
On the theory of elementary-excitation spectrum 
liquid He4 

. 
In 

Yu. A. Nepomnyashchii and A. A. Nepomnyashchii 

Perm' State University 
(Submitted January 28, 1973) 

Zh. Eksp. Teor. Fiz. 65, 271-282 (July 1973) 

A theory of bound excitation states in a Bose system with a condensate is developed. The theory 
explains, in particular, the spectral branch below the excitation two-roton decay threshold observed 
in He' light-scattering experiments2 but not observed in neutron experiments. I The existence of a 
singular continuation of the one-particle branch beyond the two-roton decay threshold is established; 
the main results of Cowley and Woods' experiments I can be interpreted if this circumstance is taken 
into account. 

1. INTRODUCTION 

We consider here the question of the origin of new 
branches of the spectrum of elementary excitations in 
liquid He 4, obtained in re cent experiments on neutron 
scattering[lJ and on Raman scattering of light [2]. The 
existence and the properties of different branches of the 
spectrum of He4 are predicted here on the basis of the 
microscopic theory of a Bose system with condensate, 
a theory that establishes the distinguishing features of 
this system: 1) a distinct relation between the many
particle excitations ("bound states of quasiparticles") 
and the poles of the many-particle Green's functions 
(Sec. 2); 2) The existence of a singular continuation of 
the single-particle branch beyond the threshold of decay 
into rotons (Sec. 3). 

It is shown in Sec. 2 that any excitation that has a 
bearing on neutron experiments, whether Single-particle 
or many-particle, is described by the first Green's func
tion G (lJ, the poles of which coincides with the poles of 
the response function to perturbations of the density X; 
it is shown further that there exist excitations that do not 
appear in neutron experiments; on the other hand, the 
entire set of possible excitations is accounted for by the 
poles of the Green's function G(2) (which include also the 
poles of GU »). These circumstances make it possible to 
explain why experiments on scattering of light [2J reveal 
a branch with energy below the threshold for decay into 
rotons, a branch not observed in neutron experiments 
(this is discussed briefly in a paper by one of the au
thors [3]). 

In Sec. 3 we explain the properties of the branch be
yond the threshold, which were revealed by neutron 
scattering[lJ . 

The theory developed below makes use only of the 
assumption that a condensate exists, and also of the 
main experimental data on the photon-roton form of the 
single-particle branch and its termination at the thres
hold for decay into rotons[i,4J. 

2. MANY·PARTICLE EXCITATIONS IN A BOSE 
SYSTEM WITH CONDENSATE 

1. One of the causes of the appearance of new 
branches in the spectrum of a Bose system with conden
sate is the formation of bound states of excitations [5J 
(another cause is discussed in Sec. 3)1). We consider 
first excitations that can be observed in experiments 
with neutron scattering. Obviously, they correspond to 
poles of the response to perturbations of the density X. 
Graphically, X is represented by an aggregate of dia-
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grams to the two ends of which one can connect potential 
lines. In the case of a Bose system with condensate, 
there are two possibilities for such ends (Fig. 1; the 
solid line describes the particles in excess of the con
densate, and the wavy line the condensate particles). 
This enables us to assume that the set of poles of X 
should include also the energies of the single-particle 
excitations and of the bound pairs2) (Fig. 2). 

An indication of the formation of bound pairs is the 
presence of extrema in the spectrum of the single-parti
cle excitations [5J , namely, integration with respect to 
the momenta near the extrema in each link of the latter 
diagrams corresponding to the scattering of two parti
cles (Fig. 3) leads to a logarithmic singularity, so that 
the denominator f, which is equal to 1 + Q In( ... ), can 
vanish at an arbitrarily weak effective interaction of 
quasiparticles Q of suitable sign3). For example, for a 
pair of rotons, the equation 

f-. - [1 + Q(p)ln_a_] (1) 
2L'l.-8 

has a solution E = £2 (Fig. 4) at arbitrary4) Q < O. 

Being interested in the poles of X, it is natural for us 
to confine ourselves to only those poles of f, which are 
conserved up~n "clOSing of the ends" of f (Fig. 5). 
These poles r are automatically poles of the self-energy 
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part ~, which includes diagrams of the type of Fig. 6. 
Thus, these poles cannot belong to G (1). It may turn out 
that, describing bound pairs, they supplement the poles 
of G (ll in the set of the poles of X. But this is not so, 
and the indicated poles do not correspond to any excita
tions in the system at all (see subsection 3 below), and 
the set of poles of X is limited to the poles of G (1). At 
the same time, certain branches in the set of X must be 
regarded as corresRonding to bound pairs, and the afore
mentioned poles of f serve as an indirect indication of 
the existence of these branches. 

To prove the foregoing statements, we consider an 
aggregate of disgrams whose true ends can be inde
pendently either particle lines or potential lines (Fig. 7); 
the thin line denotes zero-order Green's function, and 
the thick one the exact functions; the circle represents 
the sum of all the permissible diagrams, including also 
the absence of a diagram. The indices i, k = 1, 2 in Fig. 
7 correspond to the two possible directions of the arrows 
~Fig. 7, bottom). The diagrams for the function Gi and 
Gi go over into one another when the directions of the 
arrows are reversed for all the intermediate Green's 
functions without change of momentum, so that Gi :0 Gi . 

Let us prove first that the poles of all the Green's 
functions of Fig. 7 coincide. This would automatically 
mean that the poles of G~~ and X coincide, since the 
poles of X and r are known to coincide: 

r~v+vxv. 

We write down the exact equations for the functions of 
Fig. 7, using the irreducible self-energy parts l;ik' Ii, 
and Kj" at the entrance and exit of which there are lines 
of either particles or potential; irreducibility means 
here that the diagrams cannot be separated vertically 
by crossing one line of the extra-condensate particles 
GO or potential ZJ (see Fig. 8; A and B are equivalent ex
pressions). 

It is seen from the equations of Fig. 8 that all the 
poles of G~k' r, and G· coincide (if we exclude the prac
tically unlikely posSibfl.ity of accidental vanishing of the 
vertex K at the poles of these functions). We note that, 
as is clear from Fig. 8B, at the pole W we have 

and at the pole Gik we have 

r~o; Gi~t), [Gi~t)l-I*O. 

The phYSical meaning of the foregoing proof is ob
vious: in a Bose system with condensate there takes 
place hybridization of the Single-particle and paired ex
citations, the "bare" energies of which are character
ized by the poles gik and Yf (the latter coincide with the 
aforementioned poles of r, see subsection 3); the hy
bridization constitutes an interaction between the excita
tions, which leads not only to a shift of the unperturbed 
(bare) energies, but also their duplication in each of the 
Green's functions of the excitations: if 
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then the renormalized energies El and E2 enter as pole 
values in each of the functions (Tala;) and (Ta2a;). 

Turning by way of example to the case of roton bound 
states, we have E = E2 as the pole of W (see (1)). The ap
pearance of this pole, which belongs also to the complete 
self-energy part 

:i: ~ f' + KWK ~ Pip) In [a. / (2~ - e) 1/ {1 + Q(p) In [a. / (2il- e)]), 

leads (under the condition p/IQ I < ll.) to the appearance 
of an additional branch of G(1), E = E3 (see[5J ). In accord
ance with the preceding, this branch characterizes the 
bound state of a pair of rotons, which could be observed 
in principle in neutron experiments. 

It is easy to see that the spectrum of the density os
cillations in a Bose system with condensate (poles of X) 
can contain, in principle, branches corresponding to ex
citations of a structure more complicated than described 
above (bound states of three and more particles), and the 
existence of the latter can be predicted in analogy with 
the case of the pair excitations (within the framework of 
the simple model of the "compact" Bose system [7J , 

such branches can also be calculated directly). Indeed, 
since the branches of the pair excitations belong to G (l) , 

the extrema of these branches serve as an indication of 
the existence of new bound states, in which the given 
pair excitation is contained as a separate component 
(see Fig. 3); obviously, similar reasoning can be ex
tended also for the succeeding branches without limit, 
Le., the functions Gil) and X can contain, in principle, 
excitations with arbitrary numbers of particles. We 
note, however, that in practice the formation of complex 
excitations has low probability, since the conditions for 
the presence of extrema and for the proper sign of the 
irreducible vertices become cumulative, and the damping 
increases rapidly. 

2. Although G(1) and X can contain branches of com
plicated many-particle excitations, one cannot state that 
these functions contain the entire set of elementary ex
citations, for even among the bound pairs one can indi
cate such that certainly do not corre spond to poles of X. 

The presence of pair excitations not connected with 
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poles of X is not a distinguishing feature of a Bose sys
tem with condensate. Let us consider, for example, in 
the case of a Fermi system. Here the poles of X cer
tainly do not include particle-hole pairs, for which the 
"internal" wave function (j)(x - y) vanishes at the point 
x = y; indeed, in this case a state with excitation of the 
type 

S dx dyeD (x, y).p+ (x) 1/J (y). 10) , 

cD (x, y) ~ exp {ip(x + y) / 2}rp(x - y) 

does not include density oscillations 

pplO) ~ Sdxdyll(x-y)1/J+(x)1/J(y)ei p(I+Yl/IO). (2) 

Such pairs include excitations with nonzero helicity 
m = 1 . p/lp I. We note that by virtue of the cylindrical 
symmetry of the system with excitation, all the excita
tions have a definite helicity; in particular, pair excita
tions, which are obviously characterized by poles of the 
exact four-prong vertex (Fig. 9) can be classified by 
helicity in accordance with the diagonality of r* with 
respect to m: 

f'(IP]' I, m; /1"1,1', m'; p) ~ f'(m'(IPI, I, IP'I, 1'; p)8mm ,. 

The fact that X does not contain poles of r*(m 10) is 
also clear from the fact that when the ends of r * (m 10) 
are closed, so that diagrams of X are produced (Le., 
when r* with GQ(P + p)Go(P)GO(P' + p)Go(P') is differen
tiated with respect to d4p), the contribution vanishes 
from symmetry considerations. 

For a Bose system with condensate, by virtue of the 
indistinguishability of particle-particle and particle-hole 
pairs, and also by virtue of hybridization with single
particle states, the wave function of the excitation con
taining density oscillations can have a form different 
from (2), but, in analogy with the foregoing, the poles of 
r*(m 10) certainly do not belong to X (they vanish when 
the "ends are closed"), as follows also from symmetry 
considerations. 

The criterion for the appearance of the poles of 

r*(m 10) follows from the analysis presented above. 
Indeed, since the three-prong vertex vanishes if m 10, 
i.e., excitations with m 10 cannot take part in the hy
bridization with single-particle excitations (the law of 
helicity conservation), the diagrams of Fig. 3 with m 10 
account for all the possible 

For a pair of rotons, in particular, a bound state with 
m 10 (E = 104, Fig. 4) occurs for any Q(m) < 0: 

r- -. - [1 + Q(m' (p)ln-~-] ~ O. 
211- e 

We see that although the poles of the vertex f are only 
of auxiliary Significance when m = 0 (the bare energies 
of two-particle excitations described by G(l) and X), 
when m 10 the poles of f (=r *) characterize independent 
excitations that do not include density oscillations. 

Branches with m 10 cannot be observed in neutron 
experiments, where the scattering of the particles is 
single, but they can appear in effective second-order in 
the external perturbation, particularly in Raman scat
tering[2] (Fig. 10; in the experiment p - 0 and 1 = 2). 

3. We have proved above that the bare poles of Wand 
gik are not included among the poles of X and G~). Th~ 
do belong, however, to the irreducible vertices rand r 
(see (5) and (6), respectively, which represent terms the 
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expressions (3) and (4) for the exact vertex r*): 

f' = f + (y + S rG("G(t)y )G(t' (y + S yG("G(t'r), 

J" ~ r + (1+ S rG(llG(t) ) f ( 1 + S G(t)G(t)r) , 

(3) 

(4) 

f = fo + ( 1+ S foG(t'G(ll) w( 1+ S G(tlG(tlfo), (5) 

r = fo + (y + S foG(t)G(lly) g( y + S yG(t)G("fo ) (6) 

(the vertex f is irreducible "with respect to one line of 
particles" GO, see above, and r is irreducible "with 
respect to one line of the potential" v, r o is irreducible 
in GO and v, and the three-prong vertex}' is irreducible 
in GO, v, and GOGo). This raises the question whether the 
indicated" bare" poles are not included among the poles 
of r* (m = 0) (as supplementary to the poles of X and G (1), 

Le" whether they characterize certain singular excita
tions in the system. 

By representing r* with the aid of (3) and (5) in the 
form 

f' = fo + (1 + J foG(t)G(ll ) W (1 + J G("G(tlfo) 

+ ( 'r + J T'G(t)G(lly) G(tl ( y + J yG(t)G(tlr ), 

we verify that at a pole of g all the terms of r * are finite 
(see subsection 1); it follows analogously from (4) and 
(6) that r* is finite at a pole of W. Thus, the second 
terms in the right-hand side of (3) and (4) cancel exactly 
the divergence of the first terms in the poles of Wand g 
(this cancellation can be intuitively explained by the fact 
that the "bare" functions Wand g in rand r are com
plemented to rand G(1), respectively, by the second 
terms of (3) and (4). 

Let us see now whether the set of poles of r* includes 
the poles of roo They certainly do not belong to the func
tions X and G (1), namely, as r 0- 00 we have 

ii = IIo + S G("G("f,G(t'G(t' -+ 00, W -+ 0, f -+ 0 and 

r: -+ 00, g -+ 0, G(tl -+ O. 

We express r* in terms of r o: 

f' = fo + ( y + J foG(I)G(t)y )g (y + S YG(tlG(tl f o) 

+ ( 1 + S foG(I)G(l) + ygy + (J foG(tlG(lly ) gy ) f ( 1 + S G(t}G(t)fo 

+ ygy + yg J yG("G(t)fo) , 

r = '\I + '\I [ S G(>'G(ll + ygy + ( S G(I)G(t)y ) gy + yg S yG(I)G(" 

+ yg J yG(t)G(l)foG(t)G(l) + ( S G(t)G(t)foG(tlG(l)y ) gy 

+ yg (S yG(t)G(t)foG(tlG(tly) gy] f, 

(7A) 

g = GO + GO ( S yG(t)G(t)'"( + J ,"(G("G(l)foG(tlG(I),"( )g. (7B) 

We note that in (3)- (7) we are interested everywhere 
only in the case m = 0; for m lOwe have r* = r = r 
= roo 

It is important in what follows that the residue of the 
function r*(p, p'; p, E) at any of its poles 10 = Eo(p is 
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fixed) has the multiplicative form: 

f' - f(P, PI) / (e - eo), f(P, PI) = <p (P) <p' (PI) 

(in this case <p (P) plays the role of the internal wave 
function of the bound state of the pair, corresponding to 
the pole E = Eo; a similar property is possessed by any 
Green's function in a representation in which it is not 
diagonal), In the case of a real pole, the indicated multi
plicativity follows directly from the representation 

'. 
{ 1 

x e-e.+i{J (8) 

(We do not consider here the little-likely possibility of 
random degeneracy of the levels ES') 

In the case of complex Eo, the multiplicativity is evi
dent from a comparison of the approximate formula for 
r* near Eo, 

f '(P 1.)_ I(P,P') -S d I(P,P')lmeo 1 
,P , P f. ( )' Z ' e - Re eo + i 1m e, e, - Re e, + 1m eo e - e, + i{J 

with the exact expression (8). 

From the multiplicativity of 

I""lim (e-eo)f' 

follows an analogous property for 

10 = lim (8 - eo) fo 

since the second and third terms in the right-hand side 
of (7A) make a patently multiplicative contribution. Sub
stituting in (7) 

fo = I, / (e - eo) = <po(P)<po(P I ) / (e - e,), 

we find that 

I(P, P'; p) "" 0, 

i.e., the poles of r 0 cannot belong to r * , 

The fact that the poles of the exact vertex r*(m =0) 
do not include poles of the irreducible vertices is a com
mon property of all quantum systems; indeed, for a sys
tem without a condensate the result can be easily estab
lished from the equations 

:" = fo + ( 1 + S foG(t)G(') ) W ( 1 + S G(1)G(l)fo ) , 

W = v + v (S G(OG(O + S G(t)G(')foG(oG(l) ) W. 

By analogy, the absence of the poles of r 0 from r and r 
follows from (5) and (6). 

The result obtained for four-prong vertices can be 
generalized to the case of vertices with an arbitrary 
number of prongs: poles of any irreducible vertex do not 
belong to the exact vertex and do !lot correspond to any 
phYSical excitations whatever. For a Bose system with 
condensate, this leads to an important consequence: if 
the hybridization, which decreases the number of parti
cles, is not forbidden by the helicity conservation law, 
all the poles of the many-pronged vertex are contained 
(are duplicated) in the set of poles of the vertex with 
smaller number of prongs. In other words, only the 
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helicity conservation law prevents G (1) and X from con
taining the poles of all the possible excitations of a Bose 
system with condensate (the Single-particle states are 
limited by the condition m = 0). There is no analogous 
limitation for two-particle excitations, so that the set of 
poles of 0<2) includes all the possible excitations. 

3. SINGLE·PARTICLE EXCITATIONS 
BEYOND THE THRESHOLD OF DECAY 
INTO ROTONS 

The branches complementing the phonon-roton branch 
(El) in the spectrum of a Bose system with condensate 
do not necessarily correspond to bound states of the ex
citations. We consider here a new Single-particle branch 
(ED, which constitutes an "unphysical satellite" of 
branch El ahead of the threshold of decay into rotons, 
and a peculiar continuation of this branch in the region 
beyond the threshold. The appearance of E; is the result 
of a break produced in the single-particle branch by a 
branch point of the Green's function G (1), characteriZing 
the threshold of decay into rotons. We shall show that 
the existence of the new branch explains qualitatively the 
behavior of the dynamic form factor S(p, E), which was 
established in experiments on neutron scattering in 
He4 [lJ. 

According to the preceding, the linear response func
tion X has no poles that differ from the poles of the 
single-particle Green's function, so that the bound states 
of rotons with m -10, which do not enter in the set of the 
poles of G (1), can certainly not be observed in experi
ments with neutron scattering, The analysis that follows 
shows that to explain the neutron experiments [lJ it is 
likewise not necessary to assume the existence of the 
bound states contained in X. 

We start from the equation 

[G(1)I-'=A-'{e-e po+p(p) [In_ct_ 
21'1 - e 

+iF(p)e(e-e,) ]/[l+Q(p) [In 2t;ct_ e +iF(p)e(e-e,) ]]}. (9) 

We have explicitly separated here from the total self
energy part L the component connected with the decay 
into two excitations; the logarithmic singularity charac
terizes the two-roton decay, virtual or real [4J ; the re
mainin~ diagrams are taken into account in the regular 
term Ep ' which is real if E is in the region where a real 
decay into three and more excitations is impossible. The 
functions P, Q, a, and F are real if the excitations of 
the branch El are stable up to the threshold for the decay 
into rotons. The function a includes the non-pole contri
bution in the integration of the product of two Green's 
functions. The term with F characterizes all processes 
of real decay into two excitations for energies E - El, in
cluding two-roton decay; for small E > El we have 

F - (e - e,)'. 

As shown by Pitaevskil" [4J , decay into rotons (the 
logarithmic singularity in (9)) leads to a termination of 
the branch El: when p > Pc the equation [G(l)r l = 0 has 
no solutions whatever in the vicinity of the point E = 26, 
and has no solutions at all if a cut along the line 26 < E 

< 00 is implied in the logarithm of the expression (9), On 
the other hand, it is physically obvious that in the region 
of large momenta there should exist at least damped ex
citations, and furthermore with energy close to p2/2m 
(there is no time for the fast particle to acquire a cloud 
of virtual excitation; this agrees also with the Feynman 
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formula E(p) = p2/2mS(p), S(p - 00) - 1). The need for 
a definite continuation of the single-particle branch into 
the region p < Pc becomes particularly obvious for the 
case of a Bose system with arbitrarily "weak coupling": 
P/ll, Q ~ 1) - 05)(7J ; it is hardly likely that the correc
tions could lead to a vanishing of the entire section of 
the spectrum with p > Pc for all 1) - O. 

We shall show that the termination of the branch E1 
does not contradict the existence of Single-particle ex:ci
tations with p > Pc' We turn to the arbitrary case of the 
decay of excitations of the real branch. The presence of 
a decay threshold E = EC' Le., of a branch point for the 
Green's function on the real axiS, denotes the existence 
of not one but of two different analytical continuations 
of the Green's function from the positive semiaxis to the 
lower half-plane (or from the negative one to the upper 
half-plane): from the sections E < EC (GlR A) and 

E > EC (GM A); adjacent to these sections' are different 
sheets of th'e Riemann surface of the function GR (GA)' 
The poles of each of the indicated analytic continuations 
have the physical meaning of frequencies of weakly-d 
damped excitations, provided only these poles are near 
the boundary of the analyticity region of ~ (GA), namely 
the phYSical real axis. The poles of GM A near the semi-

axis E < EC or of Gk,A near E > EC do ~ot correspond 
to weakly-damped excitations (they lie in the unphysical 
region of the Riemann surface G). The pole branches of 
the neighboring analytic continuations of GlR A and GlJ A , , 
can join into a single curve (for example, in the case of 
decay with emission of phonons, when the pole beyond the 
threshold moves off smoothly from the real axiS), but 
can also diverge, namely, one of the branches (real) 
terminates in this case at the branch point, and the other 
(complex) goes past this point and goes over to the un
physical sheet of the Riemann surface G on going into 
the momentum region where the real branch exists. It is 
precisely the latter case which includes decay into 
rotons, when the non-analytic term is represented by a 
logarithm with a coefficient that does not vanish at the 
branch point. The phonon-roton branch E1, bounded by 
the interval 0 < p < Pc' is the pole curve of the analytic 
continuation of G from the section 0 < E < 2ll (Gk); it 

can be easily verified that the analytic continuation of G 
from the section 2ll < E < 00 (see (9) with the substitution 

In-- -+ In--+ in a, a, ) 

2'" - e e - 2'" , 

has a complex pole E~ for all p.6) 

Let us describe in detail the case P/ll, Q« 17 ). If 
we exclude the region near the threshold, then the as
sembly of the physical branches E1 < 2ll and E; (Re E; 
> 2ll) "imitate" closely a single unperturbed branch E~, 
and differs from the latter only by a small correction 
(which is real up to the threshold and complex beyond 
it); the residue at the poles E1 and E~ is close to unity, 
and the pole contribution upon integration of the Green's 
functions with respect to energy is large in comparison 
with the contribution of the cut. The specific feature of 
the branch point E = 2ll becomes manifest, however, in 
the unphySical continuation of the branch E~ under the 
threshold (Re E~ < 2ll) where, as before, E~ "" E~, and in 
the character of the "near-threshold" section P1 ::; P 
< Pc of the branch E1 (P1 and Pc are defined by the equa
tions Ep1 =2ll, E1(PC) = E~C - p/Q = 2ll; see Fig. 4; the 

unphySical pole is shown dashed). In the near-threshold 
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region, the branch E1 moves appreciably away from E~, 
and the residue at the pole E1 decreases to zero 
(~ (2ll - E)/O'); it is remarkable that here E1 coexists 
with another physical pole E~ (Re E~ > 2ll), at which the 
residue is always of the order of unity, since, being 
complex, it never comes too close to the point E = 2ll. 
It is important that the region P1 ~ P < Pc is not small 
if P/ll and Q are arbitrarily small (provided that P/llQ 
~ 1). 

Let us verify that the theoretical picture of the be
havior of the dynamic form factor S(p, E) ~ 1m X, con
structed with allowance for the poles E1 and E~ of X, 
accounts for the principal features of the neutron ex
periments[l J , even if we confine ourselves in the com
parison to the model in which P/ll, Q « 1. The function 
S(p, w) is the sum of three terms, two of which are con
nected with the poles E1 and E~ and the third (the many
particle term proper) is conne cted with the function F 
from (9). 

In the region p < P1, where the residue at E1 is close 
to unity and E{ is an unphysical satellite of E1, the prin
cipal contribution is the (i-like contribution of the pole E1; 
adjacent to the (i-peak is a "hill" generated by the func
tion F (the function F is equal to zero at the point E = E1, 
as shown above, and at the threshold E = 2ll the form 
factor S(p, E) vanishes vigorously because of the diver
gence of the logarithm in (9)). Beyond the threshold, the 
contribution to S is made by the tail of the peak generated 
by the pole E;, the maximum of which is in the unphysical 
section of the real axis E = Re E{; near the threshold 
E = 2ll, this tail is distorted by the presence of a branch 
point, so that when E increases from the threshold 2ll, 
the form factor S(p, E) first increases from zero and 
then decreases in proportion to 

Ime/ 
(e - Re e,')' + (Im e/)' 

(Le., it forms a blurred peak beyond the threshold). 

In the region p > P1, the height of the peak beyond the 
threshold increases sharply, reaching the maximum 
value; this corresponds to the transition of the branch 
E{ beyond the threshold (to its conversion into a physical 
branch); at the same time, the contribution of the 0 -peak 
decreases to zero (the residue at the pole E1 tends to 
zero as p - pc); both processes correspond to satisfac
tion, for all p, of the sum rule 

2mS 7 eS(p, e)de = 1 

(see Fig. 4; above the threshold, the curve Re E{ ap
proaches the beyond-threshold peak of the form factor 
max S and merges with it). In the region p > Pc we are 
left only with the peak of the pole E{ (if we neglect the 
small contribution of F) and its maximum Em ~ Re E{ 
"" E~ approaches p2/2m. 

The described picture corresponds to the result of C1J 
(see Figs. 3, 5, 7 ofCl]; p ~ 2.4 A; Pc ~ 3.6 A). In par
ticular, at the point p = 2.45 1..-1 (Figs. 3 and 70f C1J ), 
one can see clearly two peaks of approximately equal 
height, corresponding to two physical poles E1 and E; that 
coexist simultaneously with residues of the order of 
unity. In comparison with the experiment, it is neces
sary only to take into account the fact that the finite tem
perature smears out the (i-peak, and furthermore in such 
a way that for the experimentally investigated momenta 
(for which the ii-peak is not far enough from the thres
hold) the maximum connected with F is not observed 
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FIG. II 

separately from the a-peak, all that is seen is a dip near 
the thresholds separating the peaks El and E; (Figs., 3 
and 5 of[l]). The single-particle origin of the peak be
yond the threshold explains also the oscillatory variation 
of its contribution to 

2m J eS(p, e)de 
p' 

(Fig. 13 of Cl]), which duplicates the course of the El 
curve. The indicated contribution is connected with the 
tail of the peak generated in the "unphysical" region by 
the pole E{, which is close to El. 

In conclusion, we mention a case that could arise if it 
were experimentally possible to obtain sufficiently 
strongly supercooled liquid He 4 at high pressure, such 
that the doubled roton minimum would turn out to be less 
than the pre-roton maximum (such a situation is of 
fundamental interest in the study of coherent crystalliza
tion [7]). It can be shown that in this case the E 1 curve 
would consist of topologically unconnected pieces (Fig. 
11). 

The authors are deeply grateful to D. A. Kirzhnits, 
L. P. Pitaevskir, A. A. Sobyanin, and E. S. Fradkin for 
interesting and useful discussions. 

J)Jackson [6] pointed out one other possibility of explaining the maxima 
of the form factor of a Bose system with condensate, namely the use of 
a kinematic approach. 

2)When speaking of pairs in the case of a Bose system with condensate, 
we cannot distinguish between particle pairs and "particle-hole" pairs. 
The two possibilities combine in a certain sense, since the "thick" lines 
can reverse direction. 
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3)The vertex Q is irreducible in the sense that its diagrams cannot be 
separated vertically by intersecting one or two lines of the extra-con
densate particles (briefly speaking, Q is irreducible in GO and GOGo). 

4)No account is taken in (1) of the damping which is obligatory for 
branches lying above the phonon-roton branch € I-see (9); this, how
ever, is immaterial for the analysis in the present section. 

S)In this model ("compact" Bose system) the potential energy of the pair 
is assumed to be small in comparison with the kinetic energy: 1/ = mpo 
IVPol ~ I, but by virtue of the compactness (Po ~ n1/3), the potential 
energy per unit volume is of the order of or larger than the kinetic 
energy mn Ivpo I p~2;;::: I; in this case P / /':,. and 

r p' ( p' )J' , Q - 'I ~ 1, EpO = "2m 2m -I- 2/lvp , 

6)It can be shown that a similar situation obtains in the case of decay into 
excitations with parallel momenta (although the concrete character of 
the distortions introduced by the threshold non-analyticity is different 
here). 

7)p> 0, for otherwise, as can easily be verified, the branch f~ (p) lies in the 
upper half-plane, which is forbidden by the Lehmann relations; Q > 0 
near the threshold poin t, for in the region where Q < 0 the exact spec
tral curve € I (p) cannot approach the threshold even if the curve (€~
P/Q) crosses the threshold. 
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