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Exact expressions for the wave field in a homogeneous nondispersive medium with time-varying 
properties are presented; the dielectric constant or refractive index are assumed to vary linearly. 
Expressions are obtained for the transmitted and reflected waves. It is shown that variation in the 
properties of the medium may appreciably affect the averaged forces exerted by the wave field on 
charged particles or the medium. Some applications of the results to wave processes in nonstationary 
media are indicated. It is pointed out that the appearance of a reflected wave field and of averaged 
forces may be a factor that initiates various stimulated scattering processes. It is mentioned that 
similar effects may arise in the case of acoustic waves propagating in a medium with time-varying 
acoustic properties. 

This paper considers an exact expression for electro­
magnetic waves in the simplest cases of practical inter­
est where the properties of the medium are variable­
linear increase of the dielectric constant and linear 
variation of the refractive index. We are thereby enabled 
to analyze a large class of observed effects associated 
with variations, from slow to very rapid, in the proper­
ties of a medium.!) We here consider averaged forces 
that arise under such conditions and act upon polarizable 
charged particles or upon the medium. 

EXACT SOLUTIONS FOR AN ELECTROMAGNETIC 
WAVE PROPAGATING IN A MEDIUM WITH TIME· 
DEPENDENT PROPERTIES 

Maxwell's equations 

rotE=-~~ 
Co at ' 

1 aD 
rotH=--, 

Co at divD=O 

for a nondispersive homogeneous medium with a time­
dependent dielectric constant E(t) yield for D = E(t)E the 
equation 

In the one-dimensional case, directing one of the coor­
dinate axes along the vector D, we obtain 

a'D e(t) a'D 
8z2=~ai" 

Letting D = Z(z)T(t), we have 

co'Z" I Z = e(t)f/ T= -x', 

that is, 

For an initial wave of the form D = Doeikz we have 
K = cok' = Wollo. Therefore, for T we obtain the equation2) 

•• Cllo2Eo 
T+-;m-T=O. 

The greatest practical interest attaches to the two 
simplest cases: 

1) e(t) = e. + et, 2) net) = e'!.(t) = no + lit. 
For small variations of the parameters, cit « 1, the two 
dependences coincide and Ii = E'/2no. However, we shall 
be interested in all rates of variation of the properties 
of the medium. 

1) Considering first E = Eo + Et, we introduce the new 
variable 
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x = ooo'eo(eo + ~t) /~, 

and obtain the equation 

xd'T I dx' + T = 0, 

which reduces to a Bessel equation with the solution [5J 

T = l'x{C.J, (21'ii + C,N, (21'x)}' 

where Jl and N1 are first-order Bessel and Neumann 
functions. Hence 

D = 'hDoe"'S{C,/, (s) + C,N, (s)}, 

where ~ = 2E~l2wo(Eo + €t)1I2/E, and the constants Cl and 
C2 are determined by matching to D and 0 at t = 0: 

C, = 11 (No + iN,), C, = -11(/0 + il,); 

here J and N (omitting their argument ~ ) are taken at 
t = 0, i.e., for ~o = 2WoEo/E. USing these constants, we 
obtain 

D = 'hDoe"'ns{[No/, m -IoN, (S) 1+ i[N.J, (s) -I,N, (S) n· 
For example, with ~ 0 » 1 and with J and N expressed 

asymptotically in terms of trigonometric functions multi­
plied by coefficients which are power series in 1/~ and 
1/~ 0, by neglecting all except the first powers we obtain 

~ 'h • 1 3 . 
D = Doe'" (-"-) {[ 1+"':" (- - -) ] e-«t-I., + ':"'e'<t-I.,} , 

So 8 So s 4so 

whereby a reflected wave is seen to arise.3 ) For ~ - 00 

(Wo/E »1) we have 

[ 
80 + et ] 'I. { 2000 l' eo . - } 

D=Do -- exp ik'z-i-.-[(eo+et)'!.-l'eol , 
eo e 

or w(t) =-<p(t) = wo..fEo/(Eo + Et)ll2, which follows directly 
from conservation of the momentum of a quantum and 
conservation of the number of quanta. 

A reflected wave also appears when the linear in­
crease of E terminates. [The appearance of reflected 
waves in association with rapid changes of the prorerties 
of a homogeneous medium was first pointed out in 1J. 
S. N. Stolyarov and A. Chigarev (private communication) 
found that the expression for fields when there are two 
"breaks" in E is converted into the formulas ofC1J for a 
jump as E - 00.] 

It also follows from the obtained solution that near 
~ - 0 (E = 0 for t --Eo/E with E < 0) variations of the 
field are determined mainly by the Neumann functions 
because NdOl ~ _ 0 Rl -2/1TL while J1(Ol~ -0 ~ Y2~ - O. 
At this point D remains finite but E diverges: E = D/E- O. 
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2) In the case of n = no + rit = no(1 + at) where a = ri/n, 
by introducing the variable T = 1 + at and seeking a solu­
tion in the form of a power Tk we obtain a characteristic 
equation for the exponent k: 

k' - k + Q' ~ 0, Q' ~ wo' I a', 

i.e., 

and in the special case kl = k2 = Y2: 

T ~VT{C,ln 'l" + C,}. 

For n = wo/ a < %, i.e., for sharp changes of the re­
fractive index (ri/w > 1), we obtain aperiodic solutions. 

The case of not very rapid changes in n (n = wo/a 
> Y2) corresponds to complex roots of n and therefore to 
oscillating solutions. In this case it is more convenient 
to write 

where 

1 ~ 1/2 (4no'wo' I Ii' -1)\ 'l" ~ 1 + lit I no, 

and, for t > 0, 

b~Doe;"':' 'l"-'I'{ (++i1)Cle;Yln'+(~-i1)c,e-iYlnl 
Matching D and D at t = 0 to the initially given simplest 
unperturbed functions 

we obtain equations for C 1 and C2 that yield 
1 i wono 1 i wono C,=-+---.-, C,=---+-.-, 
2 41 2n1 2 41 2n1 

i.e., in the general case we have a direct and a reflected 
wave. 

In the case of a non-sharply varying refractive index, 
ri/w - 0 (y - noWo/ri - 00), we obtain 

C, '" iii I 4nowo ..... 0, C2 '" 1 - iii I 4nowo, 

i.e., the amplitude of the reflected wave increases with 
the rate of change of n(t). The "instantaneous" fre­
quency is then determined from the condition 

1 (4n 'w ' ) 'I. ( Ii) "2 ~-1 In 1 +-;t '" J w(t)dt, 
o 0 

Le., 
1 (4no'w.' ) 'I. ( n) -, n w(t)=- -.,--1 1+-t-. 
2 n no no 

AVERAGED FORCES INDUCED BY THE WAVE 
FIELD DURING OR AFTER CHANGES IN THE 
PROPERTIES OF THE MEDIUM 

Time dependence of the properties of a medium can 
strongly alter the forces acting in a wave field upon par­
ticles in the medium or upon volume elements of the 
medium itself. We shall be especially interested in a 
force averaged over many oscillation periods of a wave. 
This force has the form 

F~aV(ReE)2, 

where a is the polarizability of the object; for a particle 
of charge e and mass m we have a l>: _e 2/mw Z , for a 
polarizable particle of radius a we have a l>: a3 (E - Ez)/ 
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X (E + 2Ez), or for the force per unit volume of the med­
ium we have a ~ pOE/Op. 

For given amplitudes Ap and Ar of the progressive 
and reflected waves the force is 

F = aV (Re E)' = 2ik{(A,A, - A,'A;)cos 2 kz + i(A,A2 + A,'A,')sin 2 kz}. 

For example, in the case of a non-sharp change of 
n(ri/w « 1), 

and we have 

A. Ii 
-""C,=i-i--, 
Eo 4nowo 

A. . Ii 
-""C,=!-­
Eo 4nowo 

fIE.' Ii , 
F"'-ak--cos2kz""-a-Eo cos2kz, 

noffio C 

i.e., the dimension of the gradient region is represented 
by l = c/ri ~ cT, where T is the characteristic time re­
quired for an appreciable change in the parameters of 
the medium. 

After a sharp jump of n the appearance of a reflected 
wave also leads to the formation of a standing wave and 
to averaged forces 

F '" akA ,A. sin (2kz + cp). 

The averaged forces can accelerate particles and can 
also deform the medium. SpeCifically, a reflected wave 
field and averaged forces ariSing due to changes of the 
medium's properties with time can serve as the initiating 
factors of various induced scattering processes, such as 
Mandelstam-Brillouin scattering etc., associated with 
changes in the density and temperature distributions of 
the medium. 

CONCLUSION AND COMMENTS 

The results obtained from the investigation of changes 
in a wave that is propagating in a medium with time­
dependent properties are of interest for many physical 
problems. This is the case, for example, when variations 
of the wave are used to determine changes occurring in 
a medium (when Doppler, interferometric, or holo­
graphic investigating techniques are used), or when 
speically induced changes of the medium's properties 
are utilized to change the wave amplitude and frequency, 
or when spontaneous changes of the medium's proper­
ties result from the radiation itself (these last processes 
are characteristic of the high-power emissions that have 
become very common in recent years; examples are 
spectral changes and reflection accompanying self-focus­
ing), and in many other cases of dynamic and nonstation­
ary processes occurring within media in the presence of 
a wave field. 

A dielectric constant can be changed rapidly under an 
external influence. For example, an electric field Eo ap­
plied to a medium with anisotropic molecules induces a 
change of E because the polarizability of the medium is 
changed. In the case of polar molecules with an intrinsic 
dipole moment Po the change of the refractive index is 
tm ~ KE~ ~ 10-4 for Eo ~ 30 kV/cm, where K ~ (Po/kT)z. 

The change of E in a rapidly alternating field can be 
associated with the so-called high-frequency Kerr effect. 
The orientation time of molecules is suffiCiently short 
for inclusion in the range of rapid changes of the med­
ium. It is also possible to utilize the Pockels effect, for 
which the change is f>n(E o) ~ Eo. 

Various nonstationary processes in a medium (varia­
tions of density, temperature, degree of excitation, 
closeness to resonance, etc.) can induce rapid changes 
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of the dielectric constant. For example, a simultaneous 
change of E can be induced by powerful radiation trans­
verse to a propagating wave (thus a powerful light pulse 
can alter the transmission of radio waves). For a plasma 
and uhf waves, variations of the dielectric constant that 
are associated with compression, expansion, or forma­
tion of the plasma can lead to strong changes in the wave, 
especially close to plasma resonances. 

We note that changes of a wave can be enhanced many­
fold by paSSing it many times through a changing med­
ium; for example, a resonator filled with a varying med­
ium can be used. 

On a cosmic scale the considered effects can account 
for some characteristics of variations in light, radio­
wave, and particle spectra. 

Nonstationary effects can occur in the case of acous­
tic waves propagating in a medium with time-dependent 
acoustic properties. Spe cifically, a) variations of sound 
velocity due to variations of temperature or of carrier 
concentration, or to the appearance of phase-transforma­
tion nuclei, etc., or b) variations in the density of the 
medium, can lead to changes of wave amplitude and fre­
quency and to reflection. When the density change is 
small and the considered effects are associated mainly 
with a variation of sound ve locity, the equations for 
acoustic waves are of the same form as in the electro­
magnetic case with co/1E(t) replaced by the velocity of 
sound, cs(t). 

The authors wish to thank B. M. Bolotovskil and 
B. Ya. Zel'dovich for discussions of this paper and for 
valuable comments. 
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I) Several papers [1-3] have been published dealing with the problem of 
wave propagation in a time-dependent homogeneous medium. How­
ever, the investigated changes in the parameters of the medium were 
slow, abrupt, or periodic; linear variations were not considered. 

2)These equations are analogous to equations that describe wave re­
flection from an inhomogeneous medium [with €(x)] [4] when x is 
replaced by t and €(x) = .p(x) is replaced by €(t) = I/<p(t). 

3)High reflective efficiency is associated with a short period of time 
(compared with the wave period) during which changes occur in the 
prpperties of the medium or their derivatives. Thus the derived ex­
pressions correspond to a jump of the derivative € (or n). Reflection 
is reduced sharply if € changes smoothly. This is easily seen when 
variation in the medium is represented by the expansion /:;€ = f't + 
'hf" t2 + .... etc.; for the reflected wave we then have Ar 00 f' (0)/ 
w + f"(0)/w 2. If there is no jump in f' at t = 0 (i.e" f'(O) = 0), we 
have 

A,'X>{,,(O) (w' - {"(O)t( (tw)w - f'(tl ((tw)w - A,j'(t) (tw, 

i.e., a non-steep form for f'(t) leads to greatly diminished reflection 
if tw ~ I. 

IF. R. Morgenthaler, Trans. IRE,MTT-6,167-172 
(1958). 

2 L . B. Felsen and G. M. Whitman, IEEE Trans. Antennas 
Propag. 18, No.2, 242 (1970). 

3 S. I. Averkov and Yu. G. Khronopulo, Izv. Vyssh. 
Uchebn. Zaved. Radiofiz. [Sov. Hadiofiz.] 3,818 (1960). 

4S. M. Rytov and F. S. Yudkevich, Zh. Eksp. Teor. Fiz. 
10, 887 (1940). 

5 D• S. Kuznetsov, Spetsial'nye funktsii (Special Func­
tions), Vysshaya shkola, 1965. 

Translated by I. Emin 
13 

G.A. Askaryan and V.A. Pogosyan 60 


