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Generation of long-wave optical phonons under "beats" of two laser beams with a frequency 
difference close to the phonon frequency is considered. The optical phonons produced decay into two 
short-wave acoustic phonons. The number of acoustic phonons thus produced depends strongly on 
the line shape of the exciting radiation. This number is finite for any excitation intensity, in contrast 
to the predictions of the Orbach theory. 

INTRODUCTION 

The possibility of generating a large number of non­
equilibrium optical phonons with the aid of a laser has 
recently attracted attention. The generation is made 
possible by Raman scattering of the radiation from the 
lattice vibrations[I,2] or by beats of two laser beams 
whose frequency difference is close to the frequency of 
the lattice vibrations[3,4]. The total concentration of the· 
produced optical phonons can be estimated from the 
formula ii -Q/noro, where Q is the power absorbed per 
unit volume, no is the frequency of an optical phonon 
with k = 0, and r~1 is the lifetime of this phonon. Typical 
values for experiments in diamond[4], viz., _107 W/cm3, 
no = 2.5 x 1014 sec-\ and ro = 3 x lOll sec-7 yield Ii -
1015 cm-3. We note by way of comparison that the equili­
brium concentration in diamond at T = 77°K is fiT - 1012 

-3 cm . 

The main mechanism that bounds the lifetime of the 
produced long-wave optical phonon in pure crystals is 
its decay into two short-wave acoustic phonons with op­
posite momenta. There is apparently no experimental 
information on the lifetime of such phonons. Theoretical 
estimates indicate that the transverse short-wave 
acoustic phonons (unlike the longitudinal ones) should 
have very large lifetimes[5]. We can therefore expect 
such phonons to accumulate in appreciable amounts 
when optical phonons are generated, as was indeed ob­
served in luminescence experiments [4]. We assume 
henceforth for simplicity that there is only one mode of 
acoustic phonons, and that these phonons have a lifetime 
7 _10-9 sec. The concentration N of the acoustic phonons 
can be estimated from the balance N/7r - il,ro, which 
yields N - 1017 cm-3. 

It is seen from the foregoing estimates that in the 
aforementioned experiments the phonon system is essen­
tially in a non -equilibrium state. The imbalance is ag­
gravated also by the fact that the produced phonons are 
distributed over a very small number of optical modes 
m and acoustic modes M. The number estimated of ex­
cited modes differs greatly in different papers. There 
is a correspondingly large discrepancy in the estimated 
occupation numbers n - ii/m and N - N/M. 

Thus, Colles and Giordmaine[4] believe that the filled 
optical phonon modes k are those whose frequencies nk 
differ from no by an amount on the order of ro; this 
yields m - 1020 cm-3 and n - 10-5 in diamond. On the 
other hand, Lauberau et al. [2] have assumed that the 
number of excited modes is determined by the uncer­
tainty of the wave vectors of the light, an uncertainty 
connected with the finite region of effective interaction; 
this yields m - 107 cm-3 and n -10lD. For comparison 
we indicate that the total number of optical modes in 
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diamond is 3 x 1023 cm-3 and that at nitrogen tempera­
ture the equilibrium value is n - 10-11 • The number M 
of excited acoustic modes d~pends on the width ~Wq of 
the distribution of the acoustic phonons near the fre­
quency Wq = n/2. Lauberau et al.[2] assume that 
~wq - ro;Othis yields M - 1020 cm-3 and N _10-2. Or­
bach[6,7] assumes in fact ~Wq - 7-\ meaning M - 1017 

cm-3 and N -10. 

It is clear from the foregoing that regardless of which 
of the estimates is correct, the situation in the discussed 
experiments is one with narrow phonon distributions, the 
widths of which can be determined by the lifetimes of the 
nonmonochromaticity of the excitation. In these situa­
tions it is therefore impossible to use the usual kinetic 
balance equations for the occupation numbers nk and 
Nq , and it is necessary to use equations of more general 
character. The first attempt in this direction was made 
by Orbach[6,71, who in essence replaced the delta-func­
tion in the energy conservation law of the usual kinetic 
equation by a Lorentz curve of width 7-1. While this 
idea is correct as far as the physical meaning of the 
problem goes, its realization was in our opinion incor­
rect. The point is that the energy conservation law per­
tains to the no - 2wqo decay and the uncertainty can 
be connected not only with the width 7-1 of the acoustic­
phonon level, but also with the width roof the optical­
phonon level, which is larger by several orders of mag­
nitude. An additional cause of the broadening can also 
be the nonmonochromaticity ~!I of the excitation. The 
beams used in the 'experiments have spectral widths 
~!I - 0.1-1 cm-\ which are comparable with ro = 1.5 
cm -1 and greatly exceed 7-1 • 

At sufficiently high light intensities, when Nq ::. 1, 
the no - 2wqo decay can become stimulated. The effec­
tive decay frequency then exceeds ro and should be ob­
tained from the equations simultaneously with the occu­
pation numbers. An important role can be assumed 
then also by the frequency renormalization ~no, since 
it depends on the intensity and takes the optical phonon 
out of resonance when beats are produced between the 
two beams. 

1. GENERAL EQUATIONS 

The phonon generation theory constructed in the 
present paper pertains to the caee of stationary and 
spatially homogeneous excitation, when the correlation 
function (E(r, t)E(r' , t') of the light field dependes only 
on the differences r-r' and t-t'. This means that the 
duration of the laser pulse is larger than the lifetimes 
of all the phonons, and that effects of spatial amplifica­
tion and attenuation of the light beams can be neglected. 

It is assumed that the acoustic phonons relax on a 
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thermostat with T = O. Since only the small energy re­
gion of these phonons near Wqo is of importance, we can 
assume the corresponding relaxation time r to be con­
stant. The optical phonons are assumed to be active 
only in Raman scattering and inactive in infrared ab­
sorption. This simplifies the problem greatly, since it 
makes it possible to disregard polariton effects. Since 
we do not distinguish between longitudinal and trans­
verse acoustic phonons, it is natural to neglect all the 
effects connected with the polarization of the light and 
of the optical phonons and with the anisotropy of the cry­
stal. We therefore regard all the fields as scalar and 
the crystal as isotropic. 

To derive the equations that replace the kinetic ones, 
we used the Keldysh diagram te chnique [8]. Only two of 
the four Green functions in this technique are indepen­
dent, one retarded Dr and the other statistical Ds. For 
free phonons (say, acoustic), they are given by 

(1.1 ) 

D:(q) = -i"w.(2Nq + 1) [6(w - Wq) + I\(w + Wq)], q = {w, q}, (1.2) 

The exact function Dr is defined by a corresponding 
polarization operator II r , but it is more convenient to 
use in its place the quantities 

1(q) =-signw'w q 1m II(q), (1.3) 

t1w(q) = '/2wqReII(q), w.+~w(q) ""w(q), (1.4) 

which represent the width and the shift of the level Wq 
on the mass shell W = Wq. 

Instead of the exact function Ds it is convenient to 
introduce, in analogy with (1.2), the function N(q), de­
fined by the relation 

D.(q) = -ilHllq[2N(q) + 1l{6("{(q) Iw - w(q» + 6(1(q) Iw + w(q»}, 

(1.5) 
whe re we have introduced the smeared de lta -function 

6(lw-w)=1 1 
1 0 2" (w-wo)'+(1 /2 )' (1.6) 

Replacements for the kinetic equations are formu­
lated for the functions N(q), y(q), ~w(q) and the corre­
sponding quantities n(k), r(k), and M2(k) for the optical 
phonons, where k = {n, k}. The system of equations con­
sists of the balance equations for the "occupation num­
bers" N(q) and n(k) and the equations expressing the 
"widths" y(q) and r(k) and the "shifts" ~w(q), ~n(k) 
in terms of the occupation numbers. 

The width of the acoustic phonon is 

(1.7) 

where the first term is connected with the decay of the 
acoustic phonons on the thermostat, while the second 
is due to the interaction with the long-wave optical pho­
nons 

1"(q)=A S d'k6(r(k) IQ-Q(k» 
x6(1(k-q)IQ-w-w(k-q»{N(k-q)-n(k)}, (1.8) 

Here A is the constant for the decay of an optical pho­
non into two acoustic phonons. The acoustic -phonon 
level shift due to scattering by the thermostat can be 
regarded as included in the nonrenormalized spectrum 
Wq' and the shift due to the interaction with the long­
wave optical phonons is 

~w'(q)=_1_A S d"k[p(r(k) IQ - Q(k) )6(1(k - q) IQ - W - w(k - q» 

. 2" (1.9) 
XN(k - q) - o(r(k) IQ - ~l(k))P(1(k - q) IQ - W - w(k - q))n(k)], 
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where we have introduced the smeared principal-value 
function 

P(lw-w)= W-Wo (110) 
1 0 (w-wo)'+(1 /2 )' • 

The acoustic-phonon balance equation takes the form 

AS d"ko(r(k) IQ - ~2(k»6(1(k - q) IQ - w - w(k- q» 

x {n(k)[N(q) + N(k-q) + 1]-N(q)N(k-q)} =-c-'N(q), (1.11) 

The optical phonons interact with the electromagnetic 
field E, which is assumed to be classical, i.e., its com­
ponents can be assumed to commute. The interaction 
with the field then makes no contribution to the width r 
and the shift ~w, which are expressed as follows: 

1 J l'(k)=TA d'qO(1(q)IOJ-w(q) 

x 6(1(k - q) IQ - OJ - w(k - q) )[2N(q)+ 1], (1.12) 

1 :\ S ~Q(k)=Z;-2-A d'qo(1(q)lw-(o(q» 

XP(1\k-q)l~l-w-w(k-q»[2N(q)+1]. (1.13) 

The balance equation for the optical phonons is 

+A S d'q6(1(q)lw-w(q»6(1(k-q)IQ-OJ-w(k-q» 

(1.14) 
x{N(q)N (k - q)- n(k) [N(q) + N(k - q)+ 1]1= - G(k), 

The right-hand side describes here generation of optical 
phonons as a result of Raman scattering 

G(k)=BS d'xe-i/'''<E(x)E(O»', kx=kr-Qt, (1.15) 

where B is the constant responsible for the interaction 
of the phonons with the light. 

The constants A and B can be related to customarily 
measured quantities. The spontaneous-decay frequency 
of an optical phonon with k = 0 is 

"qo' 1 {} I 
fo=--A, w"=-2 Qo, s=\ ~ 

S oq q_q.' (1.16) 

The total probability of Raman scattering of a quantum v 
with conversion into a quantum v' = v - no is 

w=!!!!:..vv"B , ' c 
(1.17) 

In the derivation of the equations for the occupation num­
bers, shifts, and widths it was assumed that the phonon 
polarization operators can be calculated in the lowest 
order in the constants A and B. This is ensured by the 
smallness of the parameters rolno and wino. 

The true occupation numbers can be obtained from the 
formulas 

Nq= J dCll(j(1(q) 100- w(q»N(q), 

n. = J dQI\(f(k) IQ - Q(k) )n(k). 

(1.18) 

(1.19) 

It is easily seen that if N(q) and n(k) change little when 
W and n are changed by amounts on the order of y and r, 
then all the smeared delta-functions can be replaced by 
ordinary ones and it is possible to integrate over the 
frequencies in (1.11) and (1.14). The equations are then 
closed on the mass shell and turn into the ordinary ki­
netic equations for Nq and nk. 

2. EQUATION FOR THE OCCUPATION NUMBERS 
OF LONG-LIVED ACOUSTIC PHONONS 

We shall solve the system of equations for the occupa­
tion numbers, shifts, and widths under the following as­
sumptions: 1) in Eqs. (1.11) and (1.14) we can neglect 
the term containing N(q)N(k - q) ya and ~wa do not ex­
ceed r-I, which in turn is smaller than all widthS, i.e., 
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ro and t:.v. The corresponding criterion will be presented 
later. 

Assumption (2) enables us to replace the smeared 
functions (; and P, with widths y, by the usual functions, 
and assume that w(q) = Wq. We then obtain in place of 
(1.12) and (1.13) 

r(k}=+A J d'q6(Q-0I.-0I0_.} (2N.+ 1), (2.1) 

LlQ(k}=_1_~A Jd'q P (2N.+1). (2.2) 
211 2 Q - 01. - 010_. 

Owing to assumption 1), it follows from (1.14) that 

n(k) = G(k) I r(k). (2.3) 

We now substitute (2.3) in (1.11), integrate with re­
spect to 0, and put W = Wq. Changing then from integra­
tion with respect to k to integration with respect to q' 
k - q, we obtain 

G •.•. = G(OI. + 01 •. , q + q'), 

(2.4) 

(2.5) 

r •.•. =r(OI.+OI •. ,q+q'), LlQ •.•. =LlQ(oo.+OI •. q+q'). (2.6) 

Substituting (2.1) and (2.2) in (2.6), we obtain a closed 
system for the occupation numbers of the acoustic pho­
nons. Once we obtain Nq, we can calculate rand t:.0 with 
the aid of (2.1) and (2.2), and then, using (2.4) and (1.9), 
find the distribution of the optical phonons 

J dQ G(k) 

n. = 211 [Q _ Q(k)]' +[r(k)I2]" (2.7) 

The absorption power per cm3 is expressed in terms 
of the concentration of the acoustic phonons N in the form 

Q = '/,QoN I •. (2.8) 

Substituting (2.4), we obtain 

Q=QoJ d'k _ G(k) r(k}. 
(211)' [Q - Q(k}]' +[r(k)I2]' 

(2.9) 

For comparison, we write down the total concentration 
of the optical phonons 

- J d'k G(k} 
n = (211) , . [Q-_-Q=--(-k-) ]-,-+-[ r-(-k-} 1-2-]' . (2.10) 

We now obtain G(k) for a field consisting of two uncor­
related beams with wave vectors fl and f2: 

E(x} =E,(x) +E,(x); 

E,(x) = A,(x)eiJ,x+ K.c., /={v,f}; 

(2.11 ) 

(2.12) 

and similarly for E2. Here Al and A2 are slowly varying 
functions describing the nonmonochromaticity of the 
beams. It is assumed that Vl -V2:::: 0 0 , 

When calculating G(k) it is necessary to retain only 
those of (E(x)E(O)? which depend on the time with fre­
quency Vl -V2. We then obtain 

G (k) = B J d'xe-il'''«A, (x)A, (0) ')(A,(x)'A,(O» exp [i (f. - /,}x] + c ,c). 
(2.13 ) 

We note also that 

J~G(k}=~B (~)'J', I == (/.I,) 'I. , 
(211)' 2 c (2.14) 

where J land J 2 are the beam intensities. 
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It is seen f!:9m (2.13) that the !,unction G(k) is local­
ized near 0 = 0 '= Vl - V2 and k = k = fl - f 2. The degree 
of localization is determined by the temporal and spatial 
nonmonochromaticity of the beams, which can be de­
scribed by the frequency and wave-vector spreads t:.v 
and t:.f. 

It follows from (2.7) that the k-space region in which 
the optical modes are excited is determined by the spa­
tial nonmonochromaticity, i.e., 

m ~ (M) '/ (211) '. (2.15 ) 

Only the degree of excitation of these modes depends on 
the temporal nonmonochromaticity t:.v and on the detun­
ing n-oo. This can be easily verified, for example, in 
the case when G(k) factorizes into a product of functions 
of 0 and k. 

3. DISTRIBUTION OF ACOUSTIC PHONONS AT 
LOW SPATIAL NONMONOCHROMATICITY OF 
THE EXCITATION 

To simplify (2.4), we assume that the k-space region 
where the optical phonons are produced is smaller than 
the thickness of the sphe rical laye r t:.q near qo in q - space, 
where the acoustic phonons are produced. We can then 
put 

G(k) = (211)'6(k)G(Q) (3.1 ) 

and obtain from (2.4) and (2.6) the following system of 
equations for Nq 

411r s. G (201.) 
o . .,-----::--,....,.,,-~~:...,.,,:-:-:--=_cc::7:""(2N. + 1} = N., 

go' [200. - Qo - LlQ (201., O) ]' + [f(201., 0}/2]' 

1'(2oo.,0} = r o(2N. + 1), 

LlQ(2oo., 0) = ro-1-J dOl •• --P-(2N •. + 1}. 
211 01. - 01.' 

(3.2) 

(3.3) 

(3.4) 

The characteristic intensity in the present problem 
is the quantity 

J'=_C_[£ LlVro ]'''. 
411 411s. 211B (3.5 ) 

We now change over to the dimensionless quantities 

201. - Qo 
x=--r-o-' L=~ 

/"' 

We then obtain from (3.2) -(3.4) 

Llv 
a=2f."' 

2aL' <p(x} [N(x}+ 'I ]- N(x} 
[x-Ll(x)]'+[N(x}+'I,]' ' - • 

Ll(x}=~Jdx' ~N(x'}, 
11 x-x 

(3.6) 

(3.7) 

(3.8) 

where cp(x) is a dimensionless spectral form factor nor­
malized to unity, so that cp(x) ~ a-l . 

At low intensities, when L« 1, the value of N(x) is 
small for all x, and we can put t:.(x) = O. It follows there­
fore from (3.7) 

N(x} = 2aL' <p(x) 
x' + 'I, . (3.9) 

We see thus that in the case of broad-band excitation, 
when a » 1, the distribution of the acoustic phonons 
duplicates the line contour of the optical phonon. In the 
case of narrow-band excitation, the distribution of the 
acoustic phonons duplicates the excitation spectral con­
tour. This situation is analogous to resonance lumines­
cence, where the role of the intermediate state is played 
by the state with an optical phonon [9] • 
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At high intensities, when L » 1, we can obtain a so­
lution for two characteristic cases, a slowly decreasing 
excitation with a Lorentz contour 

a 1 
ql(x)= n (x-x)'+a' ' (3.10) 

and a sharply decreasing excitation with a rectangular 
contour 

1 
ql(x)=Ta' lx-xl <a, 

ql(x) =0, lx-xl >a. 

Here x denotes the center of the excitation: 
- Q-Q. 
x=-r-.-· 

(3.11) 

We assume also that the detuning of the excitation rela­
tive to the optical phonon and the width of the excitation 
line are small, i.e., 

(3.12) 

In the region where N(x) » 1, Eq. (3.7) takes the form 

[x - 6. (x) ]' + N(x)' = 2aL'cp(x); (3.13) 

For a Lorentz excitation contour, the solution is 

N(x)= (~)'I' L> a' . 
n (x-x)'+a' (3.14) 

It is easy to show that in this case 

6.(x)= (~)'I'L a(x-z) . (3.15) 
n (x-x)'+a' 

In the region of the excitation contour we have I x -x I 
~ a, and therefore 

N(x) ~ 16.(x) I ~ L > 1, 

at the same time we have in this region 
Ixl .;; Ixl + Ix - xl .;; 1. 

Thus, Eq. (3.13) is equivalent to the equation 

6.(x)' + N(xl' = 2aL'cp(x), 

which is obviously satisfied. 

(3.16) 

For a rectangular excitation contour, the solution is 

N(x) = La-'[a' - (x - x)']''', Ix -xl< a, 

N(x) =0, Ix-xJ>a. 
(3.17) 

We can easily show that 
6.(x) =La-'(x-x), lx-xl <a, 

6.(x) = La-'{(x - x) - sign(x - x)[ (x - x)' - a2 J}. Ix - xl> a, 

(3.18 ) 

and verify that (3.13) is satisfied when L» 1. 

It is seen from the obtained solutions that both in the 
case of Lorentz excitation and in the case of rectangular 
excitation almost all the acoustic phonons are concen­
trated in a spherical layer of thickness .:lq ~ .:lv/s. How­
ever, whereas in the case of rectangular excitation there 
are no excited modes for which Nq » 1 outside this 
layer, in the case of Lorentz excitation these modes ex­
ist also outside the layer; they are concentrated in a 
thicker layer with.:lq ~(J/J*)1/2(.:lV/S). 

This circumstance has little effect on the total con­
centration of the acoustic phonons, which is equal to 

_ 1 4nqo' I 
N=c----6.v-

(2n)' s I" ' (3.19) 

(c = v'ifl8 for Lorentz excitation and c = 7T/8 for rectan­
gular excitation) but affects strongly, as we shall show, 
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the concentration of the optical phonons. This concen­
tration can be obtained by substituting (3.1) in (2.10) and 
using (3.2). We then obtain 

(3.20) 

At low intensities this yields the obvious balance equa­
tion 

ii =N/2r .. r:. (3.21 ) 

We now introduce 

f = r.«2N. + 1)-'>-', (3.22) 

where the angle brackets denote averaging with the aid 
of the distribution Nq . Then (3.20) can be rewritten in 
the form of a balance equation 

ii = N/Zfr:, (3.23) 

where r has the meaning of the frequency of stimulated 
l!ecay of the optical phonon. At high intensities we have 
r » r o, and the spectral contour of the optical phonon 
broadens greatly. This is precisely why at high intensi­
ties, as seen from (3.19), N is independent of the detun­
ing of the excitation relative to the optical phonon. 

Substituting (3.14) and (3.17) in (4.20) we obtain ex­
plicit expressions for the total optical-phonon concen­
tration at high intensities. For Lorentz excitation we 
get 

_ n'l, 1 '1 4nqo' (') 'I. 
n=z;;.-2ro't (2n)'-s-6.v T ; (3.24) 

and for rectangular excitation 
_ 1 1 '1 4nqo' 
n =""4 2r,r:(2n)' -s - 6.v. (3.25 ) 

We see therefore that ii increases with increasing J more 
slowly than N. The reason is that when J is increased 
the frequency of the stimulated decay r increases. In 
addition, it is seen from the last formulas that the ex­
citation line shape affects strongly the concentration of 
the optical phonons. This can be deduced also from 
(3.20), if this formula is rewritten in the form 

Ii = M/2roT, (3.26) 

where M is the number of those acoustic modes for 
which Nq » 1. It is clear from the foregoing remark 
that for rectangular excitation M does not depend on J, 
whereas for Lorentz excitation M increases like Jl/2. 

According to (2.8), the absorbed power Q depends on 
J as N does, i.e., it increases like J2 at low intensities 
and like J at high intensities. Substituting (3.1) in (2.9), 
we obtain 

Q_Q S r(Q,O) dQG(Q) 
- 0 2n [Q-Qo-6.Q(Q,O)l'+[r(Q,O)I2]'· (3.27) 

This demonstrates that the quantities .:In and r in (3.2) 
actually represent the shift and broadening of the spec­
tral contour of the optical phonon. 

4. CRITERIA AND DISCUSSION 

Using the obtained solutions, we can indicate the cri­
teria that must be satisfied to make the Simplifications 
used in Secs. 2 and 3 valid. To justify assumptions 1) 
and 2) of Sec. 2 it is necessary to satisfy the conditions 

I. B. Levinson 

ro', (6.v)', ro6.v «~£, 
't 2ft 

1'';; (1"),~E_1_. 
't 2ft ro6.v 

(4.1 ) 

(4.2) 

166 



HereJl is a parameter that determines the dispersion of 
the optical phonons, 

k' 
Qk=Qo--

2" . (4.3) 

The appearance of this parameter can be explained in 
the following manner. The term N(q)N(k -q) describes 
the adhesion of acoustic phonons to form optical ones. 
The large dispersion of the optical phonons makes this 
adhesion possible only for acoustic phonons with almost 
oppositely directed momenta, thus greatly reducing the 
effectiveness of this process. 

It suffices to assume that 

1 q' 
~v ~ r o, __ 0 ~ ro'. (4.4) 

l' 2" 

It is then obvious that the condition (4.1) is satisfied and 
there exists simultaneously a region of high intensities, 
J » J*, where (4.2) is satisfied. 

Assumption (3.1) is valid if 

l"kl, IMI ¢: ~v/s, ro/s. 

For parallel beams we have 

Jkl = If,-f,1 ""Qo/c, IMI ~~v/c. 

It is therefore sufficient to assume that 

~v ~ ro ~vjQo ~ sic. 

(4.5 ) 

(4.6) 

We can usually assume that q~/2Jl ~ no. Then the com­
plete system of inequalities is 

~v s 
~v"; r., --~-. 

Q. c 
(4.7) 

These inequalities are satisfied at the aforementioned 
values of the parameters. It is of interest to estimate 
J*. Using for diamond the value w ~ 104 sec-l [10] and 
assuming qo ~ 108 cm-\ s ~ 106 cnYsec, and v ~10l5 
sec-\ we obtain J* ~ 108 W/cm2, which lies in the in­
tensity region where non-equilibrium phonons have been 
observed[4]. A more detailed comparison with experi­
ment is impossible, since there are no data on the spec­
tral character of the excitation. It is also not clear 
whether this experiment, in which the pulse duration 
is tp ~ 10-8 sec, corresponds to the stationary and ho­
mogeneous regimes. 

166 Sov. Phys.-JETP, Vol. 38, No.1, January 1974 

The theory developed here does not confirm Orbach's 
conclusion[6,7] that instability exists, or more accurately, 
that there is no stationary solution when a certain criti­
cal intensity is reached. For rectangular excitation, the 
reason is that the concentration of the optical phonons 
does not exceed a certain value iioo lower than the criti­
cal value required for instability. For Lorentz excita­
tion' the increase of Ii is offset by the broadening of the 
region where acoustic phonons are produced. We note 
that in accordance with (3.19) and (2.8) the characteris­
tic absorbed power is 

Q. _ 1 4nqo' Qo 
- (2n)'-s-~v7' (4.8) 

Yet Orbach's theory[6,7] corresponds to the characteris­
tic power of[41, which is obtained from Q* by replacing 
Av by T-\ i.e., a value lower by one or two orders of 
magnitude. 

The author thanks S. I. Anisimov, Yu. M. Kagan, 
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a discussion of the work and for valuable remarks. 

Note added in proof (23 May 1973). We have recently learned of a 
paper by M. J. Colles (1. de Phys. C4, suppl. au No. 10,41, 1972), which 
contains a qualitative discussion of the essential times and widths. 
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