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A class of exact solutions is found for the equations describing propagation of circularly polarized 
waves in a dispersive isotropic nonlinear medium. It is shown that the solutions include waves that 
are localized pulses, their duration being comparable to the rotation period of the field vector, and 
the form of each field projection changes continuously. Electromagnetic waves in a solid-state 
plasma are considered by way of example. 

Exact solutions of the problem of wave propagation 
in nonlinear dispersive media can be obtained only in a 
few quite special cases. These include stationary waves 
propagating without change of waveform [1], certain self­
similar solutions[2], and individual cases when the solu­
tion of the individual problem can be reduced to a solu­
tion of a linear boundary-value problem [6]. Usually, 
however, nonlinear waves are investigated by approxi­
mate methods based on the fact that the waveform is 
close to stationary (in particular, harmonic) and that its 
parameters vary slowly. 

In the present paper we obtain one more class of 
exact solutions of the vector nonlinear partial differen­
tial equation by using for the dependent variables a 
transformation that reduces the initial autonomous solu­
tions that do not depend explicitly on z and t) to other, 
likewise antonomous equations. For the latter it is 
possible to use, in particular, already known methods 
of finding the solutions (for example, stationary ones), 
which correspond in terms of the initial variables to 
certain new (essentially nonstationary) solutions. With 
the aid of such a transformation, we consider the propa­
gation of circularly polarized waves in a solid-state 
plasma with a non-parabolic conduction band. 

1. We consider a nonlinear isotropic dispersive 
medium described by a solution in the form 

{jm+nE 
~ !mn({Sij"})--{j_.L =0. 
~ 8zm tn 
m.n 

Here fmn are arbitrary functions of the aggregate of 
the scalar products 

(1) 

El is the sought vector, which lies in the plane (x, y); 
i, j, k, l, m, n = 0, 1,2, 3 ... In the investigation of 
circularly polarized solutions of equation (1) it is con­
venient to introduce the vectors a+ and a-, which ro­
tate in the same direction 

and to make the substitution 

(2) 

where the real functions A(z, t) and Ij;(z, t) represent 
new depent variables that have the formal meaning of 
the amplitude and phase, and e is a constant complex 
vector, such that (e ·e) = (e* 'e*) = 0 and (e ·e*) = ;.'2. 
e = (;.'2; i/2; 0) for right-hand polarized waves and 
e = (;.'2; -i/2; 0) for left-hand waves. 

We substitute (2) in (1) and take into account the 
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fact that the vectors a+ and a- satisfy the relations 
iJa± iJljJ iia± iJljJ Tz = ± a~Oz' ---at = ± a~ at' (8+8+) = (8_8_) = 1, (8+8_) = 0, 

an~ therefore none of the scalar products Sijkl contain 
e±llj;. This substitution reduces (1) to the form 

(3 ) 

where <P 1 and <P 2 are certain operators that do not con­
tain explicitly the phase variable Ij;, but only its deriva­
ti ves. By virtue of the orthogonality of the vectors a+ 
and a-, expression (3) breaks up into two equations 

!Dl = 0, !D, = O. (4 ) 

Recognizing that <p 1 and <p 2 depend only on the deri va­
tives of Ij;, we change from the variable Ij; to a new 
variable cp, connected with Ij; by the relation 

IjJ(Z,t) =wt+kz+ljl(z,t), (5) 

where wand k are arbitrary constants. The transfor­
mation (5), which depends explicitly on the time and on 
the coordinate, leaves the system of equations (4) 
autonomous. We note that at A '" const and cp = const 
we obtain from (4) a solution in the form of a harmonic 
stationary wave; such a solution is known, for example, 
for transverse waves in a relativistic plasma[·,5]. What 
is considered here is an essentially more general class 
of waves. 

2. We examine now the propagation of nonlinear 
Circularly-polarized electromagnetic waves in a solid­
state plasma. It is well known that in a number of 
semiconductors the electron dispersion in the band 
is not parabolic. It can be shown that if damping is 
neglected the equation describing the propagation of 
transverse waves in a semiconductor with isotropic and 
non-parabolic conduction band can be written in the 
form of thA vector equation 

{j'p ii'p OF-h' = !(p')p. 
(6 ) 

Here p is the dimensionless quasimomentum, ~ and T 

are the dimensionless coordinate and time, and f(p2) 
is determined by the band structure of the semiconduc­
tor. 

Substituting the vector p in the form (2) in (6) with 
allowance for (5), and performing the transformations 
described above, we obtain new autonomous equations 
corresponding to Eqs. (4) and equivalent to Eq. (6) in 
the class of circularly polarized waves: 

A,,-A,,=A[(x+ljl,)'- (Q+ljl,)'+!(A')]. (7) 

A(<p,,-ljln) =2[A,(Q+ljl,) -A,(x+<p,)]. (8) 
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where nand K are the values of wand k in terms of 
the dimensionless variables. Equations (7) and (8) are 
similar in form to the approximate equations obtained 
for the envelopes of quasiharmonic waves in a medium 
with small nonlinearity with the aid of the method of 
averaging and recently considered a number of times[61. 
Since, however, no approximations whatever are used in 
the derivation of (7) and (8), the latter are valid for 
arbitrarily rapid variations of the "envelopes" of A 
and cP and for arbitrarily strong nonlinearity. 

We consider for (7) and (8) stationary solutions that 
depend on one variable e = ~ + VT, where v = const. 
Equation (8) can be integrated: 

(l-v')fjl,A'+(Qv-x)A'=I. (9) 

Here J is the integration constant. Equation (7) reduces 
to the equation of the nonlinear oscillator 

[ (1- xv/Q)' f(A') I'] = 0 (10) 
A,,-A (l-.v')' Q'(l-v') A'(l-v') , 

which can be reduced to quadratures or investigated on 
the phase plane by standard methods. 

To specify the concrete form of the function f( p2), 
we consider a semiconductor with a Kane-type dis­
persion[71: 

e(p') ='/,e,[(1+2p"/m'eg)'f'-1], (11) 
where E (p') is the energy of a conduction-band electron 
having a quasimomentum p', m* is the effective mass of 
the electron at the bottom of the conduction band, and 
Eg is the width of the forbidden band. If we neglect 
damping, then in the drift approximation[B] the connec­
tion between the current density and the field is given 
by the expressions 

en p' iJp' 
j=- m' (1+2p"/m'e,)'h' aT=-eE, (12) 

where n is the electron concentration. Using this con­
nection, we can easily obtain from Maxwell's equations, 
for transverse electromagnetic waves, an equation of 
the type (6) with f(p2) = 1//f+P2, where ~ = wo..fEoZ/c, 
T = wot, P = (2/m*Eg)li2p' are the dimensionless coordi­
nate, time, and momentum, Eo is the dielectric constant 
of the lattice, and Wo = (41Te~/m*Eo)1/2 is the plasma 
frequency 1) . 

The possible character of the waves can be assessed 
in this case from the phase planes of Eq. (10), which 
are qualitatively analogous to those given in[6]. At 
J'" 0 (in this case the "carrier" has only phase modu­
lation) only periodic waves are possible. A case of in­
terest is J = 0, when the phase is constant and vn / K 

= 1. The particular solution of (10) is then a single 
pulse with finite energy. This solution can be expressed 
in terms of elementary functions: 

. (1+A')'f'+1]'" 2 
8 = 2 arcsm [(1 + Ao')'h + 1 - (1 + Ao')'t. +1 

h[ (1 + A'J'f. + 1 (1 + Ao')'f. -11'" 
XArc (1+Ao')'f'+1 (1+A')'h-1 ' 

1 1-Q'(1-v') 
A,= 4 Q'(1-v') , 

where Ao is the amplitude of the "envelope" of the 
packet. The duration and the spatial extent of such a 
packet expressed in periods (wavelengths) of the 
"carrier" at the level 0.5Ao are given by 

(13) . 

T = v-'Tu(A,), A = vTu(A,), (14) 

where the function Tu(Ao) can be obtained from (13) 
and is shown in Fig. 1. 
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The obtained solution is characterized by two arbi­
trary constants, n and v. On the planes of these 
parameters (Fig. 2) there is separated region a, in 
which Eq. (10) admits of a solution in the form of 
solitary pulses; on the lines v = 1 and n = 0, which 
limit this region, the amplitude of the packet is in­
finite ly large; on the line b, corres ponding to the linear 
dispersion relation, we have Ao = O. Near the line b, 
the solution goes over into wave packets with Ao « 1, 
which contain many periods of the carrier. The latter 
have been well investigated by the averaging method. 

It is of interest here to consider the behavior of the 
solutions at large values of the amplitudes. We note 
first that at appreciable packet amplitudes the frequency 
of the carrier can be much lower than unity (w « wo), 
this being due to the "transparentization" of the plasma 
as a result of the increased effective mass of the elec­
tron. In addition, as seen from (14) and Fig. 1, when 
A ~ 1 and v ::. 1 the duration (spatial extent) of the 
packet amounts to several periods (wavelengths)2), so 
that any projection of the pulse comprises a train con­
sisting of several oscillations that change shape con­
tinuously as they propagate, since v ",n/K (Fig. 3). In 
the other limiting case A :: 1 and v « 1, the spatial 
and temporal scales of the packet differ noticeably, 
namely, T » 1 and A « 1, and in the limit as v - 0 
the solution has the form of a stationary rotating "top" 
with finite amplitude Ao = 4( 1/n2 - 1) and finite length 
(in the real spatial scale). 

Of course, for real systems, such solutions are only 
an idealization, but one can expect waves of this type 
to occur also as a result of the evolution of perturba­
tions of a broader class3) , as is the case for ordinary 
solitons [2,3] (which are impossible for the considered 
type of function f( p2 ». We note in this connection that 
a monochromatic wave (A = Ao, CPo = 0), which is a 
particular solution of (9) and (10) and is characterized 
by the nonlinear dispersion relation n2 =' K2 + f( Ag), 
turns out to be unstable4 ). Instability with respect to 
low-frequency perturbations sets in when 

4f(Ao') > Ao'/,(Ao') , (15) 

which is always satisfied when f( p2) = (1 + p2 r1l2. The 
increment increases in this case with frequency and 
reaches a maximum at frequencies on the order of the 
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reciprocal duration of the stationary pulse of correspond­
ing amplitude (14), so that this instability can probably 
lead to solutions close to those discussed above. 

In conclusion, let us discuss briefly the conditions 
for the existence of such pulses in real semiconductors. 
Equation (6) is valid if w » v, where v is the electron 
collision frequency. The maximum intensity of the 
monochromatic wave, as a rule, is limited by the break­
down of the semiconductor[10]. If, however, the pulse is 
so short that T « ~r, where Tbr is the breakdown 
development time, then there is no time for the break­
down to develop. In such a case, there can propagate 
in the semiconductor pulses of high intensity, and their 
damping is determined only by carrier scattering and 
not by breakdown. 

In a pure n-InSb semiconductor at nitrogen tempera­
tures, the collision frequency is v ~ 1012 sec -1 and the 
characteristic time of breakdown development is Tbr 
~ 10-10 sec [11], and consequently there can propagate in 
the semiconductor pulses with duration from 10-10 sec 
(Ao "" 0.4) to durations on the order of the period of the 
carrier (Ao"" 1). Thus, the analysis considered here 
can be of definite interest for waves in the submilli­
meter and IR bands. 

The authors thank A. A. Andronov, A. M. Belyantsev, 
and A. G. Litvak for useful discussions and interest in 
the work. 

I)In the derivation of(6) we have neglected the magnetic field of the 
wave, i.e., we have assumed that v*'~ c, where v* = (Eg/2m*)% is the 
characteristic velocity that enter in the Kane dispersion law, for example 
v*/c - 3 X 10-3 for InSb. 

2)We note that definite durations and lengths of the nonstationary 
packet with respect to the characteristic scales of variation of the enve-

95 Sov. Phys.-JETP, Vol. 38, No.1, January 1974 

lope A, when the latter is comparable with the period and wavelength 
of the carrier, is of arbitrary character. 

3)This assumption is apparently confirmed by a numerical solution of 
Eq. (6), obtained by N. Zabusky (paper at European School on Plasma 
Physics, Tbilisi, 1970). 

4) At low nonlinearities, such an instability is known as the self-modula­
tion phenomenon. For the semiconductor InSb, this effect was investi­
gated in [9]. 
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