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Absorption of an intense transverse electromagnetic wave in a plasma is studied within the 
framework of the theory of nonlinear wave interaction. The dissipation mechanism consists in 
nonlinear transformation of a transverse wave into an electron Langmuir oscillation (due to induced 
scattering by the plasma particles), which is absorbed by the electrons with a Landau decay 
decrement. The effective nonlinear dissipation frequency is found to be a transcendental function of 
the ti,me-dependent intensity of the absorbed transverse wave. The results are discussed in connection 
with the problem of interaction between intense light beams and matter. In a laser plasma with a 
temperature <: 1 keY the effective nonlinear dissipation frequency of the light beams <: 3 X 1014 

W/cm' exceeds the Coulomb frequency of the electron-ion collisions by at least an order of 
magnitude. 

INTRODUCTION 

Much attention is being paid of late to nonlinear ab­
sorption (emission), not connected directly with Coulomb 
collisions of the particles, of electromagnetic waves in 
a plasma. The foundations for the study of such absorp­
tion are the theory of parametric resonance [1-3J and the 
theory of nonlinear interaction of waves in a plasma[4,5J. 
The action of powerful radiation in the optical [6, 7J, 
microwave [S-10J , and HF[llJ bands on a plasma is ac­
companied by experimentally observable nonlinear 
effects of generation of harmonics of the fundamental 
frequency of the emission [12 ,13 J, and anomalies in the 
reflection[14J and absorption[S,9,15J of the radiation. 
The stationary picture of the absorption of an intensive 
electromagnetic wave can be obtained within the frame­
work of the theory of amplitude saturation by the poten­
tial plasma oscillations that are parametrically excited 
by the wave and are subject to induced scattering by 
ions [HH9J. The pulsed character of the action of the 
powerful radiation on a plasma (for example, in the case 
of picosecond-pulse lasers) and the need for determining 
the characteristic transient time in the absorption make 
it urgent to determine the temporal evolution of the non­
linear absorption. 

In this communication we describe analytically the 
process of disSipation of a sufficiently powerful trans­
verse (non-potential) electromagnetic wave. The absorp­
tion proceeds, roughly speaking, through two simultane­
ous stages. 

In the first stage, the electromagnetic wave is trans­
formed into an electron Langmuir oscillation. It is this 
stage which ensures the entry of the electromagnetic 
energy into the plasma. Then, in the second stage, the 
electric energy of the Langmuir oscillation, which is 
pumped into the plasma, is absorbed by the electrons at 
a rate determined by the linear Landau damping decre­
ment. If the intensity of the electromagnetic wave is low 
and the plasma is inhomogeneous, then the transforma­
tion into electron Langmuir oscillations can, if the con­
ditions are suitably chosen, be also linear and due to the 
inhomogeneity of the plasma [20, 21J. In particular, the 
stationary dissipation of the p-polarized light wave that 
becomes linearly transformed, as a result of the in­
homogeneity of the laser plasma, into a Langmuir oscil­
lation absorbed by electrons in accordance with the in­
verse Cerenkov effect, was investigated in[22J. On the 
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other hand, if the intensity of the electromagnetic wave 
is high, then its transformation into electron Langmuir 
oscillations occur also in a homogeneous plasma as a 
result of the nonlinear interaction (induced scattering 
by the plasma particles with change of the type of wave 
polarization in the scattering process). The analysis 
proposed below makes it possible to trace such a non­
linear nonstationary dissipation of the transverse wave 
in a homogeneous plasma, which turns out to be more 
effective than the linear dissipation in the inhomogeneous 
plasma at sufficiently high intenSity of the absorbed 
wave. 

1. INITIAL RELATIONS 

In a homogeneous isotropic plasma, the joint evolu­
tion of the spectral densities of the energy of the elec­
tron Langmuir oscillation Wz(k) and the transverse elec­
tromagnetic wave Wtr(k) is described by the equa­
tions[4,5J 

oW,(k) +3vT«krD.»)( oW,(k) = -2y(k) W,(k) + WICk) 
ot or 

X J dk'{ (X)(')'Qll(k, k')W,(k')+ '/2[XXX']'Qll(k, k') W,,(k')}, 

DlV,,(k) +~)( oW,,(k) = -v.,W,,(k) + W,,(k) (1.1) 
at (OL. or 

xS dk' {'/,[ 1 + ()()(') ']QtI (k, k') W,,(k') + '/,[xX)(']'QtI(k, k')W,(k')}. 

(1.2) 

The left-hand sides of (1.1) and (1.2) correspond to the 
change of the spectral energy densities with the time t 
and with the coordinate r, vTe = (KT /m)1/2 is the ther 
thermal velocity of the electrons witt temperature T e 
and mass m (K is the Boltzmann constant), and WLe 
= (41TNee2/m)112 is their Langmuir frequency (e is the 
electron charge, Ne is the number of plasma electrons 
per unit volume); rDe = (vTe!wLe) is the Debye radius 
of the electrons, and c is the speed of light in vacuum. 
The group velocities of the interacting waves (see the 
second terms in the left-hand sides of (1.1) and (1.2)) 
are directed along the wave vectors k = kK with unit 
vector K. The terms linear in the energy density in the 
right-hand sides of (1.1) and (1.2) describe the linear 
damping of the waves because of their interaction with 
the plasma particles. The Langmuir oscillation with 
spectrum 

(1.3) 
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is characterized by a damping decrement y: 
'II" ,(fi ro., {1 ro/(k)} (1 4) 

V(k)=2+ Vs (krD.)3 exp -2k2vT," • 

which takes into account the dissipation due to the colli­
sions and the Cerenkov effect (Landau damping). The 
transverse electromagnetic wave with spectrum 

(1.5) 

attenuates in the linear approximation only as a result 
of collisions of the electrons with ions of frequency lIei' 
The kernels Q in the nonlinear integral terms of (1.1) 
and (1.2) are determined by the corresponding scattering 
cross section [4 ,5] : 

Q,,(k, k') = Q(w,(k) - w,(k'), k - k'), (1.6) 

Q,,(k,k') =Q(w,(k) - oo,(k'), k-k'), 

Qll(k, k') = Q(w,(k) - w,(k'), k - k') = -Qlt(k', k), (1. 7) 

in which the function Q(w", k") takes the form (w" == w 
- w', k" == k - k/) 

Q( "k,,)=_~(k"rD')'{cSe"(w" k") 
0) , 16313 NexTe e , 

xl 1 + cSel(W",k") I' +cSe·"(w"k")1 cSe.(oo",k") I'}. 
e(oo",k") "e(oo",k") (1.8) 

Here liEi and liEe are the longitudinal partial dielectric 
constants of the ionic and electronic components of the 
plasma at the beat frequency (w", k") of the scattered 
waves, liEf and liE" are their imaginary parts, and E == 1 
+ 0 Ei + 0 Ee (see[2~). We note that the concrete expres­
sion (1.8) for Q takes into account scattering only via a 
virtual potential oscillation, and we confine ourselves to 
this scattering. 

The physical meaning of the individual nonlinear 
terms in equations (1.1) and (1.2) is simple. Namely, the 
first nonlinear term in the right-hand side of (1.1) des­
cribes the induced scattering of the electron Langmuir 
oscillation with frequency (1.3) and wave vector k, by the 
plasma particles, into a Langmuir oscillation with fre­
quency wZ(k/) and wave vector k' = kllC ' • Such a scatter­
ing of the Langmuir oscillations by ions was used 
in[l7,18J as a nonlinear mechanism for saturating the 
levels of the Langmuir noise parametrically excited in 
the plasma by the electric field of a powerful transverse 
pump wave of given amplitude. Accordingly, the first 
nonlinear term in (1.2) gives the induced scattering of an 
electromagnetic wave of frequency wt(k) by particles 
into a wave of frequency Wt( k/). The angle factor 
(1/4) II + (IC '1C /)2] corresponds to the natural polariza­
tion of the transverse waves. For scattering of a trans­
verse wave linearly polarized along a unit vector e into 
a linearly polarized transverse wave e/, such a factor 
should be replaced by the square of the scalar product 
(e· e/)2 of the polarization unit vectors. The two afore­
mentioned terms determine the redistribution of the wave 
energy over the spectrum, from the higher frequencies 
to the lower ones, within the spectral line of the scatter­
ing waves. Their contribution to the evolution of the 
spectral energy densities WZ(k) and Wtr(k) decreases 
when the line becomes narrower, so that in the limit of 
the monochromatic waves they can be neglected. To the 
contrary, the nonlinear terms of (1.1) and (1.2) with 
kernels (1.7) characterize the nonlinear interaction of 
the transverse wave and of the electron Langmuir os­
cillations with arbitrary line width (under conditions of 
satisfaction of the inequality y «WLe)' They describe 
the mutual nonlinear transformation of Langmuir oscil-
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lation and of the transverse wave, in particular, also in 
the case of a very narrow line of the scattered waves: 

W,(k) =I,(r,t)cS(k-k,), W,,(k) =I2 (r,t)cS(k-,k2 ). (1.9) 

Such an approximation of a narrow line makes it possi­
ble to demonstrate the physical picture of nonlinear 
transformation and absorption of a transverse wave. We 
shall therefore confine ourselves to this approximation. 
If the transverse wave is linearly polarized, then the 
angle factor (1/2)[1C x 1(1]2 should be replaced in Eq. (1.1) 
by (IC· e/)2 and in (1.2) by (IC ' • e)2. 

In the narrow-line approximation (1.9), the system of 
nonlinear integro-differential equations (1.1) and (1.2) 
reduces to the differential equations 

!!.!.!.. + 3vT«k,rD')!!.!.!.. = -2V(k,)I, + (x,e)' Qlt(k" k,)I,I2 , (1.10) at ar 
aI, c'k, aI. 2 

-+--=-v.J,+(x,e) Qlt(k"k,)I,I" (1.11) at WL. ar 
in which I( I is a unit vector along the wave vector kl 
= kll(l of the Langmuir oscillation, and e is the unit vec­
tor of the polarization of the transverse wave. The 
direction of the transformation from the transverse 
wave to the longitudinal one (Langmuir oscillation) or 
vice versa is determined by the sign of the kernels QZt 
and QU' which in turn depends, in accordance with (1.8), 
on the sign of the frequency difference (1.3) and (1.5) of 
the transformed waves with wave vectors kl and k2 
(OE" a: w"). If the frequency W2 == Wt(~) of the trans­
verse wave exceeds the frequency WI == wZ(k l ) of the 
electron Langmuir oscillation 

c' (' VT,' ') 00,-00,=-- k2 -3-2 k, >0, 
2WLe C (1.12) 

then the electromagnetic energy, in accordance with 
(1.10) and (1.11) flows out from the transverse wave into 
the longitudinal ones. We confine ourselves to the case 
(1.12), since it corresponds, in our opinion, to perfectly 
realizable conditions on the wavelength of the interacting 
waves. The kernel QZt is in this case positive: 

Q"(k,, k,) = -Qll(k" k,) "" Q > 0, (1.13) 

and the decrease dI2/dt < 0 of the energy of the trans­
verse wave as a result of the second term in the right"" 
hand side of (1.11) describes its nonlinear absorption. 

2. NONLINEAR NONSTATIONARY DISSIPATION 

Certain properties of nonlinear transformation of a 
transverse wave into an electron Langmuir wave are 
quite close to the properties of the linear transformation 
of the transverse wave into a longitudinal one, as a re­
sult of the inhomogeneity of the plasma density. First, 
just as in the case of linear transformation, the frequen­
cies (1.3) and (1.5) of the waves interacting in accord­
ance with (1.10) and (1.11) differ little from each other. 
Second, for the nonlinear transformation it is necessary 
that the polarization vector e of the transverse wave 
have a component lying in the plane of the wave vectors 
kl and k2. The case when the polarization vector e is 
perpendicular to the (kl' k2) plane corresponds in terms 
of the linear theory to s-polarization of the transverse 
wave (the transformation corresponds to I( l' e = 0). A 
vector e parallel to the (kl1 ~) plane corresponds to 
p-polarization. It can be stated qualitatively that the 
wave vector kl of the electron Langmuir oscillation in a 
homogeneous isotropic plasma singles out a direction 
similar to the direction of the change of the density in 
an inhomogeneous plasma. If the transverse wave is 
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naturally polarized, the angle factor (IC l' e)" in (1.10) or 
(1.11) takes the form (1/2) (I( 1 X 1C2]2 (1C2 == ~ /~), and 
the nonlinear transformation is always possible when the 
direction of propagation of the interacting waves are not 
collinear (the "incidence" of the transverse wave is not 
normal). In this connection, the stationary nonlinear 
transformation of the waves in space is described, in ac­
cordance with (1.10) and (1.11), by the essentially non­
one-dimensional equations 

aI, aI, 
sin e h + cos e a; = -2fl,I, + AI.!2 sin2 e, 

al2 k, VTIl'}. • 2 

-=-2fl2I2-3---Al,12sm e, 
az k2 c2 

in which z is the coordinate along the wave vector k2 of 
the transverse wave, and the function 11,2(x) character­
ize the variation, in energy space, of the waves in a 
direction perpendicular to the direction of ~, along the 
vector e of the "p-polarized" transverse wave, so that 
cos e = ("1"2), sin2 e = (1C1e)2. The coefficients il1,2 de­
termine the linear absorption of the waves (in reciprocal 
centimeters): 

1 ,\,(k,) 
fl' = 3 (k,rD')vT,' 

and the quantity A determines the characteristic length 
of the nonlinear transformation (Q = 3vTek1rDeA). The 
only difference between the nonlinear transformation of 
the transverse wave into an electron Langmuir oscilla­
tion from linear transformation of these waves in an in­
homogeneous plasma is (besides the nonlinearity of the 
process), the dependence of the kernel Q in (1.10), (1.11), 
and (1.13) on the ionic quantities (the ion mass M, its 
charge ei' and the ion temperature Ti) in terms of the 
partial dielectric constant Ii Ei of the ions, whereas the 
linear transformation occurs in an inhomogeneous elec­
tron plasma. Such a dependence of Q on the ionic quan­
tities becomes all the more manifest because the induced 
scattering is mainly by ions (the second, ionic term in 
the right-hand side of (1.8) is as a rule larger than the 
first). 

If Eq. (1.10) is considered in the given-intensity ap­
proximation 12 = (1TEo)2 of a transverse electromagnetic 
wave, then the evolution of the intensity and of the spec­
tral energy density of the electron Langmuir oscillations 
can be treated as parametric instability excited in the 
plasma by a pump wave with electric field intensity 
Eo = eEo. In fact, if ~ «k1, Te »Ti, (k1rne)2 « 1, 
and we take into account in the kernel Q the term des­
cribing the scattering by electrons, as well as the fact 
that the detuning ~Wo == W2 - W1 = Wo - wLe - %kirDevTe 
> 0 (W2 == wo) is positive, we can rewrite (1.1) and (1.10) 
in the linear form 

dW,(k) / dt = 21(k)W,(k), 

in which the increment y of the parametric buildup is 
given by the expression 

012 2 1 (krE)2 00.1'>00.1. eE, 
1(k)=-Q(x,E,) -,\,(k,) ""---2 --2--'\" k==k" rE==....--.,. 

2 4 (krD ,) 00. moo, 

which coincides with the increment (3.13) of[24] in the 
limit of small detuning ~wo < kvTi < kWLirne == Ws in 
comparison with the acoustic frequency Ws and in the 
case of a relatively large decrement of the Cerenkov 
damping y s > y of the ion sound by the electrons 
(vTi == (KT/M)1h). This fact enables us to interpret 
the change of the intensity of the electron Langmuir os­
cillations and the nonstationary nonlinear absorption of 
the transverse electromagnetic wave, which are des-
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FIG. I. Dependence of the relative intensities of the transverse electro· 
magnetic pump wave p and of the parametrically excited electron Lang· 
muir oscillations / on the time T at q > I (q = 5, ~ = 10-3 ; see formulas 
(2.2) and (2.3)). The / curve corresponds to a decrease of the value 10-2 / 

by a factor of 100. The horizontal asymptote p = p(oo) "" 6.7 X 10-3, 

which determines the stationary level of the intensity of the transverse 
wave, is not shown in the figure. 

FIG. 2. Relative intensities p and / of the transverse and Langmuir 
waves as functions of the time T at: a-I> q > (I + ~rl (q = 0.8, ~ = I), 
b) at q (I + ~) < I (q = 0.4, ~ = I). 

cribed by the pair of coupled equations (1.10) and (1.11), 
as the process of stabilization of the parametriC insta­
bility as a result of "depletion" of the pumping (see[25]). 

To illustrate the foregoing ideas, let us discuss the 
solution of the nonstationary equations (1.10) and (1.11) 
under conditions (1.12) and (1.13) of nonlinear absorption 
and spatially homogeneous intensities 11 = 11(t) and 12 
= 12(t) of the interacting waves, neglecting completely the 
contribution of the dissipation due to the collisions J) ei 
(y is determined in this case only by the second term 

. in (1.4)): 

aI, _ . 2 aI2 . 2 

ar:=-2'Y1,+l,I,Qsm e, ar:=-l,12Qsm e (2.1) 

Introducing the initial values 11(0) and 12 (0) of the intensi­
ties of the interacting waves and the dimensionless var­
iables 

= 12(t) l= l,(t) =1,(0) =QI2(0) sin2 8 't== t 
p- 12 (0) , - 1,(0)' ~- 12 (0)' q- 2,\, ,,\,, (2.2) 

we can represent the solutions of equations (2.1) in the 
form of two equations 

1 • dx 1 
't="2f x[q(1+~-x)+Inxl' 1=~[q(1+~-p)+Inpl. (2.3) 

p 

Figures 1 and 2 'show the dependence of the intensities of 
the transverse and Langmuir waves p and l in the time T, 

which is determined by formulas (2.3). It is seen from 
the figures that the intensity of the powerful transverse 
electromagnetic waves decreases monotonically with 
time T to a nonzero stationary value p(oo), determined 
by the condition 

q [1 + ~ - p (00) 1 + In p (00) = O. 

Obviously, the nonlinear absorption of the transverse 
wave is sufficiently effective only under the conditions 
p(oo) ::::: exp (-q -qj3) « 1, when the nonlinear trans­
formation and the initial intensity of the transverse 
wave are sufficiently high: q(l + 1'3) » 1 (see (2.2)). 
During the initial stage T - 0 the intensity of the trans­
verse wave decreases linearly with time, p = 1 - 2 j3q T, 
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and the stationary value p(oo) is reached in exponential 
fashion: p(T) ~ p(oo) [1 - e-ZT ]-1. 

Of the three possible variants of the evolution of p 
and l on Figs. 1 and 2, greatest interest attaches from 
the pOint of view of nonlinear dissipation to the case 
q > 1 (Fig. 1). The intensity of the electron Langmuir 
oscillations in this case first increases (the energy com­
ing from the transverse wave "has no time" to become 
dissipated because of Landau damping), reaches a maxi­
mum value 

1 
l....=-[q(1+ ~)-1-lnq] 

~q 

at the instant of time 
1 I tk 

Tm··=T S x[q(1+~-x)+lnx] 
I/q 

and then decreases to zero (neglecting the contribution 
of the spontaneous radiation of the Langmuir oscilla­
tions). If the initial intensity level of the Langmuir os­
cillations is small in comparison with the initial intensity 
of the transverse wave absorbed by the plasma, i3 « 1, 
and the nonlinear transformation is sufficiently high, 
q » 1, then the maximum value I1(t) is equal to h(O). 
During the initial stage of absorption (p ~ 1), the inten­
sity of the Langmuir oscillations changes linearly with 
the intensity of the transverse waves l ~ 1 + (q - 1)(1 - p) 
x (q i3r1 , while the stationary value is assumed in accord­
ance with the law 

l 1 p - p ( 00) [1 () ] 1 - qp ( 00 ) _" 

"'~ p(oo) -qp 00 q~ e. 

The intersection of the curves l and p, when the relative 
intensity of the transverse waves into Langmuir oscilla­
tion becomes equalized, occurs at the instant of time To, 
which is determined by the equality 

q(1+~)(1-p) +lnp=O 

and by the first of the relations (2.3). 

The rate of nonlinear nonstationary absorption of the 
transverse electromagnetic wave is determined by the 
effective frequency veff: 

I,(t) = 1,(0) exp (-'Vefft), 

which in this case is a transcendental function of the in­
tensity of the transverse wave: 

'Veff {s· dx } -. 
'V 5 '2Y=- x[q(1+~-x)+lnx] Inp. (2.4) 

p 

In the case of weak nonlinear transformation (q < 1), the 
effective frequency vi i3q, according to (2.4), decreases 
monotonically from unity to zero with decreasing inten­
sity of the transverse wave from 1 to p(ao). Under condi­
tions of nonlinear diSSipation (q > 1), the effective fre­
quency (2.4) reaches a maximum value vmax = i3q l at an 
instant of time determined by the equation 

1 ' 
l(T)=7 S dT'I(T'). 

o 

At the initial instants of time, the effective frequency of 
the nonlinear dissipation is almost constant: 

'V '" ~q + 'j.(q - 1) (1 - p), p'" 1, 

and in the concluding stage of the nonlinear absorption it 
takes the form 

'V '" -q(1 + M In-' [p - p(oo)]. 

A plot of the effective frequency of the nonlinear dissipa-
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FIG. 3. Effective frequency v of nonlinear dissipation (2.4) of a trans­
verse electromagnetic pump wave as a function of its relative intensity 
pat q > I (q = 5,{3= 10-3, see (2.2)). 

tion on the intensity of the absorbed transverse wave p 
is shown in Fig. 3 (at q > 1). 

The final value of the stationary level p(oo) of the in­
tensity of the nonlinearly absorbed transverse wave is 
due to the finite nature of the dissipation y of the elec­
tron Langmuir Qscillations. If we neglect the damping 
decrement yin (2.1), then the absorption of the trans­
verse wave is determined only by the nonlinear trans­
formation 
J,(t) = I. (0)[1, (0) + 1,(0) HI. (0) + I,(O)exp[ - (I,(O) + 12 (0) )Qtsin'6]}-', 

I,(t) = 1,(0)[1,(0) + 1,(0) ]{I.(O) + 1,(0) exp [-(I,(O) 

+ 1,(0)) Qtsin'6]}-' exp {-[I.(O) +I,(0)]Qtsin'6}, (2.5) 

as a result of which the intensity of the transverse elec­
tromagnetic wave decreases to zero, and the intensity of 
the electron Langmuir oscillation grows to a value 
[11 (0) + h(O)]. The incompleteness of the resultant phys­
ical picture of nonlinear dissipation necessitates the 
foregoing inclusion of the Landau damping y. 

The nonlinear absorption is large in comparison with 
the absorption of the transverse electromagnetic wave as 
a result of the Coulomb collisions of the plasma parti­
cles, if the effective frequency veff = 2vy greatly exceeds 
the collision frequency vei: 

{S' tk } -. 1 I (t) 
Ii( --.;-[q(1+ ~-x)+lnx]-' Inp > 'V", p= 1:(0)' (2.6) 

p 

The non stationary solution for the intensities of the elec­
tron Langmuir oscillation l, of the transverse electro­
magnetic wave p, and of the effective absorption fre­
quency v shows that this inequality (2.6) cannot be satis­
fied at any instant of time. For example, at the conclud­
ing stage of the nonlinear diSSipation, when the intensity 
of the transverse wave assumes the stationary value 
p(oo), the effective frequency veff decreases and cannot 
compete with vei' In essence, during this stage there is 
no nonlinear dissipation since the intensity of the trans­
verse wave becomes very small. However, during a 
very large time interval (see Fig. 3), the effective fre­
quency is large. 

A particularly simple form is assumed by veff during 
the stage of "pure" transformation, when the Landau 
damping is still unable to interfere with the growth of 
the intensity of the Langmuir oscillation (the section 
dlldT) ;G 0 in Fig. 1 in the time interval T':::; T max)' 
Then, in accordance with the formulas (2.5), we can as­
sume that v eff ~ Q[I2 (0) + 11(0)] sin2 B. Under the condi­
tions sin2 B ~ 1 and h(O) »11(0) with allowance for the 
nonlinear transformation due to scattering by the ions, 
when the beat frequency W2 - WI of the transverse and 
Langmuir waves (in terms of the theory of parametric 
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(2.8) 

under the conditions of the foregoing estimate (KTe 
~ KTi ~ 1 key, Ne ~ 1021 cm-3, S ~ 3 X 1014 W/cm2) and 
at an inhomogeneity dimension a ~ 5 x 10-3 cm (at 
I3k1rDe ~ 0.1). Obviously, the growth of the light flux 
contributes to predominance of nonlinear dissipation, 
and the decrease of the dimension of the plasma inhomo­
geneity increases the efficiency of the linear trans­
formation. In this sense, the inequality (2.8) enables us 
to examine the conditions for the applicability of the 
homogeneous-plasma approximation used in the present 
paper to study nonlinear non stationary dissipation of a 
high-power transverse wave. It is also clear that the 
effects of linear[22] and nonlinear transformation do not 
cancel each other, but add up and, in accordance with the 
foregoing, ensure a rather intensive absorption (in com­
parison with the Coulomb absorption) of the high-power 
electromagnetic waves in a plasma with arbitrary char­
acteristic dimension of the inhomogeneity. 
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CONCLUSION 

Let us dwell briefly on certain limitations of the de­
veloped theory and on the prospects of further study of 
nonlinear absorption. It must be noted first that the 
growth of the intensity of the electron Langmuir oscilla­
tion during the course of the nonlinear transformation 
(see Fig. 1) can lead to an additional decrease of Il(t) via 
emission of the Langmuir-oscillation energy at double 
the frequency of the radiation absorbed by the plasma 
(when two Langmuir oscillations coalesce into a trans­
verse wave). In addition, as already noted in Sec. 1, 
neglect of the spectral redistribution within the line of 
the Langmuir oscillations (Le., neglect of the first non­
linear term in (1.1)) imposes limitations (we assume that 
the kernels of (1. 6) and (1.7) are of the same order) on 
the width of their spectral density WZ(k) with respect to 
the wave numbers (Dok) and the angles (DoB): 

Dr. !'J.k 
I,> 31,--rn,. 

Drl !'J.8 

Allowance for the spectral redistribution of the energy 
of the electronic Langmuir oscillations, which decreases 
their frequency, contributes to fulfillment of the non­
linear-transformation conditions (see (1.12)), Le., to an 
increase in the effective nonlinear dissipation. As ap­
plied to the problem of the laser thermonuclear reaction, 
in which the target volume is illuminated with several 
light beams [26], it is apparently also of interest to study 
the limit inverse to (1.9), when the spectral density WZ(k) 
is isotropic and depends only on the wave number k. 

We are grateful to N. E. Andreev and L. M. Anosov 
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We are grateful to V. T. Tikhonchuk for a discussion of 
the results. 
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