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The growth of the high-temperature resistivity of K and Rb upon compression is attributed to 
electron rearrangement manifested by a change of the relative positions of the sand d bands in the 
conduction band, which leads to an increase in localization of the conduction electrons. The 
resistivity p is calculated on the basis of data on the wave functions and structure of electron bands 
obtained in the Wigner-Seitz spherical approximation. The calculated dependence of p on the degree 
of compression possesses a maximum which coincides with the beginning of the filling of the d 
bands. The K and Rb superconductivity parameters as functions of compression are calculated in the 
same approximation. The superconducting transition of K (at P N 150 kbar) and Rb (at P N 100 
kbar) is predicted quantitatively. The main cause of appearance of superconductivity in these metals 
is the restructuring of the electron spectrum upon compression. 

1. INTRODUCTION 

There is a whole series of metals at the present 
time which undergo a rearrangement of their electron 
structure under pressure, which has a significant effect 
on their properties. In particular, such metals inc lude 
the heavy alkali metals K, Rb and Cs, according to the 
band calculations of various authors. [1,2] These metals 
have the property of "pretransition," which is ex­
pressed in the presence in their electron spectrum of 
relatively low-lying d-bands, which are not filled at 
normal pressure. Thus, there is a partially filled 4s­
band in K at normal pressure and an unfilled 3d-band 
is located rather close to it, above the Fermi level. 
There is a similar situation in Rb, but the bands men­
tioned are replaced by the 5s- and 4d-bands, respec-
ti vely. At a relative compression 15 = 2.5 (15 = pi Po, Po 
is the density of the normal material and P that of the 
compressed material) in K and 15 = 2 in Rb, is an elec­
tron rearrangement takes place, consisting of the filling 
of the previously empty d-band. This materially changes 
the character of the electron-phonon interaction, leads 
to the appearance of additional channels of electron­
phonon scattering and to a sharp increase in the matrix 
element of electron-phonon interaction, which can in 
turn lead on the one hand to a strong increase in the 
resistivity and on the other to the appearance of super­
conducti vity . 

The growth of the resistivity of K and Rb upon com­
pression has actually been observed experimentally by 
Drikhamer[3,4] and the size of the effect is very great 
(for a compression to 0.5 Mbar, the reSistivity in­
creases by almost two orders of magnitude). There are 
as yet no experimental data on the superconductivity of 
K and Rb. 

The present paper is devoted to a quantitative ac­
count of the effect of the described electron rearrange­
ment under pressure on the electrical conductivity, and 
the possibility of appearance of superconductivity (the 
possibility of explanation of pressure-induced super­
conductivity was suggested in[5]). 

It should be noted that account of an unfilled d-band 
close to an s-band and the consequent hybridization of 
the s- and d-bands in heavy alkali metals is important 
even at normal density. This is confirmed, for example, 
by the results.. of the research of Bortolani and 
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Calandra, [6] where account of the unfilled d-band, con­
sidered as a resonant d-Ievel, in the calculation of the 
electric resistivity of I, Rb and Cs, led to a significant 
improvement in the agreement between the calculated 
results and experiment. 

The model chosen by us for calculations of the re­
sisti vity is discussed in Sec. 2, along with the super­
conducting parameters of K and Rb under pressure. 
Section 3 contains the results of calculations of the 
high-temperature lattice resistivity. Section 3 also 
gi ves the equations that generalize the equations of 
superconductivity theory to the case of a multiband 
metal, from the solution of which a BCS-type formula 
is obtained for the critical temperature of such a metal. 
Quantities which characterize the superconducting 
properties are then expressed in terms of the band­
structure parameters in the spherical model, after 
which the results of calculations of the superconducting 
parameters in K and R are given for various pres­
sures, as we 11 as their analysis. 

2. CHOICE OF MODEL 

For the calculation of the quantities of interest to us, 
we use the self-consistent field approximation. This 
corresponds to the Hartree self-consistent field method 
for the electron spectrum and wave functions, and also 
the random phase approximation for the effective elec­
tron-electron and Coulomb interactions. For specific 
calculations of the compression dependence of the re­
sisti vity and, in what follows, also the superconducti v­
ity parameters, we shall use the wave functions and 
energy eigenvalues in the spherical approximation.[7] 
This means that the solution of the Hartree self-consist­
ent set of equations is sought in the region of the unit 
cell of the crystal, which is replaced by an equivalent 
sphere with center at the lattice site, with boundary 
conditions replaced by Bloch conditions on the sphere. 

The wave functions lip) inside the Wigner-Seitz 
sphere are of the form 

lip>=.E A,,(p)!«s,(p),.r)Y,:,:(n), 
1;;'lllti 

(1 ) 

where u = r/l rl, the index po for the spherical har­
monics YZm indicates that their arguments are defined 
in the set of coordinates with axis z II p. The numbers 
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J-Li classify the bands with given values of the projection 
of the orbital angular momentum of the electron in the 
direction of the quasimomentum p, ~i( p) is the unre­
normalized electron-phonon interaction energy of the 
electron Fermi excitations, reckoned from the chemical 
potential. 

Such a choice is based on the supposition, confirmed 
by the results of the calculations given below, that the 
basic role both in the anomalous growth of the resistiv­
ity and in the development of superconductivity is 
played by the matrix element of the effective electron­
phonon interaction, due to the rearrangement of the 
electron structure under pressure and the large change 
in the radial functions fZ associated with it; all the 
other factors (phonon spectrum, anisotropy of the col­
lision times and the superconducting gap, etc.) are less 
essential. 

For the same reason, we chose the spherized Debye 
spectrum with one longitudinal and two transverse 
modes as the model for the phonon spectrum. The 
expressions for the longitudinal and transverse sound 
velocities 

CI = cBs[9r, / 70p/J'i' 

(cBS is the velocity from the Bohm-Staver formula, m 
is the mass of the free electron, PF is the Fermi mo­
mentum of a homogeneous electron gas with density 
equal to the density of the conduction electrons in the 
metal; rs = ro/ao, ro is the radius of the Wigner-Seitz 
sphere, and ao is the Bohr radius) were obtained by 
generalization of the well-known Bohm-Staver formula[8] 
for the longitudinal sound velocity in the jellium model 
with account of multi-bandedness and the microscopic 
inhomogeneity of the metal. 

3. ELECTRIC RESISTIVITY 

The natural generalization of the usual approxima­
tion[9] in the calculation of high-temperature electrical 
conductivity (T» ®D) to the case of several overlap­
ping bands is the following set of equations: 

1: (R,;ri - S,ir,) = 1; (2 ) 

(3 ) 

voT Vj S 1: l<jp'lrp,.lip>I' 
S,j=.-pjmj- d(cos8p·)cos8p· , ) 

2"M v, ,(i), (k 
(4) 

(The expression (4) takes on a similar form after 
averaging over the orientations of the crystal lattice.) 
The following notation is used here: Pi and vi are the 
Fermi momentum and velocity in the i-th band, mi 
= Pi/Vi is the effective mass, Vo is the volume of the 
unit cell, M is the mass of the ion, and 'Psk is the 
effective potential of electron-phonon interaction in the 
dielectric screening approximation. 

The bare potential 'P~k is of the form 

rpo.O(r) = (e,k) V, 1: v(r - R.)explikRaJ, (5) 

where v(r - Ra) is the potential of the electron-phonon 
interaction, es is the polarization vector, and Ra is the 
crystal lattice vector. 

112 SOy. Phys.-JETP, Vol. 38, No.1, January 1974 

With allowance for the relaxation times Ti that have 
been introduced, we get the following elementary rela­
tion for the resistivityl) 

_ 3,,' (1: Pi'T,) _I 
p-- -- . 

e'l. m, 
i 

(6) 

The expression for the matrix element of the bare 
electron-phonon interaction (5) in the spherical approx­
imation has the form 

<;p'lrp •• olip>= 1: Ajl,(pj)A", (Pi)N,:/l,(k)Q::':,(p', p), 
1111) 

N':/l, (k) = 1"I,fll' + I,;", (k), 

and the radial integral 

'S', dvo(r) /",,= drr f,,(r)j,,(r)--
° dr 

corresponds to scattering by a central ion, while 
IfJz/ k) is the contribution fro.~ scattering by the re-

maining ions of the lattice; Q~~'z~ 1 is the integral over 
the solid angle of the product of three spherical har­
monics. In the region of Umklapp processes, the expres­
sion 

I <ip' I rp •• I ip> I' / (i).,', 

which enters into (3) and (4), was averaged over the 
directions of the reciprocal lattice vector in a manner 
similar to that used by Jones. [9] 

The resisti vities of K and Rb were calculated with 
a computer for different degrees of compreSSion, within 
the framework of the scheme set forth above. In the 
expansion of the wave functions (1), we can limit our­
selves, with excellent accuracy, to terms up to l = 3, 
inclusively, Figure 1 shows the theoretical dependence 
of the resistivity of K and Rb on the degree of com­
pression O. Both in K and in Rb there is a sharp in­
crease in the resistivity, with a maximum at the emerg­
ence of the d-band to the Fermi surface. This takes 
place in K at 0 = 2.5 and in Rb at 0 = 2 (see Figs. 2 
and 3, where the band structures of K and Rb are shown 
in the Wigner-Seitz spherical model for several degrees 
of compression). 

Direct comparison of our data with the results of 
Stager and Drikhamer[4] is difficult, since they made no 
corrections for the changes in the geometry of the 
sample under compression and in the resistance of the 
contact. Allowance for these changes when the resistiv­
ity is calculated from the total resistance can lead to 
the appearance of the maximum that we obtained in our 
calculations on the experimental curve. With account of 
this circumstance, the agreement of our data with the 
experimental results is quite good. 

pip. 

15 

FIG. 1. Dependence of the resistivity 10 

of K and Rb on the degree of compres-
sion Ii. 
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FIG. 2. Energy bands in K for different degrees of compression. 

As has already been pOinted out above, the growth of 
the resistivity is connected fundamentally with the 
strong change in the radial functions fZ( ~, r) with pres~ 
sure, which reflects the increase in the localization of 
the conduction electrons. This leads to an increase in 
the radial integrals Ntlll due to a sharp growth of the 
terms JZ l 12 corresponding to scattering by the central 
ion. This growth masks the decrease in the resistivity 
which would have taken place as a consequence of the 
increase in the Debye frequency of the carriers with 
compression, assuming no change in the character of 
the wave functions. As the d-bands begin to fill up, the 
growth of the integrals J slows down, so that the al­
ready mentioned factors that contribute to the decrease 
in the resistivity become dominant. Thus a curve with 
a maximum is obtained and is evidently characteristic 
of metals in which electronic rearrangement under 
pressure takes place. 

It should be noted that, within the framework of the 
representations that have been developed, the weaker 
increase in the resistivity of Rb is connected with the 
fact that the electrons of the 4d-band in it are less 
localized than the 3d electrons in K. 

The change in the coefficients AZ for the s-band 
with compression, up to pressures corresponding to the 
moment of emergence of the d-band to the Fermi sur­
face, is given in Table I for K and Rb. These data make 
it possible to assess the change in the filling of the s­
band with compression. The dimensionless values of 
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FIG. 3. Energy bands in Rb for different degrees of compression. 

the integrals Jl l12 are also given in the table in units of 
4Z5/3(e2/a~) x 104 • 

4. SUPERCONDUCTIVITY 

To study the problem of the appearance of supercon­
ductivity in a metal which undergoes the above-dis­
cussed rearrangement of the electronic structure under 
pressure, it is necessary to modify the usual gap equa­
tion. Instead of it, as can be shown, we have the follow­
ing set of integral equations 

(7) 

g,,(pO,PO')=[A;;(PO,p,')- ~i/l / [1 + ~ J d~~" A,,(PO,P,")], (8) 
I 

[( " ",p)-"] Iti;'= 1+~ln- ~ , 
Wo I] 

(9) 

where Aij and J.lij are the electron-phonon and Coulomb 
matrices, which correspond to the constants A and J.l in 
the single-band case;[lO) i and j are the band indices; 
po = pi I pi; f dSp~ denotes integration over the Fermi 
surface of the j -th band; 

J dp' , 
Vj= (2n),6(£,(P)) 

is the density of states on the Fermi surface; wp is the 
plasma frequency of the electrons, Wo a quantity of the 
order of the Debye frequency. Neglecting the depend­
ence of the gaps and of the interaction on the absolute 
value of the quasi momentum is obviously equivalent to 
a generalization of the properties of the isotropic model 
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TABLE I. Data for the 4s-bands and the values of the integrals 
J1,1, in K and Rb 

K I Rb 

o ~ 1 1 1.5 1.5 

Ao -0.635 -0.631 -0.629 -0.630 -0.666 -0.667 -0.671 
A1 0.650 0.630 0.:;94 0.547 0.598 0.538 0.475 
A, 0.383 0.427 0,470 0.512 0,418 0,473 0.015 
As 0.048 0.136 0.157 0.180 -0.137 -0.184 -0.217 
101 0.10 1.54 4.45 6.9h -8:~ 0.62 1.46 
I" -1.00 -4-38 -8.14 -13.0 -1.90 -3.30 
I" 4.40 7.03 10.2 15.8 -1.38 -2.22 -313 

established by Eliashberg lll) and Migdal [12J to include a 
real metal. 

In the derivation of (7), effects of retardation in the 
phonon-induced electron-electron interaction were 
neglected by replacing them with a static expression in 
the energy range ~wD near the Fermi level. In a simi­
lar way, the usually employed[lO) approximation of a 
piecewise constant energy-transfer function was used 
for the Coulomb interaction_ 

An equation similar to (7) has been studied in the 
single-band case by PokrovskiL (13) It follows from Eq. 
(7) that the temperature of the superconducting transi­
tion is determined by a formula of the type given by the 
BCS theory: 

An equation similar to (7) has been studied in the 
single-band case by PokrovskiL(13) It follows from Eq. 
(7) that the temperature of the superconducting transi­
tion is determined by a formula of the type given by the 
BCS theory: 

(10 ) 

Here, in accord with Dynes, [14) we have set w 
= wD/1.45 and 1) is the largest eigenvalue of the set of 
equations 

1],l,(po)= L,J d:" gi,(PO,Po'),lj(Po'). 
J ' 

(11) 

With neglect of the anisotropies of the energy gaps, 
the system (7) reduces to the set of linear algebraic 
equations 

(12 ) 

g,i=(Aij-fLi;') / (1+ L,Ail) (13 ) 

and 1) in Eq. (10) is now the largest root of the equation 

(14) 

It must be noted that the set of equations (12) was 
obtained by Geilikman, Zaltsevand Kresin[15J without 
a detailed analysis of the structure of the matrix gij. 
In the case of a single-band metal, Eq. (13) goes over 
into the well-known McMillan formula. [16) 

Thus, the problem of the computation of the critical 
temperature reduces essentially to finding the matrices 
JJ.ij and Aij and then, with the help of Eqs. (13), and 
(14), the eigenvalue 1). So far as the electron-phonon 
constants Aij are concerned, they are uniquely deter­
mined by the relation 

Ai! = Rij / 2nT, (15) 

where the Rij are given by Eq. (2). 
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The matric Jlij, with account of the approximation of 
the dielectric constant €( k) for the Coulomb interaction, 
can be rewritten in the form 

fLij=VjJ dO., .~ 4ne'l<jp'lexp{i(p+q)rllip>I' (16) 
4n .i....l Iq+gl'e(q+g) 

For calculation of the sum with g '" 0 (g are the lattice 
vectors) in (16), we used the following approximation: 
we replaced summation over reciprocal lattice vectors 
of identical length but different direction by averaging 
over the directions with subsequent multiplication by 
the number of vectors belonging to the corresponding 
coordination sphere. Then 

L,= :nL,CnJdOg,., fLiJ=fLi/+L,C"fLit, (17) 
«~o n""O 

where cn is the number of vectors on the n-th coordi­
nation sphere of the reciprocal lattice. 

Calculations of the matrices Aij, JJ.ij, JJ.ij, gij and 
also of the eigenvalues 1) and the transition temperature 
have been made on the basis of the formulas presented 
above for K and Rb at various compressions. Some 
results of these calculations are shown in the tables. 

Table II contains the results of calculations for 
those compressions in K and Rb for which no electronic 
rearrangement occurred and the metal remained single­
band in character. The compression scale was recalcu­
lated into a pressure scale on the basis of data on the 
equation of state of the metals. (1) There is some error 
here (in particular in Rb), connected basically with in­
exact account of the contribution of exchange processes 
to the pressure. The calculation for I) = 1 was in some 
sense a test of the validity of the chosen approximation, 
confirming the absence of superconductivity in K and 
Rb at normal pressure. The values of JJ." at I) = 1 are 
close to those computed earlier in the homogeneous 
electron gas model (0.11). 

It is seen from Table II that a considerable increase 
takes place in A for K at 0 = 2, leading to the possible 
appearance of superconducti vity. This growth, as 
analysis of intermediate results shows, is due to growth 
of the matrix element of electron-phonon interaction, 
owing to the increase in the partial contribution of the 
d-electrons (the terms with 1 = 2 in the sum (1 )). In 
Rb, as has already been mentioned above, the rearrange­
ment takes place at lower values of the compression and 
the increase in the matrix element is smaller there than 
for K. In the language of our model, this is explained 
by the fact that the radial function f2 in Rb corresponds 
to the state 4d and has a single zero, in contrast with K, 
where the corres ponding state is 3d and h has no 
zeroes at all. 

Table III gives the results on the dependence of the 
transition temperature of K and Rb on pressure for 
multi -band variants. In particular, as is seen from 
Table III, superconductivity sets in for Rb at I) = 2. 

TABLE II 

IT OK 
c' 

Potassium 

1.5 55 0.084 0.109 -0.025 I 1 10 1 0.071 10.1141-0.043 I 
2 140 0.270 0.107 0.129 0,1 

Rubidium 

I I 8 I 0.06410.1031 -0.037 I -
1.5 50 0.153 0.099 0.047 10-12 
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TABLE III TABLE IV 

, P, kbar' ' .. I 
. 

~ T e, OK }..d~J 1'" !-'dod. 

Potassium Potassium 

2.5 

I 275 I 0.280 4.6 2.5 0.514 0.025 , 0.106 0.024 
3 325 0.352 10.8 3 0.452 0.130 0.098 0.052 
5 450 0.358 16 5 0.033 0.274 0.014 0.070 

Rubidium Rubidium 

!4/ 90

1 

0.229 1.1 2 0.364 0.051 

1 

0.092 0034 
140 0.285 2.9 2,4 0316 0.122 0.089 0.051 

~ 0.302 4.1 3 0.188 0.175 0.085 0.057 
0.324 6.1 4 0.019 0.217 0.007 0.058 

The effect of electron rearrangement on the super­
conducti vity parameters can be traced in the example, 
shown in Table IY, of the compression dependence of 
several matrix elements \j and Ilij, the change in 
which seems to us to be most characteristic. We note 
that after overlapping of the bands, ;\ij and Ilij are 
6 x 6 matrices. 

The increase in the element Ass up to overlapping 
of the bands is connected basically with the increase in 
the weight of the d-states in the wave function of the 
s-band. The decrease in the denSity of states of the 
electrons of the s-band with compression, taking place 
after overlap, and the simultaneous increase of it in the 
d-band, lead to a decrease in ASS and an increase in 
Ad 2 d2 • The character of the change in the elements of 
the matrix Ilij is explained by basically the same rea­
sons. 

Direct comparison of the calculated data with exper­
iment is impossible because of the absence of experi­
mental data. However, the presence of a connection 
between superconductivity and the electrical resistance, 
given by Eq. (15), and the good agreement of the results 
of the preceding section with experiment, indicates the 
reasonableness of the approximations used. 

Of course, because of the strong exponential depend­
ence of the coupling constant, the transition temperature 
is much more sensitive to the choice of model than the 
resisti vity, and therefore it is difficult to expect very 
close agreement of the calculated absolute values of 
Tc with the experimental values. However, the choice 
of the model used in our calculations seems to be justi­
fied to a sufficient degree for the assessment of the 
possibility of the superconducting transition and the de­
termination of the qualitative dependence of Tc on the 
pressure. 

5. CONCLUSION 

All the foregOing analysis has been based on the 
supposition of the decisive role of rearrangement of the 
electron structure in K and Rb under pressure in the 
phenomena investigated by us. The analysiS of the re­
sults completely confirm this supposition. The com-
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pression dependence of the resistivity calculated by us 
agrees well with experiment. On the basis of calcula­
tions of the super conducting parameters, the appearance 
of superconductivity has been predicted for K at 
P ~ 150 kbar and for Rb at P ~ 100 bar. This gives us 
hope for accomplishments of the next step proposed by 
us in the investigation of the appearance of supercon­
ducti vity in Cs, Y and Ba, where this phenomenon has 
been discovered experimentally, and it is evidently due 
to the same cause. 

In conclUSion, we express our gratitude to A. I. 
Yoropinov and Y. G. Podval'nyi for preparing the pro­
grams of calculation of the equation of state and the 
results of the calculation of the exchange pressure in 
K. The authors also sincerely thank Professor B. T. 
Geilikman, Academician L. F. Yereshchagin, and E. S. 
Itskevich for useful discussions of the results of the 
present research. 

IlHere and below, we set h = k = I (k = Boltzmann's constant) and con­
sider a crystal of unit volume. 
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