(k ' ') (k ' ') (k ' ') nc q,q,q" - q, • - q, ,- q, 

x',fA,'k,'k,'(k,' - 2q,') - A,'k,'k,' (k,'-2q,') - B,'k,'(k,'-2q,') (k.' - 2q,') 
, + B,'k,' (k,' - 2q,') (k,' - 2q;') ]cos(2oot' - ql), . 
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G k,k. sin q,l, sin q,l, sin q,l, (27) 
1jJ23 = 16nc'R' q, (k,' - q,') (k,' - q,') (k,' - q,') 

x [B,B,(k,' - 2q,')-A,A,k,']cos(2oot' - ql). 

Here q·l = q1it + q2l2 + q3l3' The other components of l/!a{3 
can be obtained by cyclic permutation of the variables. 

The vanishing of any of the quantities in the denom­
inator does not lead to difficulties, since the indeter­
minacy is easily lifted and yields the right result. If the 
dimensions of the system are large compared to l/k, 
one can see from (27) that the radiation pattern of the 
gravitational radiation consists of a large number of 
lobes. 

We' determine the energy flux in the direction of the x 
axis (q1 = k, q2 = 0, q3 = 0). In this direction 1/!23:= 0 and 
1/!22 -1/!33 has the form 

1jJ .. _ 1jJ .. = _G_~l,l,sin kl, [2(A,' -A,')+(A,' + A,' +A," k,' - k,' 
16nc'R k k,' + k; 

x{ 1 + k,' :,k,')] cos (2oot' _ kl,). 

We consider for Simplicity the case k1 = 0 correspond­
ing to the field in the cavity being independent of x. 
Then the square bracket in 1/!22 -1/!33 can be transformed 
to 641TEk-2(k~-k;). The flux denSity averaged over a 
period has the form 

dI i G ,(k,'-k,')'. 'kl (k)'( )' 
--=---8 SIll ,I, l,k. 
R'do 2n c'R' k' 

If k2 and k3 are not too close to one another and II is 
selected so that sin kl1 = 1, we have, finally 

dI G ( I, )' ( I, )' , 
"ii'd; "" c'R' 8' -,::- T I.. 

(28) 

We compare this formula with (4). In our case only 
part of the cavity, with dimension along the x axis of 
the order of A = 1TC/ w, radiates effectively. Since the 
source is not coherent, it obviously does not make 
sense to increase the size II of the resonator in order 
to increase the output. It is more help to select it equal 
to A/2. An increase of the flux can be achieved by means 
of a series of cavities situated one behind the other. In 
order for the cavities to function coherently the elec­
tromagnetic oscillations must be phase shifted by 1T/2. 
Then at the observation point the amplitudes of the gravi­
tational waves add and the resulting amplitude is pro­
portional to the number N of resonators, and the energy 
flux density is proportional to N2. 

As an illustration we consider a cavity with dimen­
sions II = 1 cm, l2 '" l3 = 103 cm with a standing wave of 
wavelength 4 cm (kit = 1T/2). We substitute these values 
into the Eq. (28) and set E = 1010 erg/ cm3. Then at the 
upper limit for R = 103 cm we obtain a flux density from 
one cavity of the order of 10- 13 erg/s-cm2. As was al­
ready noted, strictly speaking, the cavity should not be 
rectangular but bent or consisting of a set of resonators 
of smaller sizes l2 and l3, but having the same total 
area l2l3, and arranged at the same distance from the 
reception pOint. A system of a thousand such resonant 
cavities with effective sizes II = 1 cm, l2 = l3 = 102 cm 
(Le., a radiator of the same volume as the spherical 
cavity of radius ro = 103 cm) with the condition that the 
phases of the oscillations in all of them have been prop­
erly selected and are properly maintained, is capable 
of creating an energy flux of the order of 10-7 erg/s-cm2 
in a focal spot of area -1 cm2. 

The authors are indebted to V. B. Braginskil for dis­
cussions which have served as a stimulus for writing 
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this paper, to Ya. B. Zel'dovich for discussion of the 
results and valuable advice, and to M. S. Kha'ikin for a 
consultation on superconducting resonant cavities. 

I)The coherence idea has been used in the papers by Gertsenshtei'n [5) and 
Kopvillem [6). In the problem, considered by Gertsenshtern, of emission 
of gravitational waves and a traveling electromagnetic wave in the presence 
of a static magnetic field, the coherence of the source is realized in a re­
markable way automatically by the traveling wave itself. 

2)The difficulties in defining the energy and momentum of the gravita­
tional field by means of pseudotensors are well known (as well as by 
other "complexes" of energy-momentum). Usually one assumes that an 
acceptable "complex" must consist of the metric and its derivatives, 
must exhibit definite transformation properties and satisfy some "con­
servation Jaws:" It is quite possible that no mathematical construction 
exists which satisfies all the enumerated requirements and to which we 
would be inclined unconditionally to attribute the meaning of a density 
of energy and momentum of a gravitational field. It should be stressed, 
however, that an "experimenter" can himself introduce a concept like 
the flux of gravitational energy, since the interaction of the receiving an-

, tenna with a gravitational wave can be described in terms of the compo­
nents of the curvature tensor or in terms of 1/!ik' their amplitudes, fre­
quencies etc. The result of this interaction in the wave zone, as ex­
pressed through the abso~Ption 0 f energy by some dissipative element 
will be the answer to our question. Therefore a rigorous reader may con­
sider the quantities in the text which have dimension erg!s-cm2 etc., as 
simply an economic notation for the properties of the field in the 
wave zone. 

3)We neglect here the gravitational radiation of the currents which are con­
centrated in a thin surface layer. 
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