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A complete set of equations describing the surface of a superfluid liquid at low temperatures is found 
by employing the kinetic equation for the distribution function of impurity surface excitations. 2 The 
oscillation spectrum of the surface is investigated by taking damping into account. It is shown that 
low-frequency second sound I is ordinary sound in a two-dimensional Fermi fluid if the impurities 
are strongly degenerate; at high frequencies, surface second sound goes over to zero sound. Capillary 
waves with a wavelength A. -< I (I is the excitation mean free path) experience Landau damping. 
Waves with A. ~ I are damped because of the presence of surface viscosity. 

INTRODUCTION 

Andreev and the author of PJ have previously obtained 
a system of equations of motion of the surface of a super
fluid liquid in the case when the mean free path of the 
surface excitation l is much larger than the distance A 
over which an appreciable change takes place in all the 
surface quantities. As is well known, surface impurity 
levels of He3 exist in a solution of He3 in He 4[2 ,3J. At 
sufficiently low temperatures, the impurities become de
generate and their mean free path begins to increase 
like T-2 with increasing temperature. Under such condi
tions, the equations of surface hydrodynamics derived 
in [lJ no longer hold. In this case the boundary condition 
for the bulk equations is the kinetic equation for the dis
tribution function of the surface impurities. 

The damping of the oscillations of the free surface of 
a superfluid liquid (capillary waves) due to the presence 
of viscosity of the bulk normal component become se
ceedingly small with decreasing temperature. Under 
such conditions, the principal role is assumed by damp
ing due to the surface normal component. 

1. HAMILTONIAN OF SURFACE IMPURITY 
EXCITATIONS 

When a particle moves on a curved moving surface, 
if the particle mean free path is much larger than the 
characteristic dimensions of the problem (say the wave
length of the surface oscillations), the Hamiltonian de
pends explicitly on the shape of the surface and on its 
velocity. We assume that the surface deviates little from 
a plane and the rate of its change is small in comparison 
with the particle velocity. We shall show that in this 
case the corrections to the Hamiltonian are quadratic in 
the displacement of the surface and in its velocity. 

Let I; (x, y, t) = z by the equation of the surface. Then 
the equations of particle motions are 

mi. = t.~., mi' = -t., 

where m is the particle mass, xa is the component of the 
two-dimensional vector r, I; a = al;/ax a , and A is a 
Lagrange multiplier. Eliminating A and z, we obtain 

(/lap + ~a~P) Xp + 2~a~pxp + ~a~p.xpXv + ~~a = o. 

Thus, accurate to terms of first order in 1;, the equation 
takes the form x = O. In this approximation, the Hamil
tonian is equal to 

H=p'/2m. 

We determ·ine now the energy and momentum of the 
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excitation in terms of the corresponding surface quanti
ties. We follow the procedure used by Khalatnikov for 
the bulk case[4J. We note that to find the surface quanti
ties, the surface function I; must be determined exactly. 
Just as in [1J, we define the surface by means of the con
dition that there be no surface mass, toe., if the liquid 
occupies the half-space z = !;(xa' t) under the surface, 
then 

~(Xa, t) 

~ds ~ pdz=M, 

where p is the bulk density of the liquid, M is the total 
mass of the liquid, and ds is an element of area of the 
plane (x, y). 

Let E~ and i' be the energy and momentum per unit 
surface in a system moving with the velocity V s of the 
superfluid motion. Then, in a system at rest, the energy 
Es and the momentum i are given by 

E~ = Es' + i'vs , 

i=i'. 

(1) 

(2) 

The momentum i is the sum of the momentum of mo
tion of the superfluid component with density vsf and ex
citation momentum JpnpdT (P is the excitation momen
tum, IIp is the distribution function, dT is the element of 
phase space): 

i = v./v, + J pn. dT. 

Inasmuch as in our definition of the surface 

'0,/ = - J m,n.d-r 

(m3 is the mass of the Fermi particle He3), it follows 
from a comparison of (2) and (3) that 

(3) 

(4) 

The momentum and the excitation energy in the system 
where Vs = 0 are determined by the variational deriva
tives 

We note that our definition of the surface, by means 
of the condition that there be no total surface mass, de
termines the excitation energy completely. Whereas in 
the case of a volume the state of the system is described 
by three independent variables, namely the density p (or 
the density ps of the superfluid component), the velocity 
V S' and the distribution function n. , while the excitation 
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energy can be determined in two ways (by varying the 
energy of the volume element at constant V sand p or at 
constant Vs and ps)' the only constant that can be deter
mined by variation on a surface defined in the manner 
indicated above is vs' 

From (1) we get 

H .6E. + 
~ = 6n;;- = Bp PV •• 

Just as in the case of the volume system, Ep is a func
tional of the excitation density 

fp = Bop + ~ 1 (p, p') 6n~' d'C', 

The equilibrium distribution function of the surface 
impurities is obviously the Fermi function. The surface 
normal density lin = -llsf is defined as the coefficient of 
proportionality between 1 and V - V s' where V is the 
normal (not superfluid) velocit:0. Calculationsnanalogous 
to those performed by Khalatnikov[4J lead to the result 

Vn = m'N / (1 + 1/2F,), 

where N is the number of impurities on the surface, and 
F n is defined by the formula 

F(<p)=/(<p) (o°'C) = ~ Fncosn<p. 
8 t=pp ..;.,..j 

2. CONSERVATION LAWS FOR THE NUMBER 
OF PARTICLES, MOMENTUM, AND ENERGY OF 
THE SURFACE 

We write down the kinetic equation for the distribu
tion function of the surface impurities n, . We consider 
a solution weak enough to be able to neglect collisions 
with volume impurities. Since the surface density of the 
impurities, for a solution .'1ith concentration c ~ 10-10, 

becomes atomic already at T = 0.10 K[ 1J , there is a suffi
ciently wide range of applicability for the approximation 
under consideration: 

(5) 

where J(n) is the collision integral. 

We obtain the hydrodynamic fluxes in an approxima
tion linear in t;. The conservation laws are written in 
the same form as in[1J: 

OV n 0 
-.-+-1.=0, at ox. . 

air]. • 
-.- = pt'..;1I; - p~, 
<Ix. 

ai~ a . 
-a + -:;- te., = II.;n; - pv ,.~, 

t 'JX, 

a~ D . 
--+-8.=Q,n;-Ev~, at ,)x. 

(6) 

(7) 

(8) 

(9) 

where ni is a vector normal to the surface with compon
ents {-t; 0" 1}, fa is the flux density of the surface im
purities, 1I a{3 and IT ai are the momentum flux densities 
per unit surface and per unit volume, respectively (the 
subscript i runs through the values x, y, and z); EV(ES) 
and Qi(8 a ) are the volume (surface) element energy and 
volume (surface) energy flux density. Our task is to find 
the unknown fluxes 1I af3' fa' and 80' • 
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Multiplying (5) by m3 and integrating with respect to 
dT, we obtain after simple transformations 

Dvn a < aH~) at + ax;;- m3n~ apa = o. 

(the angle brackets denote integration over phase space). 
Comparing these expressions with (6), we get 

< aH"" I. = m3n~ ap.) . 

We transform the right-hand side of (8) by using the 
"continuity" equation (7) and the explicit form of the flux 
IT a k[4J. We have 

. Oi, 
II •• n. - j.~ = -P~. + V •• -, oX, 

where P is the pressure of the liquid. We write the con
dition for the absence of surface momentum normal to 
the surface (the consequence of the absence of surface 
mass) in the form 1· n = O. Differentiating this expres
sion with respect to time, and using the equations of 
surface hydrodynamics, we find that P = 0 in the zeroth 
order in t;. 

We multiply the kinetic equation (5) by P and inte
grate with respect to dT. After simple tranlJformations 
we obtain 

oia 0 \' aH",) <OH", ) at + oXp n~p. 7iiii + ax;;- n.., = o. 

We transform the last term in the right-hand side of 
this expression in the following manner: 

< aH~ n..,) = _o_<n..,H..,> _ aE, +~ avo! . 
ax. ox. ox. OV'i oXa 

(10) 

Using formula (1), the condition that the superfluid mo
tion be potential, and the fact that the volume quantities 
are differentiated with respect to x 0' not at a fixed value 
of z but at z = t; (x ,t), we can express the last term of 
this formula in theOform 

aE. ov., . av .. + . ov .. ----=1,-- I,~.--. av" ax. ox, Ox. 

With the aid of the continuity equation (7) we can show 
that avsz/axa contains, in addition to terms linear in t;, 
also terms containing the second derivative with respect 
to the coordinate. As noted earlier[1J, such expressions 
should be neglected in the hydrodynamic approximation. 

Thus, Eq. (10) takes the form 

Comparing this expression with Eq. (8) with its right
hand side transformed, we obtain 

teaP = <Pan.., ~;:) + ~v"" -/laP (E. - (n..,H..,». 

The quantity Es - n"H.., . has the meaning of surface 
tension. 

We now obtain the energy conservation law. To this 
end, we multiply (5) by H.., and integrate over the phase 
space: 

< an..,) a < aH",) H"'at + ax. n..,H.., apa = o. 

The derivative of the surface-element energy with 
respect to time is 

aE, = <H .!!!:!..) + oE, aV'i at .., at av,; at . 
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We transform the last term on the left: 

aE. av" . av" . av" . a "( (}Ey) .' av., 
----=!,--+,,~,--=,,- -- -,,~--. 
av., {}t at at {}x, {}p iJz 

We have used the bulk hydrodynamics equation[4J 

aVsi/at = -a(aEy /ap)/axi , and also the fact that differen
tiation with respect to xa and t is carried out at 
z = !;(xa' t). 

Substituting a Es /at in (9), and transforming its right
hand side with the aid of (7) and with the aid of the ex
plicit form [4J of Qi' we obtain 

<H\J~> + _a_ (Sa _ ia OEV) = ~ (_ Ev + aEv p') _ i1t av" . m ~ ~ ~ h 
(12) 

The last term of this expression can be reduced with the 
aid of (7) to a form that contains only terms that are 
quadratic in !; and contain second derivatives. At low 
temperatures 

-Ey+ (aEy/op)p=P. 

Comparing (11) and (12) we get 

Sa = <n\JH\J OH\J> + ia aEv . 
oPa OP 

3. FREE-SURFACE OSCILLATIONS OF A 
SUPER FLUID LIQUID 

On the surface of a normal liquid there exists only 
one type of oscillation, namely capillary waves with 
spectrum w2 = (a/p)k3 , where w and k are the frequency 
and wave number of the oscillations and a is the surface 
tension, In a superfluid liquid, at not too low tempera
tures, when the influence of the surface normal compon
ent can be neglected, there exist likewise capillary 
waves with damping coefficient y = 277 k 2 /p (1/ is the 
viscosity of the volume normal component). At very low 
temperatures, when the influence of the volume excita
tions is ne~ligiblY small, there exist on the surface, as 
shown inC 1 , two types of oscillations, capillary waves 
and surface second sound. When the surface viscosity is 
taken into account, their spectrum is given by 

,_ a k' (1 + kv. ) . T).a'k' 
0>1-- - -'w--

P . P p'u' ' 
(13) 

, " ( av.k') . T).k' w, =uk 1--- -'W--, 
p2U 2 v. 

(14) 

where liS is the denSity of the surface normal component 
and u is the velocity of the surface second sound: 

u"= -..!.. {( {)a) 'lin + (!.::..) a}, 
v. 8'V n a 8a VII 

where a is the surface entropy. 

If the impurities on the surface are strongly degen
erate and their mean free paths 1 »ao, where ao is the 
atomic distance, then the spectrum of the waves with 
length ,\ ~ 1 must be investigated by using boundary con
ditions in the kinetic-equation form. We assume that the 
deviations of the distribution function from equilibrium 
are small, The velocity v s and the deviations !; of the 
surface will be of the same order. We seek a solution 
in the form of small oscillations, i.e., their dependence 
on the coordinates and on the time is given by the ex
pression exp{ ikaxQl - iwt}. The linearized kinetic equa
tion is 

i(w - k.v.)n, + ik.v. ~:. {Pov., + f j(p, p')n/ d"\"'} = I(n,), 
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where v is the excitation velocity and n1 is the deviation 
of the distribution function from the equilibrium value 
no, 

We introduce dimensionless variables in accordance 
with the formula 

on. • '( ) n 1 = a;: m V F 'V cos <p , 

where vF = (aE/ap)E =EF' and m* is the effective mass 
of the excitation. The kinedic equation for the function II 
is 

(V -cos<p)v+cos<P[ COs<p ~: - (F(<p-<p')v(<p'»] =/('11), (15) 

where Y = w/kvF' 

To satisfy the energy and momentum conservation 
laws, we write the collision integral in the form 

1('11) = (v-(v)-2(vcos<p)cos<p) 11:, 

where T is a certain effective time. 

It is necessary to add to Eq. (15) the continuity equa
tion and the equation reflecting the absence of a momen
tum normal to the surface (1 . n = 0). In linearized form, 
these equations are 

- i!:::.. f n,p. d"\" = v" + iw~, P = ak2~. (16) 
p 

The potential CPs of the superfluid velocity satisfies the 
Laplace equation V 2cps = O. We write the solution of this 
equation in the form 

<po = (-i / k) exp {ikx - iwt - kz}v'. 

From this we get 

V~X = v f , V H = iv', P = -P(J)v' / k. 

Thus, we have a system of three equations with three 
unknowns. 

Let us consider for SimpliCity the case when the first 
two harmonics of F differ from zero, i.e., 

F=F.+F,cos<p. 

Solving the kinetic equation with respect to II and calcu
lating (II) = 110 and (v cos cp) = 111/2 (vo and 111 are the 
zeroth and first harmonics of II), we obtain two equa
tions for these quantities: 

'11.[-(1+_1 )+W(F. __ 1 )] +v,~w(F' __ l )-~~W=O, 
aG as 2 aG 2WF 

where 
0= -i"!;kVF, S = (iw"t - 1) / iTkVF' 

1 ,. d<p 

W=2,Z"I G-cos<P' 

Eliminating!; from (16), we get 

(18) 

(19) 

We write down the determinant of the system (17) and 
(19): 

( 1 - : ~:) {( 1 + :G) ( 1 + ~' ) - W [ ( 1 + ~' ) ( F. - a~ ) 
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+1;2(1+_1 )(F,-2-)]}- kp,' {[_(1+_1) 
al; as" 2nh2p al; 

+ w ( F, - a~ ) ] ( + -I;'w ) + S2W 2 ( F, - a~ ) } = O. 

(20) 

We seek a solution W a: k for WT » 1; in this case 
a - 00 and a ~ - 00. Accurate to terms of order (aok)2, 
we have 

( 1 + ~' ) - w [ ( 1 + ~' ) + V'F, ] = o. (21) 

This is indeed the equation for finding the velocity of 
zero sound in a two-dimensional Fermi liquid. Evaluat
ing the integral (18), we get 

w=V/(V2 -1)'j,-1. 

It should be noted that, in accordance with [5J, there 
is attraction between the surface impurities. This means 
that there is no surface zero sound of this type. 

It can be shown that two types of zero sound are 
possible in a two-dimensional Fermi liquid. Equation 
(21) determines the zero-sound velocity corresponding 
to a Fermi-circle deformation that is symmetrical with 
respect to the angle cpo Antisymmetrical zero sound is 
also possible, however. It is easy to show that the equa
tions for the velocities of zero sounds of different types 
separate and that for the velocity of the second zero 
sound we obtain, using the indicated approximation of the 
function F, the following equation: 

F,-2 
w=2F,(V'-1)' 

In order for zero-sound of this type to exist, it is neces
sary to satisfy the condition F1 > 2. There are no ex
perimental data on this quantity. 

When WT « 1 there exists a solution of (20) in the 
form 

(00 I kVF)2 = '1,(1 + F,) (1 + 'I,F,) - iooT(1 + '/2F,). 
- -

This is first sound in a two-dimensional Fermi liquid. 
Comparing the damping coefficient with the results of 
hydrodynamic s, we obtain 

'1, =v.(1 +F,/2)u2 • 

In addition to the indicated solutions, Eq. (20) has a 
solution corresponding to capillary waves. At A ~ I 
there exists, in addition to viscous damping, a damping 
mechanism connected with the motion of impurities with 
velocity equal to the phase velocity of the surface capil
lary wave. This is the well-known Landau damping. 
Since w/kvF ~ (aok)li2 « 1 in a capillary wave, we ob
tain, by calculating the integral (18), 

w = -1 - iw I kVF. 

Substituting this expression in (20), we obtain for the 
damping coefficient of capillary waves 
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a,zm·3 

"(=---k'. 
4p'u'nh' 

We see that the Landau damping is proportional to the 
fourth power of A, i.e., to a lower power than the damp-) 
ing connected with surface viscosity. 

Let us trace the damping of the capillary waves as 
the temperature is lowered in a solution of He 3 in He 4 

with concentration c = 10-10• The contribution of the im
purities to the volume thermodynamic and kinematic 
quantities in such a solution is small in comparison with 
the phonon contribution all the way to T = 10-4 

0 K. The 
damping connected with the presence of surface viscosity 
takes place in a temperature region in which the mean 
free path of the volume excitation is 1 »A. At 
T < 0.60 K, the principal effect of the interaction of the 
volume excitations is the scattering of phonons by 
phonons[4J. The phonon mean free path becomes large. 
The damping in this region is due to collisions of the 
phonons with the surface. It is easy to show that the im
aginary increment tothe frequency is in this case 
y ~ PphSk/p, where Pph is the phonon part of the normal 
volume density of the helium and s is the speed of sound. 
With further decrease of temperature, we reach a region 
in which the volume normal component is small in com
parison with the surface component. For frequencies 
W ~ 107 sec-1, the damping connected with the surface 
viscosity becomes comparable with the damping connec
ted with the collisions between the surface and the 
phonons at T ~ 0.3 0 K. The temperature dependence of 
the 'surface thermodynamic quantities was calculated 
in [lJ. With further lowering of the temperature, the im
purities on the surface become degenerate and their 
mean free paths begin to increase like T-2. For tem
peratures 

T!TF - (kup!w,)'j, 

(TF is the Fermi temperature of the surface impurities 
and Wo is the atomic frequency), the impurity mean free 
path is of the order of A. Under these conditions, the 
Landau damping becomes the principal damping mech
anism. 

In concluSion, I am grateful to A. F. Andreev for sug
gesting the problem and for directing the work. 
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