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The dependence of the conductivity of one-dimensional systems on the frequency of an external 
electric field, w, is investigated. It is shown that the static conductivity (w = 0) is zero. For 
sufficiently high electron Fermi energies the conductivity tends to zero not slower than '" Iwl. 

1. The conductivity of one-dimensional systems has 
been the subject of many investigations. Nonetheress, 
the dependence of the conductivity on the frequency of 
the external electric field has not been determined so 
far. All the arguments advanced to date concerning this 
dependence were exclusively indirect and based on in
vestigations of the energy spectra of one-dimensional 
systems. These include the researches by Mott and 
Twoose(l] and Borland(Z). Using purely intuitive con
siderations (Mott) or investigating the ergodicity prop
erties of the equation for the distribution function of the 
phase shifts of the particle wave function (Borland), 
these authors reached the conclusion that the wave 
function is localized, and indicated by the same token 
the possibility that one-dimensional systems have no 
static conducti vity . No direct calculation of the conduc
ti vity was made, however, and the question remained 
open. 

We show here on the basis of exact equations for the 
conducti vity that it is equal to zero at w = 0 and that it 
decreases with frequency at a rate not lower than 
~ I w I at sufficiently high energies. 

The first exact equations for the conductivity were 
derived by Halperin(3) for the particular case of white 
noise. Dykhne and 1(4) investigated the problem of 
averaging the product of two Green functions of a parti
cle. The present paper deals with the case when the 
impurity potential is of the form U(x) = UoI)o(x - Xi) 

i 
and the distances between impurities have a Poisson 
distribution. 

The plan of the paper is the following. In Sec. 2 are 
introduced the characteristic functions f(O,l)(Zl, zz) and 
the equations they satisfy [Eqs. (12)] are derived. The 
conductivi,ty a is expressed in terms of these functions 
with the aid of formulas (1) and (10). We note here that 
the quantity [f( € + w) - f( €)]I w is replaced in (1) by the 
derivative af/eE. Equations (12) are investigated in 
Sec. (12) in the case of high energies, when the colli
sion term in (12) takes the form (13). It is shown that 
in this approximation the conductivity decreases with 
frequency no slower than ~I wi, and the limiting expres
sion for the function f(O)(zl, zz) takes the form of a 0-
function, Le., f(O)(zl, zz) - 5(Zl - zz) as w - O. It is 
shown in Sec. 4 that f(O)(zl, zz) ex: O(Zl - zz) is an 
exact solution of (12) at all values of the energy if 
w = O. From this and from formulas (10) and (1) it 
follows that there is no static conductivity at any energy. 

2. We start with the well known expression for the 
conductivity in an external electric field of frequency 
w (we put 11 = 1 throughout): 

209 

J (}f(e) 
a(CIl)=-ne' de-a;:-l])(e,CIl), 
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(1) 

where € is the particle energy, f( €) is the particle 
energy distribution function, and 

I])(e,oo)= ~L Iv.m l'll(e.-e)ll(e",-e'), 

".m 

(2) 

where vnm is the matrix element of the velocity opera
tor, €' = € + w, and L is the dimension of the system 
(we are, of course, interested in the limit as L _00). 
In formula (2), the matrix elements are calculated be
tween exact wave functions of a system having a poten
tial energy (xi are the impurity coordinates) 

U(x)=Uo'f Il(x-x;). 
~ , 

In the one-dimensional case, formula (2) can be repre
sented in a different form by introducing the logarith
mic derivative of the wave function of the electron, 
z(x) = q;-l (x)dq;(x)/dx, which satisfies the obvious equa
tion (k z = 2m€): 

dz(x)/dx+z'(x)+k'= 2mUoL Il(X-Xi). (3 ) 

The energy levels of a system with dimensions L are 
determined from the boundary condi~ions (the energy € 
is a parameter in Eq. (3)) 

z(x=O,e) =Zo, z(x=L,e) =ZL. 

It is now easy to rewrite the expression for 4>( €, w) 
in the form 

1 L L 1 

LI])(e,oo)= (2m)' < [J 1\J'(x,e)dx J 1\J'(x',e')dx']-
o 0 

x{ J [1\J(x, e) d¢~~ e') 

° 

( ') d¢(x, e) ]d }' ¢ X, e --d-x- x 

I (}i(L, e) (}z(L, e') I ' ) x ------,- ll[zL-z(L,e)]6[zL-z(L,e)] . ae ae 

The angle brackets denote averaging over the impurity 
coordinates xi. From (3) we find that 

Oz(x,e) 

as - 2m1\J-' (x, e) J ¢'(x', e)dx', 
o 

and finally, we have for 4>(€, w) 

LI]) [e, 00] = < 1\J-'(L, e) 1\J-' (L, e') Il[ZL - z (L, e) ]Il[ZL - z(L, e') ] 

x{J[ ¢(x,e)d1\J~~e') -1\J(x,e') d1\J~=,e) ]dX}'). 

° 

(5) 

We note here that in the derivation of the expression for 
4>( €, w) in (4) we have used the definition (2) of 4>, and 
then have written down in explicit form the square of the 
matrix element of the current and have taken into ac
count the fact that 
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ll(e-e.)=c5[zL-z(L,e)]1 I)Z~;e) I. 
The corresponding transformations are considered in 
greater detail in Halperin's paper[3]. 

We now introduce the functions 

FIl) (z" Z'; L) =( 'P-'(L, e)'P-'(L, 1l')c5[Zi - z (L; e) ]Mz, - z (L, e')] 

x{ H 'P(x, e) d'P(~:') 'P(x, e') d'P(=~e) ] dx }'). (6) 

We confine ourselves to the case when the distribution 
of the distances between the impurities obeys a Poisson 
law (the impurity concentration is equal to n). The 
quantities F(l) are functions of the variables Zl and Z2, 
of the system dimension L, and of the parameters E 

and E'. When regarded as functions of Zl, Z2, and L, 
they satisfy rather simple continuity equations, which 
can be derived by recognizing that 

FI'I(z" z,; L) = (WIl)(L)Il[z.-z(L, e)] 

xll[z,-z(L, e')]). 

It is obvious that 

aWl!) / aL = l[z(L, e') - z(L, e) ]WII-!) 
- l[z(L, e) + z(L, e') ]WIl). 

On the other hand, if we use the equations for the 
logarithmic deri vati ves (3), we can show (for details 
see the paper of Frisch and Lloyd[5]) that 

a a. , aV(Z., Z'; L) ar11l [z,-z(L,e)]ll[z,-z(L,e )]}== i)£ -I) [ (z,' + k.') V] 
z, 

a +-[ (z,' + k,') V]+ n[V(z, - 2k" z, - 2k,; L) - V(z" z,; L)], 
az, 

where 

k,' = 2me, k,' = 2me', k, = mU,. 

We obtain ultimately the continuity equations for the 
functions F(l) 

..!......FIl) (Z., Z'; L) =.!.-- [(z,' + k,')Fi!l] + ;... [(z,' + k,')FIII] 
aL az, oz, 

+ n[FIl) (z, - 2k" z, - 2k,; L) - FI') (z" z,; L)]+ I(z, - z,)FIl-II(Z" z,; L) 
- t(z, + Z,)FI/) (z" z,; L). (7) 

It is easy to prove (seeP]) that the functions FlO) and 
F (1) are independent of L as L - uo: 

and 

The function 4> does not depend on Zl and Z2. The 
function fl ") can be easily eliminated from Eq. (7) for 
F (2) by multiplying its left and right sides by to) ( - Z 1, 
-Z2) and integrating with respect to Zl and Z2. It fol
lows then from the definition of f(O)( Zl, Z2) that 

IS flol (z" Z2) dz, dZ2 = 1. 

From this we obtain immediately 

(8 ) 

(9 ) 

ill (e,!O) = 2 IS fI') (- z" - z,) (z, - z,) fill (z" z,) dz, dz,. (10) 

We note here that the definition (6) leads to boundary 
conditions for f{l) (they can be easily obtained if it is 
recognized that z - 00 corresponds to the zeroes of the 
wave functions, so that as z - uo we have (j [z - z( L, 
E)] - 1/z2):: 
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fl'l (z" Z2) z.'-' = f(l) (z" z,) Z;_' (l = O. 1; i = 1. 2), 
zt-++oo 

and the limiting equations (L - "") for them are 

o = ~[(Z,2 + k,')fI'I]+..!......[ (z,' + k,')fI'I) 
az, az, 

+ n [fI'l (z, - 2k,., z, - 2k,) - fI'l (z" z,) ), 
I) 

(z, - z,) fI'l (z" z,) = -[ (z,' + k,') f"I) 
az, 

+..!......[ (z,' + k,') fill) + n [fill (z, - 2k" z, - 2k,) 
az, 

- fll) (z" z,) )- (z, + z,) fill (z" z,). 

(11) 

(12 ) 

It is thus necessary to solve Eqs. (12) with conditions 
(11) and to substitute the obtained solutions in formula 
(10) for 4>( E, w), which is the formula for the conduc
ti vity. 

We now proceed to investigate Eqs. (12) and begin 
with the case when the particle energy E is high enough 
(k1' k2» ko). 

In this case it is natural to restrict the analysis to 
the Born approximation in scattering by a single im
purity, i.e., to expand f( z - 2ko) in terms of ko and 
terminate the expansion with the second-order term. 
The terms of first order in ko then lead to an energy 
renormalization (nko), and the collision term in (12) is 

n[f(z, - 2k" z, - 2k,) - fez"~ z,») -+ 

..... D(I) / I)z, + I) / I)z,)'f(z" Z2), (13 ) 

where D = 2nk~ = km/T and T is the free-path time. We 
call attention first to the following very important cir
cumstance: Eq. (13) contains a derivative with respect 
to the variable Zl + Z2, and the dependence of the func
tions f on this variable is in practice always weak (this 
will be demonstrated later on). 

It is more convenient to investigate Eqs. (12) with 
the collision term in the form (13) by changing over to 
other variables. We introduce the angles eland e 2 

(-IT/2 s ei s IT/2): 

z, = k, tg a" z. = k2 tg a" (14) 

and the new functions rpIO)( e 1, e 2) and rp(l)( e 1, e 2): 

/''' (z" z,) = [ (z,' + k,') (z,' + k,') )-'k,k,!pI'1 (a" a,). (15) 
/,'1 (z" z,) = [(z,' + k,') (z,' + k,') )-"'<jJlII (a" a,). 

The physical meaning of the new variables is that they 
are the phases of the wave functions. They are more 
convenient because we need no longer worry about 
satisfaction of the conditions (11), since they are taken 
into account immediately, and in addition they arise 
automatically if an attempt is made to solve (12) by 
iteration with respect to the impurity concentration n. 

It follows from (11) that (i = 1, 2) 
!pI'1 (a, = - n / 2) = !pI'1 (a, = n / 2). 

(16) 
!pI'1 (a, = - n / 2) = - !pI'1 (a, = n / 2). 

and from (9) and from the definition (15) of rp(O) it fol
lows that 

-I' IS !pI'1 (a" a,) da, da, = 1. (17) 
_n/2 

In terms of the new variables, the expression (10) for 
4> ( E, w) takes the form 

'1' 
<IJ (e,!O) = _2-S S !pI'1 (-a" -a,) [k,sin a, cos a, 

k,k, -n" (18) 
- k, sin a, cos a,)ipl!) (a" a,) de, da,. 
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..... 

From the conditions (16) we get 

lP(O) (8" 8,) = 1:. exp(2il8. + 2im8,)lP~,~, 
',m 

(19 ) 

',M 

We omit the very cumbersome transformation involved 
in the transition form the variables z to the angles e, 
and present directly the equations for cp( 0) ( e 1, e 2): 

0= k. alP(0)/a8. +k, alP(0)/iJ8, 

{ 1 . 1 
- DlP(O) -(cos 28. + cos 48,) + -, (cos 28, + cos 48,) 
'kt ~ 

1 . } + --[cos 2(8. + 8,) - cos 2 (8, - 8.)] 
k.k, 

alP(O) { 3 ( 1 ) 1 [ -D-- --, sin 28. +-sin48, +-k k' sin 28, 
08. 2k. 2 , , 

(20' ) 

1 1 l} alP(O) 
+Tsin2(8,+8')+Tsin2(8,-8,) -D---ae;-{k, ...... k,,8, ...... 8,} 

D a'lP(O) 2D 
+ ~ cos' 8, --+ --cos' 8, cos' 8, 

k,' 08,' k,k, 
a'lP(O) D a'lP(O) 

x--+-cos'8,--
08,08, k,' 08,' ' 

and the function cp( 1) ( e 1, e 2) 

o [ k, + k, k, - k, ] 
- lP' ) (8" 8.) -2-sin(8. - 8')+-2-sin(8. + 8,) 

alP(!) alP(!) { 1 
=k,-~+k,---DlP(!)(8h8,) --, (1 

08, a8, 8k, 
,1 1 

+4cos28, +3cos48,)+--, (8, ...... 8')+-4-[C052(8.+8,) 
8k, k,k, 

( tiT (20") } 
~m(') { 1 

-cos2 e,-8,)] -Doe;- 2k,' (2C0828,+cos48,) 

+ 4k~k' [2 sin 28, + sin2(8, + 8,) + sin 2(8. - 8,)] } 

alP(!) D a'lP(') 
-D--{S, ++ 8" k ....... k,}+~cos'8,--

08, k,' 08,' 
2D a'lP(t) D O'lP(1) 

+--c08'8. cos'8,--+-cos' 8,--
k,k, a8.a8, k,' 08,' 

From (20') and (20") we can obtain relations for 
their Fourier components. We write out only the equa
tion for cp~o,~, where p = l + m and q = l - m: 

lip (k, + k,) + iq (k, - k,) ]lP~~~ 

= D [po (_3_ +_1_ +_3_). + q' (_3 ___ 1_ 
8k,' 2k,k, 8k,' 8k,' 2k.k, 

r+.2-)+ 3pq (k"-k,')] (0) 

8k,' 4k,k, lPp,. 

+ Ap,q(k" k')lP~~"q~, + A_p,_q(k" k')lP~~"q+t 

+ Ap,_q (k" k,) lP~~"<+' + A_p,q (k" k,) lP~~"q-, 

+ B.,q (k')lP!~"q-, + B_p,_q (k,) lP~~"q+, 

+ Bp,_q (k,) lP~~.,q+. + B_p,q(k.) lP!~.,q-, 
D (p' - q') (0) (0) (0) (0)] 

+ 8k,k, [lPp-.,q + lPP+2,q + lPp,q-' + lPp,q+Z . 

(20"') 

Here 

A.,q(k" fez) = 4k~kz[P'(k, + k,) + q'(k, - k,) T 2pqk, - k.(p + q)], 

D 
B.,.(k) - 16k' (p + q) (p + q - 2); 

We shall show now that we can confine ourselves to 
Fourier components with p = 0 (l = -m), and that the 
components cp~O)q with p"" 0 are small in comparison 
with CPOO) • We could attempt to solve (20) by iteration, ,q 
using the fact·that the terms containing D are of the 
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order of D/k2 ~ k/ ET« k. But we can see immediately 
that if, for example, p = 0 (I = -m), then a quantity on 
the order of q( k2 - k 1 ) ~ qkw/ E appears in the left
hand side of (20), Le., there can be no expansion in 
terms of 1/ ET « 1 for these components. We therefore 
sum first all the terms with p = 0, and we show subse
quently that they are indeed the most important terms 
at w -0. 

Retaining in (20) only CPOO,)q = cp~o), we obtain 

{i (k, - k,) - Dq V(:~~k~:) , + 4k~k' n lP~O) 
Dq (0) (0) '( k )Il +--[lPq+Z + lPq-'] =! k, - , O,q· 

8k,k, . 

(21) 

In the derivation of (21) we divided (20"') by q, and this 
is the cause of the normalization term in the right-hand 
side of (21) (liO,q is a Ii-function). 

Changing over now from the recurrence relation for 
the Fourier components (21) to the function (e = e 2 

- e 1) 

we readily obtain an equation for cp(O)( e): 
d a 

, alP(O) (8) + d8 [ (a - cos 2B) lP(O) (8) ] =;z' (22) 

and with the aid of (20') we obtain for cP(l)( e) 

d'lP(l) (B) dlP(!) (B) 
(a-cos2B) dB' +(a+2sin2B)--d-B-

2k,k, 
- (b - cos 2B)lP(1) (B) = - -y;-(k, + k,)sin BlP(O) (B). 

(22') 

Here 

4(k,-k,) k k 4 
ex; = 1 2 ---+- co't, 

Dill_it 

a= 1 +3(k,-k,)'/2k,k, ....... 1 +'1,(00/8)'; (23) 

b = 1 + (k, - k,)'/2k,k, ....... 1 + '/,(00/8)', 

and the right-hand side in (22) is chosen in accord with 
the normalization condition (17). 

Equation (22) can be easily solved, and the answer is 

lP(O) (B) = ~ 1/1(0) (B) 
n' a- cos2B' 

where 1/1(0)( e) is given by 

1/1,O)(B)= _1 ___ 1_["fU(8')d8' + eV S' U(B')dB'] 
u(8) eV -1 • _./, 

and 

U (8) = exp { ,a arctg (-V a + 1 tg 8)} , 
l'a-l a-1 

while 

(24) 

(25) 

(26) 

(27) 

We now investigate the behavior of 1/1(0)( e) as a func
tion of the angle e. It is easily seen that since a-I 
~ (W/E)2« 1 even when e takes on values 

8;;;': a ~ oo't« 1, 

it follows that the function u( fJ) assumes the constant 
value exp(±Y/2), and the sign coincides with that of 
the angle e. It follows therefore, since Y » 1, that the 
function 1/1( 0)( fJ), up to e ~ (1, is given by 

1/1(O)(S)={ 8, 8>0. 
S+n, 8<0 

(28) 
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, 
At the same time, cp(O) ~ a down to small angles. At 
sufficiently small angles, (j, the function cp(O) increases 
in such a way that the normalization condition is satis
fied. At small angles, Eq. (22) takes the form (e = (3a) 

<p(0)(M+~{[~(_1 )' +2~'] <P(O)(~)}=~. (29) 
d~ 2 881: )'t' 

We note now that from the exact expression (25) for 
cp(O)( e) we can readily find that the contribution made to 
the integral of cp(O)( 8) over the angle region (3 ~ 1/ ET 
is much smaller than unity. Then the letter parameters 
of Eq. (29) vanish when (3 ~ 1/ ET. By the same token we 
find that in the angle region that makes the largest con
tribution to the integration of cp(O) the scale of variation 
of the function cp(O)( e) is the quantity a. This leads to 
the obvious conclusion that CPq = y(O)(qa), with y(O)(O) 
=1. 

We have confined ourselves so far to the Fourier 
components Cp~:q with p = O. We show now that the 

components with p ~ 0 are small in comparison with 
cpb~)q' We estimate the terms with p ~ 0 by the iteration 

method and show that this method is applicable. Let us 
find the term with p = 1. We retain in the right-hand 
side of (20'), which contains the factor D, only the 
terms with p = 0 and 1, and assume that the depend
ence of cpp~)q on q is weak, i.e., we assume that 
cp (0) ;:" cp( 0) We then obtain 

p,q±1 p,q' 

3D(k.+k,)' 
[i(k. + k,) + iq (k. - k,) - 8k.'k,' 

3Dq'(k. - k,)' 

8k.'k,' (30) 
3Dq(k.'-k,') ] (0) D [ 2 )'+ (k' k')] (0) - ------- rr,., = -- 2k,k, + q (k. - k, q, -. <Po". 

4k.'k,' T , 4k.'k,' 

The functions cphO,)q differ appreciably from zero at 

q;S 1/a ~ 1/WT. In this region we have with good ac-
curacy 

(0) D (0) 1 (0) 

<p", "" 4ik' <po" - ~ <po" , 

i.e., indeed cp(t «CPOO). At larger values of q we ,q ,q 
have (n(O) ~ m(O) but in this region the m(O) them-

't' 1 ,q 't' 0 , 't' 0 ,q 
selves are much smaller than unity. We note here that 
the result justifies at the same time the approximation 
(13), since the fast decrease of cp~~)q with decreasing p 

means a weak dependence on Zl + Z2. 

We proceed now to the function cp(l)( e1, ( 2). For 
this function, too, we confine ourselves to an approxima
tion in which the dependence on the angles takes the 
form cp(1)(8 1, ( 2)=cp(1)(e 2 - ( 1). TheanalogofEq. 
(21) (obtained with the aid of (20") is then 

[-a(l + q)' + ia(l + q) - bl<p:') +['I,(q _1)' + q - '/,]<p~~), 

+['I,(q + 3)' - q - 5/,]<p,~~ = ik,k,[k, + k,lD-'(<p;O) - <p~;,). 
(31) 

It is impossible to solve (31) in quadratures. We are 
therefore forced to confine ourselves to an estimate of 
cp(l). We note that it is meaningful to solve only the in
h6\nogeneous equation that satisfies the conditions (16). 
But since the right-hand side of (31) is proportional to 
cp~t, and since cp~t varies slowly with q (scale 1/ a 
» 1), we assume that 

d (.) d' (') 
,0) (0) _ 2d (O)ld (.) - (.) - 2 <p, + 2 <p, 

q;, - <Po+' - - <pq q, <P.±, - <p, + ----a:q ~ a = 1, b = t 

(32) 
and obtain approximately 
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, (') d<p, (I) , d'<p,(I) ,d<p;O) 
Lqa<p, + 4q --+ 2q -- = - 4181:--. 

dq dq' dq 

Thus, cp~l) = ay(l)(qa). In our apprOximation, when 
only the prinCipal dependence on 8 2 - e 1 = 8 is taken 
into account, we have 

III (e, 00) - S <p(O) (- S)sin S<p(1) (S)dS-

(0) (0) (33) 
~ (I) d<p, ~ (I) ( ) d<p, 

- ~ <p, -----aq - a ~ y qa -----aq' 
, , 

Using the fact that we know the characteristic scale of 
variation of cp~O) = y(O)( q, a), we find from this that 
W(E, w)~ Iwi. 

4. Thus, the conductivity of a one-dimensional sys
tem vanishes as w - 0 if the energy is high enough. 
This leads to the conclusion that there is no static con
ductivity also in the general case of arbitrary particle 
energies. 

Let us turn to the exact equations (12). We have 
shown by direct calculation that as w - 0 the charac
ter of the dependence on the angles e 2 - e 1, and by the 
same token on Z2 - Zl, is delta-like. We can now verify 
by direct substitution in the first equation of (12) that 
the exact solution for f(O)(zl, Z2) at w = 0, i.e., kl = k2, 
is 

(34) 

where f(O)( Zl) is the solution of the equation 

~-,[ (Z2 + k') f(O) (z)] + n[j(O) (z - 2ko) - j<'l (z)] = o. (35) 
az ' 

The solution of this equation can be obtained, in particu
lar, by iteration with respect to the impurity concentra
tion at sufficiently small n. It is easily seen that since 
to)(Zl, Z2) takes the form (34), the left-hand side of 
Eq. (12) for the functions f(l)(Zl, Z2) vanishes, the equa
tion becomes homogeneous, and its formal solution is 

j<tl(z" z,) = (z. - z,)/(O) (z" Z2) "'" 0, 

This result again agrees with the properties of the 
function f( 1) as w -- O. By the same token, it follows 
from (10) that W = 0, meaning that there is no static 
conductivity at any particle energy. It becomes more 
or less obvious that the function w( W, E) (w - 0) is 
different at different energies. 

5. Unfortunately, it is impossible to obtain any sim
ple physical picture explaining this peculiar absence of 
static conductivity in the one-dimensional case. 

It seems, however, natural to attribute the result to 
the fact that if an attempt is made to construct the usual 
diagram technique (see[61) to find even one Green func
tion of the particle, then it turns out that, unlike the 
three-dimensional case, even the Simplest diagram with 
overlapping lines from different impurities leads not to 
a contribution ~ 1/ET (see[61), but in fact to a new pole 
of the Green function, at p2/ 18m, and it becomes 
necessary to sum all the diagrams. That this is indeed 
the case can be shown by using other considerations. 

Halperinl3J has shown that the quantity F(p, E) 
= 1m G(p, E), where G(p, E) is the Green function of the 
partic Ie, p is the momentum, and E is the energy, can 
be obtained exactly with the aid of the integral 

F(p, 8) = 4m Re S j<0) (- z) y(z)dz, 
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..., 

where f(O)(z) satisfies Eq. (35) (Halperin obtained it in 
the Born approximation for the collision term), and 
ytz) can be obtained with the aid of the equation 

~[(k' + z')y(z)]+ n[y(z - 2k.)- y(z)]+ (ip - z) y(z) = - I") (z), • • 

subject to the conditions 

I") (z)z' = II" (z)z', y(z)z = y(z)z. 
t_+ OO 

The function f(O)(z) is generally smooth and does 
not have unpleasant properties, unlike y(z). Indeed, let 
us introduce new functions and variables 8: 

I") (z) = k<p") (e) 
k'+z' ' 

<pee) 
y(z)= (z'+k')'I. ' 

z = k tg e. 
Then the equation for the Fourier components of the 
function cp ( (}) is 

{"1 (<p,") - ""~:) 
lip + tk(21 + 1) ] <PI + n ",,-AI,m<Pm = 2 . (36) 

We did not write out in this equation the coefficients 
Al,m ~ D, since they are of no interest to us. It is seen 
from (36) that for the function CPl the singular values of 
the momenta and energies, when one cannot expand in 
terms of the concentration, are p2 '" k 2( 2l + 1)2, i.e., 

B=p'/2m(21+1)'. (37) 

Thus, in addition to the usual branch E: '" p2/2m we 
obtain an infinite set of branches. In the language of 
diagram technique this means that new singularities 
appear in diagrams that become ever more complex 
topologically. The fact that by specifying the particle 
energy we do not specify its momentum uniquely seems 
to point to a localized character of the particle wave 
function. 

Note added in proof (25 April 1973). A more detailed analysis of 
(33) shows that the corresponding integral decreases with frequency 
more rapidly than Iwl, as might follow from scale considerations. (I am 
grateful to V. Berezinskii for pointing this circumstance out to me.) 

The reason is that in the angle region where '1'(0)(8) and '1'( 1)(8) as
sume the largest values, the dependence on 8 '" 0 2 -0, takes the form 
'1'(0)(8) - ex-'~o(O/ex) and '1'(1)(0) - ~,(8/ex). This result can be obtained 
from the explicit expression (24) for '1'(0)(8) and from Eq. (22') for '1'(1) 
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(8). Both functions differ from zero only if 8 < 0 (10 I :s ex). A more ac
curate statement is that when account is taken Of formulas (28) and (24) 
the two functions y:><0)(8) and '1'(1)(8) are of the order of ex outside the 
region 8 < 0, 18 I ::; a (see the discussion preceding formula (29)). There
fore if we confine ourselves only to this region of 0, we obtain zero be
cause the functions '1'(0)(8) and '1'(1)(0) enter in (33}witlHlpposite signs 
of the angles. We did not take into account here, however, the depen
dence on the variable 82 + 8,. It was shown earlier that the Fourier com
ponents .,o~~) q decrease with decreasing p like the parameter I/€T ~ ex 
raised to a certain power. This means that the function .,0(0)(0" O2 ) varies 
over the scale a like the function 0 '" 0 2 -8 " and over a much larger scale 
as a function of the variable 8 2 + 8 I' If we want to retain the dependence 
on O2 + 0, (with O2 - 0, ::; a) we must therefore use Eqs. (20') - (20"), 
in which we can put k2 '" k, everywhere except in the term with the 
derivative with respect to 8'" 8 2 - 8" and the factor of '1'(0)(8 2,0,) in 
(20") is 

~ [k8+ k';k. sin(8,+8.) ], 

since at small 8 one of them is approximately equal to 8 and the other 
approximately equal to a. The function <I> must now be found with the 
aid of formula (18). 

Even with all the simplifications, it is impossible to solve (20') and 
(20"), since the variables cannot be separated. Moreover, even in this case 
we cannot state that a - Iwl, since it is even impossible to demonstrate 
that when account is taken of the dependence on the variable 82 + 8 1 

the functions .,0(0) and '1'(1) differ from zero at 0 > 0 as functions of the 
variable 8/a, since all the equations of the theory are parabolic and it is 
therefore impossible to find the lines for one level (where, say, the func
tions vanish). By the same token we can only state that the conductivity 
decreases with frequency not slower than Iwl at high energies. 
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