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A theory of transition radiation in a medium with a time-varying refractive index (which is assumed 
to vary in a steplike manner) is developed. Along with the radiation field and energy (including the 
relativistic case), calculations are performed for the work of the radiative friction on the radiating 
particle and also for the change in energy of the field dragged by the particle. 

Transition radiation was first studied in a case when 
a uniformly moving charged particle crossed an abrupt 
interface between two media[1J. Subsequently, a number 
of other problems of transition-radiation theory was also 
investigated (see the reviews[2,3J ), and transition radia
tion produced in a homogeneous medium when its proper
ties change abruptly in time has recently attracted 
attention [4J. Such a possibility is clear already from 
the general considerations that lead to the conclusion 
that transition radiation exists. Indeed, in a medium 
with refractive index N = (1/2 the radiation is produced 
when the parameter vN/c changes with time (v is the 
particle velocity and c is the speed of light in vacuum; 
the case of Cerenkov radiation is not considered at pres
ent). An important role is played here by the change of 
this parameter at a spot occupied by a charge (or by 
some other emitter). It is obvious that at constant veloc
ity v the parameter vN/c varies both in a spatially in
homogeneous medium (the usual transition radiauon) and 
in a spatially homogeneous medium but one in which N 
varies with time. This type of transition radiation has 
its own peculiarities and does not reduce by far to tran
sition radiation in a spatially inhomogeneous medium. 
We note that transition radiation in a medium that varies 
in time and in space sinusoidally was considered in [5J . 

We discuss in this article the problem of transition 
radiation in a non stationary medium with an abrupt var
iation of N with time, and examine the region of applica
bility of such an. approximation for variation of the re
fractive index in a dispersive medium. We estimate the 
time of formation of the radiation. We discuss in con
siderable detail the radiation of an ultrarelativistic par
ticle. We also calculate the work done by the radiation 
force on a radiating particle, and take into account the 
effect of particle-mass renormalization in a medium 
with variable parameters. Finally, we carry out a com
parison with the usual transition radiation for an inter
face between two media. 

1. We derive the results obtained by one of the au
thors[4J for the radiation field by a somewhat different 
method that lends itself to an uncomplicated extension to 
the case of arbitrary modes in a magneto active and 
spatially-dispersive medium. We assume that the dielec
tric properties of the medium, described by the tensor 
Ek = Eij(k), are instantaneously altered at t = 0, with 

Ek = Eij(k) at t < 0 and Ek = Eij (k) at t > O. We neglect 
first the frequency dispersion, but this dispersion will 
be later taken into account and the region of applicability 
of the results to a nondispersive medium will be as
sessed. 

We write down the equation for the spatial Fourier 
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components of the electric field Ek(t) and of the magnetic 
field Hk(t) excited by a charged particle moving with 
constant velocity: 

, 1 iJ2 , 4nie 
k Ek(t) - k(kEk(t» +--ekEk(t)=---v(kv)e-ilkv 

c' iJt' c'(2n)' ' 

iJHk(t) . 
-iJ-t-=-!c[kEk(t)]. (1)* 

The conditions for matching at t = 0[4J 

(2) 
assume the following form for the spatial Fourier com
ponents 

(3) 
o 0 

S dt[kEk(1) (t)]= S dt[kE.(2) (t)]. (4) 

We consider first an isotropic medium in which only 
two modes exist, longitudinal and transverse. We shall 
show that the considered transition radiation does not 
exist for longitudinal waves. Indeed, the longitudinal 
field of the charge is determined by the equation div D 
= 41TP, while the continuity of the induction D (see (2)) 
forbids the emission of a longitudinal wave (the change 
in the energy of the particle's own longitudinal field will 
be discussed later on). The transverse field 

Ek" = E. - k (kEk) / k' 

is excited only by the particle velOCity component vtr 
= V - k(k· V)/k2 perpendicular to k. Therefore, without 
loss of generality, we can put 

Ek"=E"~v" (5) 
k c'(2n)' k, 

where Etr is the field amplitude (normalized in accord
ance with (5)) and satisfies the equation 

1 iJ' 
k'Ek" +- -ek"Ek" = ikve-ikv' (6) 

c' at' . 

Here E~r is the transverse dielectric constant, with 

( kik j ) e'j(k)= 6ij----;;;- ek". 

Using the boundary conditions (3) and (4) and assuming 
no waves to be present at t < 0, we obtain the following 
solution of (6): 

E',(1) ( ikv 
k t) = k:-::'---e-"";~(t~) ('-k-v)-'-/c-2 - e- ik v', t < 0; (7) 

Ek"(')(t)= 

t>O; (8) 
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'e. i {e:"" kvlke ±(E~'(') )'/' e~c(') kvlke ±(E~'(" )'/'} 
a± ~2k' I~E';(')(h)'lk'e' ~ 1~e'~(2)(kv)2Ik'e' - , (9) 

Given k, two waves propagating in opposite directions 
with unequal amplitudes are produced at t > O. 
Morgentaller[6J was first to note that a wave propagating 
in one direction splits into two oppositely directed waves 
if the properties of the medium are abruptly altered in 
time. In this case, the charge's own field is represented 
by a spectrum of waves with different k, and its restruc
turing at t = 0 is accompanied by a "disruption" of an 
entire spectrum of oppositely directed waves. From 
(7)-(9) we can obtain the earlier result of[4J. At the 
same time, by virtue of the spatial homogeneity of the 
problem, the solution (7)-(9) can be generalized to in
clude the case of arbitrary normal waves. 

Let e~ be a normal unit vector of the wave a of inter
est to us at t > O. In the general case e~ need not be a 
normal unit vector of some arbitrary wave at t < O. We 
introduce the dielectric constant E~ and the square of the 
wave vector k~ defined by the relations 

The values of Ea are different at t < 0 and t > 0, but 
those of ~ are ~he same. We seek a solution of (1) in 
the form 

Multiplying (1) by ef, we obtain an equation that differs 
from (6) in the label (tr - a). The same holds for the 
boundary condition. Thus, the solution for E~ will be of 
the same form as (7)-(9), with the substitutlons 

tr --- 0, k2 -- k./, k -+ (k./) "\ 

and k . v remains unchanged. 

In the particular case of transverse waves, the values 
of E~ for the two possible polarizations coincide, i.e., 
the amplitudes ~ are also equal, k· e~ = 0, and finally 

~ ek(e.'·v)=v."=v~k(kv)/k'. 
£1=-1,2 

Bearing in mind the indicated generalization, we shall 
henceforth use for simpliCity the solutions (7)-(9). 

2. For sufficiently large times (an estimate is given 
below), the radiation intensity is determined by the en
ergy WR of the radiation field, which combines additively 
with the energy of the self-field carried by the particle, 
with 

~tr(2}E'!.+H2 
IV"= S ~--d .. =rr' S (e~'(') IE."(oo)I'+IH."(oo)I')dk 

= S W."dk=S dw S dQW: n , (10) 
o 

where n is the solid angle of the radiated waves, 
w = kc/(Ef[(2))1/2 is their frequency, and dn = 21T sin J d J, 
where cos J = k·v/kv. 

To obtain the correct angular dependence of the radia
tion it is necessary to represent the quadratiC combina
tions of the fields E2 and H2 in a form containing only 
cos2 (k' r - wt) or sin2 (k' r - wt), for which purpose k 
must be replaced by -k in the expressions containing 
cos2 (k' r + wt). Then waves with positive k will propa
gate at an acute angle to the particle velocity, and those 
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with negative k at an obtuse angle. As a result we get 
R e~v2 sin2 {} 

W.,n = , Ik'a+,"I' 
jt lc J (e t:(2» " 

or finally, using (9) 
W!l _ e2v 4 sin:! tl cos:! 'fl' (e!T(I) _ e~(2) ) 2. 

• ," - 4rr' e' (E'~ (" ) ':. -,-( l:-~-e ,:-; (C:CO~V2::-C~O-:S ,-:~"i)' e""':-:) ,-:( -:1 ~~..,.( e-:'.-:":::-') ):-7'/:-. v~c~os~~:-/'-e )--, 

(11) 

We call attention to a number of features of this 
radiation in the case of ultra relativistic particles. The 
radiation is always asymmetrical; in particular, the 
radiation intensity is higher in the half-plane in the 
direction of particle motion. For ultrarelativistic ener
gies 

E/mc' = (1 ~ v'/c')-'/' ~ 1 

this asymmetry is most clearly pronounced, and the bulk 
of the radiation is concentrated in a small solid angle 
tln ~ 1TJ2 ~ (mc2 I E)2. Also radiated into this solid angle 
are rather high frequencies for which the dielectric con
stant of any medium can be approximated by the plasma 
formula (the possibility of taking dispersion into account 
here is discussed later on): 

, 4rre' 
W p l,2 = -- nt,'!.. 

m. 

Retaining the most significant terms that contain in the 
denominators the small parameters W~W2, J2, and 

(mc2/E)2, we obtain for the forward radiation 

(12) 
The frequency dependence of the intensity of the total 

radiation at high frequencies can be obtained from 

WWR=S W:,nrrd~'. 
o 

The integration in (12) with respect to J2 from 0 to GO is 
possible because the main contribution to the radiation 
is made by small angles J2 on the order of (mc 2 IE)2. 
When 

.1n , n, - n, " 
-- ¢:i 

n max (nt, n,) 

we obtain 

JXT R = e' (.1n)' w: ( m'c' w.' )-' '. - - -. - --+-6rrc n w' E' w' . 

The spectrum is flat down to frequencies lower than 
w. = wpE/mc', 

and then falls off like 11w 4 • The main contribution to the 
integrated radiation is made by frequencies of the order 
of w*. Further, 

WR-S~WRd _e'wp E (.1n)' 
- (II (0------

o 24cmc' n . (13) 

A different numerical factor is obtained in the limit at 
tln/n = 1, for example when the particle goes from a 
medium to a vacuum or vice versa (in this case it is 
convenient to integrate in (12) first with respect to wand 
then with respect to J2): 

E 
--~1. 
mc' (14) 

This result coincides exactly with the intensity of ordin
ary transition radiation of an ultrarelativistic particle 
crossing the interface between a vacuum and a med-
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ium [2,7, 8J. For the transition radiation considered here 
(as, incidentally, for the usual transition radiation), the 
integrated backward radiation is much smaller than (14) 
when E/mc 2 »1, since the factor E/mc 2 is missing, 
although the angular distribution has two narrow maxima 
in the range 1f - J :S mc2 IE. 

3. We consider the work WF of the forces on the 
charge: 

dW' 
--;jf = evEtrlr=vt, W'= S evE"I,~v,dt. 

" 
(15 ) 

In spite of the fact that for transverse waves we have 
1 aA" E'r= ___ _ 
e at ' 

it is obvious that the integral (15) is not equal to 
eV . A tr (O)/c, since aA tr lat contains also a time depen
dence via r = vt. 

We write down the work of the forces in a form 
analogous to that used for the radiation intensity 

W'= S dw S dQW:,Q, 
o 

W F _ e'v' sin. '1') k'a+" (1 ( "('» 'I. V )-1 
IlI,Q - - Ek -COS it' 

:t2.C·l i c 

Substituting here a~r from (9), we obtain 
, 3 • '-" "( ,,(1) "(') ) TV' = e v Sill u cos u ek - ek 

•. 0 2n'e' (1- e':")v' cos'1')/e') (1 _ (e';('» 'I·V cos 1')/e) , (16) 

Unlike the radiation power, the work forces depends on 
the sign 

For an ultrarelativistic particle, the bulk of the work 
is performed by radiation emitted forward at a small 
angle J ~ mc2 IE. Therefore 

W ~;::::: pi 2 I __ +{}2+~ _+{t2+~. 2e'1')'w '(n -n) (m'e' 00 ') -I (m'e" 00 ')_2 
Ill, 1t2cw~nl l!.'1. WZ Eo!. 0):: 

In the limiting case An/n « 1, the work of the forces 
greatly exceeds the radiation power (13), which is pro
portional to (Anln)2: 

W F - S~ d S~ d"" W" ~ e'w p An 
- W J1 u wu.-±----. 

I! u 2c n 

For a transition from vacuum into a medium (An/n = 1, 
nl = 0) we have 

whereas for a transition from a medium into vacuum 
(An/n = 1, n2 = 0) we have 

4 e'wp E W F =- _____ . 

3 e me' 

(17) 

(18) 

4. To explain the differences between the work of the 
forces and the radiation power, we consider first the 
energy balance in general form. We write down 
Poynting's theorem 

'1 aD 1 a ' 
W= S-(E-+--H')dt=-S jEdt. 

_ •. 4" at 2 at _~ (19) 

For the sake of sinlplicity, assuming E to be a scalar 
quantity and using the equality 

E~= ~ D' _ D'~ ~ 
at at 2e at 2e • 

we rewrite (19) in the form 

w=,D'(t) + H'(t) -~S' D'~~dt. 
8"e 8n 8" _~ at e 
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In our problem E and E become discontinuous at t = 0 
(see (2)), but by virtue of the continuity of D at t = 0 we 
can take D(O) in the integral term outside the integral 
sign and obtain the expressionl) 

where 
t>O 

t<O, 

(20) 

The last term in (20) ensures continuity of the elec
tric energy w at t = O. Indeed, at t = - 0 this term is 
equal to zero and the electric energy is equal to 
D2 (0)/81fE(1) , while at t = +0 the last term of (2) cancels 
completely the jump in the first term. We put 

w = D'(t) + H'(t) + !!two 
8"e 8" 

e(') - ell) D2(0) 
!!tw= e(2)c(l) ~e(t), (21) 

The last term Aw in (21) must be taken into account as 
a constant in order to obtain the correct reference from 
which the energy is reckoned. We note that in the case 
of longitudinal waves, which do not radiate, the change of 
the self-energy of the longitudinal field of the charge 
reduces to the indicated energy change Aw. For the 
transverse field, integrating Aw over the entire volume, 
we obtain 

tr(t) "" 

=:1' S :~;,(" (£:'(2) - e~'(I» IE~'(l) (0) I' dk = S dw S dQ AW. o. 
k " 

The concrete expression for AWn is obtained in this 
W, .0 

case directly from (7): 

(22) 

For ultrarelativistic p;rticles, A W is negligibly small 
in comparison with W . 

We now find the change in the energy of the field car
ried together with the particle, the so-called energy of 
macroscopic mass renormalization [7, 9J. It is necessary 
here first to compare the values of the energy before 
and after the instant t = 0 (more accurately, compare the 
energy at t = + 00). This comparison is meaningful only 
when the "constant" that determines the energy refer
ence point is one and the same. Thus, A W should be in
cluded in the energy of the self-field of the particle at 
t > O. The macroscopic mass renormalization energy 
WM is determined by the difference between the values 

}v = S( ~+.lI') dr 
8"e 8n 

for the self-field (see (7) and the first term of (8)), added 
to A W. In other words, it is necessary to use for the 
energy density the expression (20), which follows from 
the Poynting theorem (19) and consequently from the 
field equations. We have 

WM=f dwS dQW:"o, 

(23) 
1 + e';(') v' cos' tile' 1 + i'k(t) v' cos' tile' 

x { (1 _ ei~.(2)v' cos21')/e2)' - (1- e';("v' cos' tile') , } 

e2v~ sin:!. {} cos:!. it [3e: T(Z) + Bktr(l) _ e~r(2) (3e~(t) + e~T(2) ) v2 cos2 {tIc:!.) 

= -4;"~'(~';<2~'I.- --(1- e':(1)v' cos'1')lc')'(1- e't')v' cos'1')lc') , 
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It is easy to verify that the energy balance is satisfied, sponds to the condition that the interference terms in the 
by using the general relations (11), (16), and (23), from energy (20) are neglected, or 
which we get 

as it should be, since -WF is the work done by the par
ticle on the field (W F is the work of the field on the par
ticle). We see that the balance is obtained already after 
integrating with respect to the angle variables, from 
which it is naturally obvious that the total balance 
WM + WR = -WF holds. 

It follows from the foregoing, in particular, that at 
An/n « 1 the work of the forces practically coincides 
with the energy connected with the renormalization of 
the mass, and the radiation intensity is smaller by a 
factor An/n. 

When a particle enters a medium from vacuum it 
radiates and becomes accelerated, because the work 
performed is positive (see (17)). This possibility is con
nected with the fact that in this case the energy of the 
macroscopic mass renormalization is negative (see (14) 
and (17)): . 

W"=-W'- WR=_(~+~) e2wp ~= _ e'w p ~ (24) 
:3 3 e me' e me" 

The deceleration of a particle emerging from a medium 
into vacuum exceeds the radiation energy. This differ
ence is due to the positive value of the macroscopic 
mass renormalization (see. (14) and (18)): 

(25) 

It is natural that WM has different signs on entering and 
leaving the medium. The concrete expression (24) and 
(25) for WM in the case of an ultrarelativistic particle 
is obtained directly also from (23). The mass renormal
ization energy (24), (25) coincides with that obtained 
earlier in[9] by the Green's function method (see also 
also[ 7], where the renormalization was carried out by 
another method, but one that must be generalized if the 
longitudinal field is taken into account). 

5. The limits of applicability of our results are seen 
most clearly from an estimate of the necessary abrupt
ness of the discontinuity of the dielectric constant in 
time, taking the frequency dependence of E~r into ac
count. We introduce the following quantities that charac
terize the temporal scales of the processes: the charac
teristic times ~ of formation of the considered transition 
radiation, and the characteristic times t (1,2) for 
"memorizing" the past electromagnetic §\ate of the med
ium before and after the jump. The absence of dispersion 
of the dielectric constant, which was assumed above, 
means that t~l'~) = 0 or, more accurately, ta1 ,2) «to. At 

the same time, it was assumed above, in fact, that to is 
shorter than tf . Thus, the conditions for the applicability 
of the results obtained above take the form 

(26) 

We now estimate tr and see how the results are al
tered if to is respectively shorter or longer than the two 
times td1 ,2) and tr The time of radiation formation can 
be estimated from the condition for separating the radia
tion field from the self-field of the particle; more ac
curately, tr corresponds to the fact that at t »tf the 
field energy is made up additively of the mass renormal
ization energy and the radiation energy. This corre-
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( kV± ke ) 
~ t:»1 (27) 

i.e., 

t,=max kv±---, ke ,-' (e~(2))'fl (28) 

For a relativ~stic particle, the forward radiation 
takes longest to form (~ ~ mc2 IE « 1) when 

At W « w* = W 2E/mc2 we have tf ~ wIW~2' and when 

W »Wp2E/mcP we have tf ~ E21w m2c 4, i.e., the time of 
formation of radiation with frequency W ~ wp2E/mc2 is 
maximal, and in this case 

1 E t,""---. 
Wp mc2 

At the same time, if 10 = 1 - w2 Iw2, then td ~ 11w 
~ mc2lwpE, and the condition (26) can thus be satisfied 
at E/mc »1 in a range of values that increases rapidly 
with increasing particle energy. For ~2 »m2c 4/E2 and 
,,2 »W~/W2, the formation time tf ~ 11w~2 is much lar
ger than td so long as ~ « 1. The backward radiation 
(+ sign in (28)) does not satisfy these requirements. 

The foregoing does not hold for nonrelativistic parti
cles in a condensed medium, since it cannot be assumed 
that t "" 1/w. The backward radiation of relativistic 
partis.es depends on the details of the frequency distri
butions and on the ratio of to to td in the different models. 
This follows from the fact that, according to (28), 
tr ~ 1w for nonrelativistic particles and backward radia
tion, and consequently, according to the inequalities (26), 
the results pertain only to the frequency region in which 
td « 1/w, i.e., to the region where the dielectric con
stant is approximately constant (for example, far from 
the spectral lines). 

Only the forward radiation of an ultrarelativistic par
ticle is universal. We examine therefore the change 
occurring in the results if 

t,« t f • 

In the general case (we assume for simpliCity that the 
dielectric constant 10 is a scalar) 

t 

D.(t) = S e.(t,t-t'lE.(t'ldt', 

where the dependence of 10k on t - t' characterizes the 
memory of the electric state (i.e., 10k as a function of 
t - t' decreases within a characteristic time interval on 
the order of td), whereas the dependence on t character
izes the nonstationary character of the medium (its 
change within a time t ~ to). When to » td, the approxi
mation 10k = Ek(t)o(t -t') leads to the results already dis
cussed. When to « td, and particularly as to - 0, the 
concrete results depend on the form of the function 
Ek(t, t - t'). In particular, if only the density of the 
medium experiences a jump at t = 0, then (see the 
Appendix) 

, {e~') (t - n, 
e.(t,t-i )= 

, e~2) (t-t'), 

t<O, t > t' 

t>O, t>t' 
(29) 

Another example may be the change of the nonlinear 
response of a medium that is stationary in time when an 
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external field is turned on sufficiently rapidly. Then 
(see the Appendix) 

{ 
e~" (t - n,· 

e.(t,t - t')= 

e~" (t - t'), 

t'>O, 

t' <0, 

t>t'>O 

t>t', t~O 
(30) 

In both cases, the solution at t < 0 retains the form 
(7). The boundary conditions (2), however, lead to a con
dition different from (3). Indeed, from (2) and (29) we 
obtain 

• 
E~" (O)-E~" (0)= S (e~" (-t')-e~" (-t'»E~1) (t')dt'. (31) 

It is important that the right-hand side of (31) contains 
only the field at t < 0, i.e., the field Er). Using further-
more . 

"." (' 1 Ws '''' E. -t)=- dwe.' e'·'· 2:n: _0(, ,w , 
Et" (t)=E~" (O)e- itv '. 

we obtain 
00 (1) (1) 

E.'" (0) - E:" (0) = S dw Ilk,. - e... E~" (0) 
_00 211i(w-kv+ili) 

The dielectric constants E~'~) have no poles in the upper 
half-plane of complex w under equilibrium conditions[lOJ. 
Closing the contour with respect to w in the upper half- . 
plane, we obtain 

(32) 

This boundary condition differs from (3): 

In exactly the same manner we obtain in the case (3) 
another boundary condition: 

E~1) (0) = E~2) (0). 

By way of illustration, we present the solution obtained 
with the aid of condition (32). At t < 0 we obtain formula 
(7), in which E1[(1) - E~(k). v' At t > 0 it is convenient 
to express the solution in the form 

where wk is a solution of the equation k2 - Etr(2) W2/C2 
= 0 and k, w 

Int) tr(z) 

b.± = .~ { (1 + e •. :.~_.- Buv ) kv/ kc ± w./ kc 

:2", 1- "'~'~', (kv)'/k'c' 

kv//cc±w./kc ' 

1- F-'~l:!. (kv):!/k 2c:! \ 

(33) 

The radiation intensity is then calculated in the following 
manner: 

1 f) ~ 

WR = 11' S--iJ-w'E~~~"IE.,,(oo) I'dk = S dkS d~l W:'o, 
(Ok CUk o 

(34) 

For ultrarelativistic particles Etr ~ 1, wk ~ kc, and we 
have in (34) 

while in ~3) we can put in the numerator of the first 
term Etr( ) - Etr(2} ~ O. The result for WR coincides 
with that obtained above. Thus, for relativistic particles 
the forward radiation depends in fact very little on the 
ratio of to and td, and remains the same if to «td. What 
is important is the ratio of to to ~. When to »~the 
forward radiation should decrease sharply. This effect 
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is analogous to the effect of the smeared boundary for 
ordinary transition radiation, [11, 12J , when the thinness 
of the interface in comparison with the spatial zone of 
radiation formation is important. The work connected 
with the mass renormalization remains the same also at 
to » ~ (cf. [12J ). 

6. We also compare in conclusion a number of singu
larities of the considered transition radiation and the 
usual one. Although the radiation of an ultrarelativistic 
particle forward is approximately the same in both cases 
(accurate to terms of order mc2/E), the backward radia
tion and the radiation of nonrelativistic particles differ 
appreciably. In the "nonrelativistic limit 
IV(E(1,2)}1/2 cos "I ~ c the radiation in question is pro
portional to v 4 rather than to v2 as in the usual transition 
radiation, as was already noted earlier[4J . The reason 
for this difference is that the longitudinal electrostatic 
field of the particle experiences no change in this case 
at the discontinuity, and consequently only the transverse 
component, due to the current of the particle, i.s changed. 

The criterion IV(E(1,2»)112 cos "I «c means that the 
particle velocity is low in comparison with the velOCity 
of electromagnetic waves in the medium. Unlike the 
usual transition radiation, in our case the radiation in
tenSity increases strongly if the particle velocity v in the 
final state is close to (but smaller than) Vo = c/(Etr (2))112 , 
which corresponds to the threshold of Cerenkov radia
tion. Indeed, according to (11), when (v - vo)/vo ~ 1 and 
v < Vo, the radiation intenSity is proportional to 
(vo - v + ,,2/2r2. In particular, at 1Etr(2)1 »1, v < Vo 
~ c, and " ~ 1 we obtain 

Wp. e'v'ti' 
, .. 0"" 411'C'vo' (vo - V + tt'/2)' . 

(35) 

The radiation described by (35) is strongly peaked for
ward. The spectral intensity integrated over the angles 
at v - v 0 and v < v 0 « c is 

W"R= e'v. (26 +In 4 ) 
211'C' 3 1 - v'/vo' . 

(36) 

We note in conclusion that for a particle bunch with a 
characteristic dimension l we can obtain analogous re
sults, and the spectral density of the radiated energy, at 
A = 21Tc/Nw »l, is obtained simply by replacing e with 
eNo, where No is the number of charges in the bunch. It 
is obviously the same token that it is easier to observe 
the effect for bunches than for individual particles. 

APPENDIX 

For the simplest example of an oscillator in an ex
ternal field 

d' d 
m-x+mw.'x+mv-x=eE 

dt' dt 

we obtain 
e E. 

x.=-
m W 2 -Wo2 +ivw 

or 
e 2 "" dwe-iw(t-l') 

p=ex(t)=---S E(t')dt'. 
2Jtm _"'" '(02 - wo2. + ivw 

Let the oscillator density change at t = 0 from a value 
n(l) to a value n(2). Then 

D(t)=E(t)+41ln""'p(t)= S e""'(t-t')E(t')dt', 

2n(l,2)e 2 S- dwe-iw(I-t') 

e'··"(t-t')=1---- . 
m _"'" W 2 -Wo2 +ivw 
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We consider another example, when the change of the 
electromagnetic properties of the medium occurs in a 
nonlinear response 

where Sijl are components describing the nonlinear 
properties of a homogeneous isotropic medium. Assume 
that a field Eo directed along z (along the 3 axis) is turned 
on at t = 0: 

Le., 

Hence 

E,(t)={Eo. 
O. 

t>O 
t<O' 

i/2:rt 
Eo,." = E06 (k)--, 

'" +i6 

or for the nonlinear correction to the dielectric constant 

Integrating this expression under the assumption that 
Sk, w; k, Wl has no poles in the upper complex Wl half-

plane, we obtain 

{ 
8:rtiE, S S ;" -;.(I-t', d 

6e,,0(t,t-t')= --",- o"",O,.e "'. 

O. 

t' >0 

t' <0' 
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OWe note that the same results can be obtained without considering in 
greater detail the variation of € at t = 0, if it is recognized that at the dis
continuity of € the external system causes the energy to change by an 
amount D2(O)(l/€(I) -1/€(2»/8rr, 
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