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Satellites of the fundamental frequency w ± n W H appear following scattering of radiation by thermal 
electrons. Compton exchange of energy between the plasma and radiation at (kTe/fl) > w 
> W H > /),w D is due mainly to scattering into the satellites, but the energy exchange rate is not 
altered compared to the case of absence of a magnetic field. Classical and quantum derivations of the 
satellite intensities are presented. The scattering gives the main contribution to absorption of 
radiation with WNW H in the case of low density and weak plasma turbulence. In this case 
nonlinear scattering of resonance radiation into the high frequency harmonics w' N n W H may be 
great; this scattering simulates synchrotron radiation of a hot plasma with 
kT. = mev'/2 = e 'E '/2me(w ~ WH)' despite the fact that the plasma may be cold T. « T •. At a 
high brightness temperature of the resonance radiation kTb > mec' and Iw ~ wHI « WH' the electron 
moves in the field of the wave with a relativistic velocity eE /melw ~ wHlc > I. The presence of a 
resonance in the scattering cross section at W = W H makes feasible the observation of "strong" wave 
effects when the wave is in fact a "weak" one in the usual sense of the word: (eE/mewc) > 1. At 
W <: W H the transition of an ordinary wave to an extraordinary one and the converse transition 
during scattering occurs with a small cross section N U'r(w/w H )'. 

1. INTRODUCTION 

The circular polarization of optical radiation observed 
in the case of white dwarfs r 1J (and possibly for x-ray 
stars r 2J ) suggests the presence of strong magnetic fie Ids 
H ~ 108_10B G in these objects. We note that still 
stronger fields (10 12 _1013 G) appear to be present in 
neutron stars and, in particular, in pulsars. X-ray stars, 
which are compact objects, have a large optical depth 
due to Thomson scattering (TT = NeuTR > 1) and small 
bremsstrahlung depth for photons with nw -;;, kTe . [3J As 
a result, the intensity in region nw ~ kTe is much lower 
than the Planck intensity. Under these conditions, the 
Compton effect may be an important mechanism for en
ergy transfer between plasma and radiation, and for the 
generation of the x-ray spectrum. Thus, the low-fre
quency bremsstrahlung photons increase their energy 
(owing to the Doppler effect) during scattering by hot 
electrons and diffuse into the Wien region of the spec
trum. [4,5] 

Published analyses of the interaction of radiation with 
electrons in a magnetic field refer to two extreme astro
phYSical situations, namely, 1) an optically thin medium, 
where it is sufficient to consider the radiation (its spec
trum, polarization, and angular distribution), and 2) an 
optically thick medium, where local thermodynamic 
equilibrium is set up and radiative heat transfer has to 
be considered. In the latter case, the scattering process 
and its dependence on frequency, direction, and polar
ization play an important role. 

Scattering by a stationary electron in a magnetic field 
has been considered by Gurevich and Pavlov, [8J Loskutov 
and Leventuev,r7] and, recently, by Kanuto et al. rB] in 
connection with astrophysical applications. In this paper 
we Shall consider in detail the change in frequency upon 
scattering. This is important in the intermediate case 
when scattering has an important effect on the radiated 
spectrum, i.e., the spectrum is shifted, approaching the 
Wien form but not yet reaching the Planck equilibrium. 
The ideas developed by Kompaniets r 4J on the kinetics of 
processes leading to equilibrium between plasma and 
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radiation are extended to the case of magnetized elec
trons. 

The frequency change and energy transfer between 
photons and electrons are connected with the recoil effect 
in the case of scattering by an electron at rest and the 
Doppler effect (when the thermal velocity of the electron 
is taken into account). At first sight, the situation in a 
magnetic field is quite different. The motion across the 
field occurs over circular orbits and quantum theory 
predicts the presence of discrete Landau levels with en
ergies nnwH = nheH/21Tmec. The longitudinal motion is 
not quantized but its energy is only half the total thermal 
energy. The change in the photon energy on scattering 
consists of the recoil and the Doppler effect associated 
with the longitudinal motion, and the change by an integer 
in the number of Larmor quanta due to transition of the 
electron from one Landau level to another. After scat
tering, the monochromatic radiation is transformed into 
a set of bands. However, detailed analysis shows that 
when the frequency w of the radiation is greater than the 
Larmor frequency wH' all the phYSical conclusions are 
only slightly modified when the magnetic field is switched 
on. The total scattering cross section, the average 
change in energy, and the root mean square change in the 
photon energy on scattering, calculated from the band 
system, do not differ from those calculated from the 
Gaussian scattering function for free unmagnetized elec
trons. This result may be regarded as a natural' conse
quence of the Bohr correspondence prinCiple. Neverthe
less, it is very instructive to examine how this principle 
becomes operative in the calculation. 

The Landau levels form an equidistant system: 
En + 1 - En = nWH independently of n. In the dipole ap
proximation the absorption or emission of photons occurs 
with t.n = ± 1 and, therefore, in the case of scattering, 
i.e. a process involving two photons, one would expect 
t.n = 0, ± 2. Because of the equidistant property, all that 
remains is t.n = 0, and transitions with t.n = ±2 are for
bidden in the dipole approximation. Harmonics (t.n t- 0) 
appear in the next orders of the expansion in terms of 
the ratio of the orbit radius to the wavelength (and in 
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principle when relativistic effects, which violate the 
equidistant property, are taken into account). 

Since the bands are equidistant, it turns out that, as in 
the case of the harmonic oscillator, the classical analy
sis of the motion of the electron over an orbit in the field 
of the wave gives correct formulas for the scattering 
cross section and the intensity of the harmonics (satel
lites). Satellites of the carrier frequency, which appear 
in the problem of the scattering of waves by free thermal 
electrons, are directly connected with the presence of 
the magnetic field and the thermal electron velocities. 
The intensity of the satellites W ± nWH decreases with 
increasing n in proportion to 

1 1 ( vw ) 2n 1 (kT,) n ( W ) 2n 1 (t.WD) 'n 

2n"~ ~ = 211n! mec;! ~ ~ 2'1n! ~ . 

The classical calculation of scattering by a harmonic 
oscillator of frequency Wo leads to a similar result: 
when W > Wo the intensity of the satellites W ± nwo is 

crf. ( W ) 2n ( kT) n 

27ln! 7, -;;Z' 

where Iw is the intensity of the incident radiation and (J 
is the scattering cross section. 

As already noted, the scattering cross section ap
proaches the Thomson value when the frequency of the 
radiation is high (w »wH)' At low frequencies (w «(JH) 
the scattering cross section decreases and the electron 
becomes nearly free in the magnetic field, but when the 
electric field of the wave is perpendicular to the mag
netic field the electron experiences a drift with the veloc
ity (c/H2)[EXH]. When w« wH the Thomson cross sec
tions for the ordinary and extraordinary waves are very 
different. It is shown below that the transition from one 
wave to the other during scattering is strongly sup
pressed and takes place with the cross section 
(J ~ (JT(w/wH)2. 

Finally, for magnetized plasma exposed to an external 
source in astrophysical or laboratory situations one is 
particularly interested in the resonance at W I>:i wHo A 
relatively weak wave (weak in the sense that the rota
tional velocity of the electron v = eE/mew in the field E 
of the wave is small in comparison with the velOcity of 
light) may produce circular motion of the electron at 
high-even relativistic-energy. The interaction between 
a monochromatic strong wave and electrons has been 
widely discussed in the literature /9,12J and Zel'dovich 
and Illarionov(12J have considered the effect of a strong 
wave on an electron in a strong magnetic field. It is 
shown below that a weak wave, whose frequency is equal 
to the gyrofrequency wH, may behave as if it were 
strong. This is connected with the resonance in the rota
tional velocity of the electron in the field of the wave: 
vic = eE/meclw - wHI. When the magnetized plasma is 
illuminated by radiation with the resonant frequency, the 
resonance take-up of energy by the electrons can be de
tected through the emission of harmonics. We note that 
the necessary'spectral width of the band of external 
radiation must be greater than the resonance width, so 
that the Doppler effect and the relativistic effects do not 
take the electron out of resonance. Because of the pres
ence of resonance in the Thomson cross section/ 6- aJ 
this effect is of interest even when the optical thickness 
of the plasma for Thomson scattering is small, and it is 
particularly important under laboratory conditions. 
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The intensity of the harmonics Wi = nWH for 
v / C = eE / m,cl W - WH!« 1 
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decreases in proportion to1) 

W2 1 ( V) 'n w' 1 [ neE ] 'n 
(W-WH)' n! n-; "" (W-WH)' n! m,ciw-wlli . 

We recall that, in the absence of the magnetic field, the 
intensity of the harmonics Wi = nw during the scattering 
of waves of finite amplitude by free electrons is very 
small and decreases as 

The interaction between radiation and magnetized elec
trons and, in particular, the question of the scattering of 
radiation, are of major interest both for astrophysics and 
the theory of laboratory plasma. 

2. THOMSON SCATTERING BY THERMAL 
ELECTRONS IN A MAGNETIC FIELD 

The equation of motion for a nonrelativistic electron 
in an external field H and the electric field Eeiwt - ik· r 
of an electromagnetic wave is 

dv ..• e 
m'di = eEe'OO'-' • + -;[ vH] (1)* 

where we have neglected the reaction of the radiation 
and, in the special case when kr « 1, 

iew 'oo' ( . WH) . 
Vx=' '2 e Ex-l-E, + Vox exp(lwut) , 

m,(WH -w) W 

v, = v", + (eE, / iwm .. ) e'OO'. 

(2) 

where Vo is the. thermal velocity of the electron. The 
magnetic field lies along the z axis and wH = eH/mec is 
the cyclotron frequency. We recall that, in magnetoactive 
plasma, two types of wave may propagate independently 
of one another, namely, extraordinary and ordinary 
waves, each of which has its own absorption coefficient, 
phase velocity, and polarization. In the general case of 
propagation at an arbitrary angle to the magnetic field 
these waves are elliptically polarized. 

The Thomson cross section of a resting electron in a 
strong magnetic field was calculated in r 6,8] with the aid 
of Eq. (2) for Vo = O. In this paper we shall consider the 
noncoherent scattering of an electron in a magnetic field 
and, in particular, the re-emission by the electron of the 
energy carried by the wave of frequency w I>:i wH at fre
quencies which are multiples of the gyrofrequency. 

Using the solution of Eq. (1), we shall calculate the 
intensity radiated bv thermal plasma from the well
known formula:[9,13j 

e'w' (I I I r )) \') fa,(w,Q)= 4n'c3 S exp -iw\t-oa~ [Oa [oav,ll dt ,(3) 

where 0' and (3 assume the following values: I-extra
ordinary wave, 2-ordinary wave; C .. ) represents aver
aging over the Maxwellian distribution and nO' is the 
direction of observation of the normal wave of type 0'. 

Equation (3) describes four processes: I-the well
known synchrotron radiation by thermal plasma (the 
other three correspond to the scattering of electromag
netic radiation by thermal plasma), 2-coherent scatter
ing, including the Doppler effect (which in the absence of 
the magnetic field and for w » wH corresponds to 
Thomson scattering), 3-emission by the electron in the 
field of the wave into harmonics of the wave frequency, 
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and 4-processes in which the photon frequency changes 
by multiples of the gyrofrequency. 

A. Synchrotron Radiation 

When vol» eE/mclw - wHi the formula given by Eq. 
(3) describes the well-known synchrotron radiation by a 
thermal electron at the resonances of the cyclotron fre
quency W = nWH' The intenSity of this radiation decreases 
with increasing n in accordance with the formula [12J 

1 (n'kT.) n 

2;;:J meC2 

when nv/c < 1. 

B. Satellites of the Carrier Frequency2) 

For plasma in a magnetic field, the square of the 
transverse (perpendicular to the magnetic field) compon
ent of the thermal electron momentum is quantized, Le., 
it assumes discrete values which are multiples of the 
gyrofreq uency: 

P.l.' / 2m, = SfUiJH = sheH /2nm,c, 

where s is the number of the Landau level. This leads to 
the following conse rvation laws: 

L+hoo= (p')' +1ioo' PII+~CO~e=PII,+.1ioo' cosO' 
2m, 2m, e e, (4) 

P.l." / 2m, - P.l.' / 2m, = nhOOH, n = s - s' = 0, ±1, ±2, .... 

In these expressions p,' W and p', w' are electron mo
menta and photon frequencies before and after scattering, 
and e, e' are the angles between the directions of motion 
of the photon and the magnetic field before and after 
scattering. 

In general, the solution of Eq. (1) is difficult to ob
tain. We shall therefore consider a number of special 
cases. When W »wH the solution of Eq. (1) is 

where r defines the trajectory of the thermal electron in 
the magnetic field in the absence of the wave. By sub
stituting this solution in Eq. (3), we obtain the differen
tial cross section3 ) for a photon with wave vector k - k': 

do do (k')' ( m.e' )'" ~ 
dQ' dk' = dQ' k 2nkT,qll' n::-~ Xn (q.l.) 

(5) 

[ m.e' ( , OOn )'] Xexp -.------, k - k - n- , 
2kT,qll C 

(6) 

In the above expansion I n is the Bessel function of the 
first kind, q = k' - k is the momentum transferred to the 
electron on scattering, 

do / dQ' = 30T (1 + cos'~) / i6n, 

and" is the angle of scattering. The total scattering 
cross section 

J~dQ'dk' dQ'dk' 

is equal to the Thomson cross section, and the coherent 
scattering cross section (the term with n = 0) is some
what less than aT' The integral in Eq. (6) can readily be 
evaluated in an explicit form: 

(7) 

where In is the Bessel function of the first kind of an im
aginary argument. 
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Equation (5) can be obtained from the quantum-mech
anical formula for the differential probability of scatter
ing of a photon by an electron in a magnetic field:[6,8J4) 

--- =-' - le"e<tle-iq'li> -M -M,I' ( dW) r' ( 00' )' 

dQ' dol' " 2 (j) 1, 

(8 ) 

where re = e 2/me c2 is the classical radius of the elec
tron. The first term inside the modulus is the matrix 
element for the transition of the svstem from the initial 
to the final state, valued for the operator (e2/2me c2)A·A 
in first-order perturbation theory. M1 and M2 are the 
matrix elements of the operator (e/mec)P 'AS ) calculated 
in second-order perturbation theory. These elements are 
small when W »wH' The vectors e and e', are the polar
ization unit vectors before and after scattering. 

The total scattering probability can be obtained by 
summing Eq. (8) over all the final states and averaging 
over the initial states 

Since the wave functions for the electron in the magnetic 
field form a complete system, we have 

2. I 2. +00 +00 

~ = ~ (~) le"el' J dt, S dt, exp[i«(j)' - (j) (t, - t,) 1 
dQ'doo' 2 (j) _~_oo 

x<ilexp[iq;(t,) lexp[ - iq;(t,) ]Ii), (9) 

;(t)""exp(~Hot)rexp( -THot) , 

where ret) is the coordinate operator in the Heisenberg 
representation, which acts on the electron wave functions 
in the magnetic field. The operator in parentheses is 
reduced to the product of commuting operators and, 
therefore, the evaluation of the diagonal matrix element 
(iI ... ii) reduces to the replacement of these operators 
by the classical values (functions of time) of the corre
sponding quantities 

<ilexp (iqr(t,» exp (-iqr~(t,» Ii> = (ilexp (iq[r(t,) -ret,)]) Ii>, 

r(t) = r(O) + ~2sin wot -"'!'2cos root + ~vlltt 
x roo y (00 z 

where ret) is the equation of the trajectory of the elec
tron in the magnetic field and Wo = wH(l - v2/c2)112. 

When we integrate with respect to t1 and t2 we use the 
following well-known expansion in terms of the Bessel 
functions: 

Di vi ding Eq. (9) by the total interaction time T = 2m) (0), 
we obtain the expression for the scattering cross section 
of an electron for a photon in a magnetic field. This re
sult must be then averaged over the initial states of the 
electrons, and the polarization states of the incident and 
scattered photons. When nWH «kTe the magneti,c field 
does not affect the electron distribution function, and Eq. 
(9) may be averaged over the Maxwell distribution. The 
final result is Eq. (5). 

In the case of a strong field, the argument of the 
Bessel function qlkTe/mewH < 1. Expanding In(z) into 
a series in terms of the small arguments, we have from 
Eqs. (5) and (7) 

dQ~:k' = ( :~, ) ( :' )' ( 2n~:,~", ) 'f, { exp [ - z';;~;II' (k' - k)' ] 

+ ~ _1_ ( kT, ) 'n' ( eq.l. ) "n' (10) 
.l..J 2'n'lnl! m,e' (j)H 

U-FO, n=~oo 

xexp [- m,e', (k'-k-n~)']} .. 
2kT,q" c 
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The summation over negative n in this expression is car
ried out only up to nm equal to the integer part of the 
ratio ck/WH' This eliminates the possibility of negative 
frequency. 

The first term in Eq. (10) describes the Doppler 
broadening in the case of Thomson scattering in a mag
netic field; the width of the profile is determined only by 
the parallel, nonquantized, component of the electron 
velocity. In the case of isotropic radiation, the line width 
is reduced by the factor of ..f3 in comparison with the 
usual Doppler profile. The higher terms in the expanSion 
describe the change (both increase and reduction) in the 
frequency of the photon by an amount which is a multiple 
of wH (w' = W ± nWH)' Radiation into high satellites 
w' - W »wH has a directional angular distribution which 
is symmetric about (J' = 1T/2, since 

9' "" sin' ~ 1 (1 + cos'~). 

Because of the strong angular dependence, this radiation 
should be plane polarized and its degree of polarization 
should be 

qJ.' = k" sin' 8' + k' sin' 8 - 2kk' sin 8' sin 8 cos Ijl. 

The fraction of energy re-emitted into the satellite of 
number n is lower by the factor 
2-2Inl(lnl!f1(t.wD/wH)2Inl than the energy re-emitted 
into the fundamental frequency w. We recall that this re
sult was obtained on the assumption that t.wD < wH. 

In the opposite case of a weak field, wH « t.wD' we 
can use the asymptotic behavior of the Bessel function 
for large values of the argument to show quite readily 
that Eq.(20) reduces to the well-known expression for 
the Doppler broadening in the case of Thomson scatter
ing by Maxwellian electrons: 

da do ( m c' )'" [ m c' ] 
dQ'dk' = dQ' 2n;T.q' exp - 2k;.q' (k' - k)' . 

Equation (10) depends on the square of the trans
ferred transverse momentum, and hence the probabili
ties of scattering into the satellites W + nWH and W = nWH 
are not equal to one another: the transition probability 
increases with increasing frequency, Le., in the case of 
noncoherent scattering the radiation receives energy 
from the electrons. It will be shown below that noncoher
ent scattering described by Eq. (10) is equivalent to the 
root mean square Doppler increase in the photon fre
quency. 

Equation (10) is valid only for satellites whose num
bers satisfy the condition 

(11) 

For slightly relativistic plasma with Te ~ 109 OK the 
condition given by Eq. (11) is violated near (J' RI 1T/2 even 
for the third resonance. The differential photon scatter
ing cross section for weakly relativistic plasma is 
evaluated in the same way as the intensity of cyclotron 
radiation. (16) It is 

do 1 dQ'dk' = const· (k' 1 k)' exp [-R"'(oo' - 00; q.c, qll) 1; 

( mC')2 mcICl)'-ro 
R(oo'-oo;qJ.,qu)= -'- +2-'----x.+ 

kT. kT. OOa 
(12) 

+~(2qJ.'c'(t -chx.)- xo'[c'qll'-{oo' - oo)']}. 
OOB 

(13) 

The function Xo is defined as the root of the transcenden
tal equation 

c'l.qJ.z m.cz O)H [ C1q;ll] -. x.- shx,------- t- . . 
(00' - 00)' - c'qll'· kT. 00' - 00 (00' - 00)' • 

(14) 
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The angular distribution for the higher satellites 
W + In IWH »w is the same as the angular distribution 
of cyclotron radiation by weakly relativistic plasma:[18J 

~=const.(~)'exp[- 00'-00 / (00'-00 kT. )(8'-....::)']. 
dQ dk k OOH 00 m.e' 2 

(15) 
The function f(x) is tabulated in, [18J and when x » 1 

I(x) "" (48x')-'I •. 

C. The Resonance Region W AS wH and the 
Probability of the Various Processes 

The coherent scattering cross section (Without change 
in the photon frequency) is usually calculated by solving 
Eq. (1) and then substituting the result in Eq. (3). This 
method involves very laborious calculations. [6J We 
shall use a simpler approach based on the use of the 
optical theorem and the dispersion relation for magneto
active plasma. The refractive index of magnetoactive 
plasma, with thermal motion neglected, isL17J 

n.'=t-
2v(t-v-ill) 

2(1-ill) (1-ill-v) - usin' 8 +(-)·[u'sin' 8 + 4u(1-ill - v)' cos' 8]'/ ' 

u = OOH' 100', v = 00.' 1 00' § 411e'N.I mooo', Il = r 1 00, 

where r which governs the absorption of waves in 
plasma. 

(16) 

In the special case of propagation in the direction of 
the magnetic field, the refractive index given by Eq. (16) 
assumes the Simplest form 

n.' = 1- 00.'/00(00 '1= OOa -if). (17) 

On the other hand, it is well known (see, for example, [18J) 
that the refractive index is readily expressed in terms 
of the forward scattering amplitude aQl == aQl for an in
dividual electron: 

n.' = 1-4nc'N.a~1 oj'. (18) 

USing Eqs. (17) and (18), the optical theorem O'a 
41Tcw-1 ImaQl' and the well-known expression for the 
damping of a harmonic oscillator r = y == 2/3(e2w2/mec3), 
we obtain the following expreSSion for the total scatter
ing cross section of an electron in a magnetic field out
side resonance Iw - wHI »r for e = 0: 

CJ)2 Cl)2 

0.(8=0)=0, ( )" 0,(8=0)=0, ( + )' (19) 
(iJ-CiJH CI) Crhr 

Similarly, when II = 1T/2 we have 

( n ) 00'(00' + OOB') 
o. 8="2 =0, (OO'-OOH')' ' (20) 

Thus, the cross section for the extraordinary wave on 
an electron at rest has a resonance near the gyrofre
quency, which is connected with the electron velocity 
resonance (2). It tends to the Thomson value for W »wH 
and falls as (w/wH)20'T when W «wH' The cross section 
for the ordinary wave does not have a resonance and its 
magnitude is close to the Thomson value aT with the ex
ception of the narrow angular region e < (W/WH)1h for 
w/wH « 1, where 0' "'" O'T(w/WH)2. In collisional plasma 

r = \/, = '1,(2n 1 m.)'I'e'N,LI (kT,)'/, 

where L is the Coulomb logarithm. In this case, we have 
the well-known formulas for bremsstrahlung absorption 
by the electron in the field of the ion in plasma with a 
magnetic field:[17J 

k~~) (00, H, 8 = 0)= kl/(oo, H = 0) 00'/(00 '1= OOa)', 

(t) ( n ) . OO'(OOa' + 00') 
k/l oo,H,6=- =kl/(oo,H=O) (' ,)" 

2 00 -:-OOH 
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kif) (8~'-::')~k'l(w,H~O). 
2 I 

In plasma with thermal motion of the electrons, the 
refractive index for 8 = 0 is (neglecting collisions)[17J 

n '-1_ wp ' ! (W'FWH (m.,c' ),j,) 
a - hl("'+W,,) '" kT, 

I (x) ~ x exp ( - ~) ,1 dt cxp ( ~' ) . 
Using Eq. (18) and the optical theorem, we obtain the 
following expression for the bremsstrahlung absorption 
coefficient for the extraordinary wave in the first reson
ance W ~ wH in the thermal plasma:[17J 

(1) (nm.e' )'j, W.' [ m,e' (w - WH)' ] 
k. (8~O)~ 8kT. -;;;exp - 2kT. w' . 

D. The Resonance Region W Ail wH and 
Re·emission I nto the Harmonics 

The reradiation of scattered energy into the harmon
ics of the carrier frequency W ~ wH may be due to two 
processes: the first is independent of the amplitude of 
the incident wave and is analogous to the emission of 
satellites w' = W ± nWH which was considered above and 
is connected with the presence of thermal electron 
velocities, while the second is nonlinear in E and is 
connected with the rotational motion of the electron in 
the field of the wave. The cross section for the first 
process for W ~ wH or w' ~ wH can be calculated from 
the quantum-mechanical formula, [6-8J averaging the final 
result over the Boltzmann distribution. Calculations 
show that when W ;( wH the transition cross section for 
the first satellites have the resonance form 

Near resonance these cross sections are of the order of 
aT' It is interesting that the cross section for the tran
sition from 2wH to wH may exceed the cross section for 
bremsstrahlung absorption in the second resonance. 

We must now consider scattering at the harmonics of 
the· carrier frequency, which is nonlinear in E. When 
W ~ wH the rotational velocity of the electron in the field 
of the extraordinary wave has the resonance 

eE 
V= eiwt 

mcl",-wnl 

whatever the dependence on the magnitude of the thermal 
velocity (the resonance does not occur in the field of the 
ordinary wave). This velOcity may exceed the thermal 
velOcity of the electron and may even reach the velocity 
of light although the wave itself is weak in the ordinary 
sense: eE/meCw = b < 1. In the field of the wave the 
electron will reradiate its energy at the harmonics of 
the fundamental frequency. This process is quite weak 
during the usual Thomson scattering when W »wH and 
b « 1. It can be readily shown from Eq. (3) that the in
tensity of the harmonics decreases as (nb)2n/n !. How
ever, at the resonance W ~ wH, where the rotational 
velOcity of the electron is high, this radiation may com
pete with the synchrotron radiation by the thermal elec
tron and may even exceed it. Moreover, at low plasma 
densities, and in the absence of appreciable plasma tur
bulence, the situation may arise where the rate at which 
the thermal energy is supplied is much less than the 
radiation width, Le., the time taken by the electron in 
the magnetic field to radiate its transverse momentum. 
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In this case, the thermal velocity of the electrons may 
be neglected, the synchrotron absorption is unimportant, 
and the growth in the vibrational velocity (characteristic 
time ~ 1;1 W - wH I) is not prevented by collisions. The 
high rotational velocities of the electrons will prevent 
plasma recombinations and the radiation escaping from 
it at the high harmonics of the carrier frequency W = nWH 
will simulate the synchrotron emission by hot plasma 
with kT * ~ 3/2 me v2, despite the low plasma temperature. 

As already noted, the solution of the equation of mo
tion (1) for the electron in the field of the wave in the 
presence of the magnetic field is difficult to obtain in 
the general case. It is, however, possible to use the 
special case which has been treated by Zel'dovich and 
Illarionov . [12J 

Consider a strong, circularly polarized, electromag
netic wave propagating in the direction of the magnetic 
field, which is scattered by an electron whose motion 
along the field is compensated by a longitudinal electric 
field, Le., VII = O. In this case, there is no difficulty in 
allowing for the radiative friction. If r is the effective 
width of the resonance and is determined by damping 
processes, the. velocity of the electron in the field of the 
ordinary wave and the magnetic field is (v « c): 

eE 
v: = -- cos wHt, 

m.r 

eE 
vlI=--sinwnt. 

m.r 
(21) 

The radiation intensity emitted by an electron traveling 
with this velocity when W R: wH is, according to Eq. (3), 

J(w',8')= e'w" {~[ctg'fl'ln'(~~sin8') 
2nc ""-.I WH m,cr 

n=l 

( eE )' 2 (w' eE , )]} ( , + --, I: ---sin 8 Il nWH-w), 
m,cI WH m,cr 

(22) 

When Vol « eE/mer < c, Eq. (22) determines the 
process of reradiation of the wave energy by a nonrela
tivistic electron into the harmonics nWH' 

Expanding Eq. (22) into a series in powers of 
eE/mecr, integrating with respect to the angle's and fre
quencies, and dividing the result by cE2/41T, we obtain an 
expression for the scattering cross section in the form 
of a sum of harmonics: 

_ WH' [ ~ (n+1)n,n+,( eE )'n] 
(J,-(Jr-- 1+""-.1 --. r' (2n + 1)! m,.fc 

n=2 

(23) 

The first term in this sum corresponds to resonance 
coherent scattering, and the last term to reradiation into 
the w' = nWH' If r is determined by the radiation width 
y = 2rew2/3c, the coefficient in front of the square 
brackets in Eq. (23) becomes ae = 611 !I. 2 = 611C2/WH-

Scattering provides a contribution of the order of y /r 
to the total absorption of radiant energy with W ~ wHo In 
tenuous plasma, and for a low degree of excitation of 
plasma turbulence, we have r = y. In this case, scatter
ing becomes the dominant process whose cross section 
exceeds the true absorption cross section by a factor of 
Y/(r - y). If, on the other hand, eE/merc > 1, then we 
have the case analogous to scattering in a strong wave 
which was discussed in[12J. Under these conditions 
b r = eE/mecr. The resonance is accompanied both by 
the additional increase in the cross section by a factor 
of b~ and by the synchrotron reradiation of the wave en
ergy into the harmonics w' = WHb~. Because of the 
resonance in the scattering cross section there is a 
rapid increase in light pressure on the electron, which 
facilitates its acceleration. The harmonics are reradia-

Yu. N. Gnedin and R. A. Syunyaev 55 



ted mainly at right-angles to the field. It is also impor
tant to remember that with increasing rotational and 
translational velocity (due to acceleration) the reson
ance will occur not at the frequency wH but at wH/br . 
However, for a sufficiently broad spectrum of the incident 
radiation, t.w ~ wH, and high brightness temperature 

KT. = 21l'I.e' / Ul' > m,e' 
the strong-wave condition can be satisfied even for rela
tivistic electrons in this spectral range. In the above 
expression Iw is the radiation intensity in erg/cm2 . sec. 

In conclusion, let us estimate the plasma parameters 
for which the damping y connected with the reradiation 
of the wave energy exceeds the damping lie due to colli
sions in the plasma. In a magnetic field H = 105 gauss 
the gyrofrequency is wH = 2 x 1012 Hz and y = 2r fwk/3c 
= 40 Hz. In plasma with temperature Te = 5 x 10 UK and 
density Ne = 106 cm -3 the collision frequency is lie ~ 4 Hz, 
i.e., y » lie and the reradiation of energy into the har
monics is more effective than synchrotron absorption. 

E. The Case w ~ 0H and Mutual Transformation of 
Normal Waves 

The cross section for coherent scattering of the 
ordinary wave by an individual electron in a magnetic 
field is close to the Thomson cross section, and when 
W « wH we have a2 R< aT sin2 8 in a broad range of values 
of the angle 8 between the direction of propagation and 
the magnetic field H. In the narrow angular range 
8 -;:;: (W/WH)112 the cross section is a2 ~ (w/wH)2aT• The 
cross section for the extraordinary wave a1 ~ (W7wH)2aT 
is small in the above range of frequencies W and angles 
8.'BJ This is readily seen from the following discussion. 
When (w/wH) « sin2 8/2 cos e, the electric vector of the 
incident wave oscillates practically at right-angles to the 
plane of propagation of the wave k and the magnetic field 
H (the ellipticity of the polarization is ~W cos 8/WH sin2(1 

« 1). When W « wH it follows from Eq. (1) that the 
vibrational velocity of the electron is equal to its drift 
velocity: 

v = eH-'[EHJe;·'. 

Substituting the expression for the drift velocity· in Eq. 
(3), we obtain the scattering CJ'I)SS section for the extra
ordinary wave: 

a,'" (Ul / UlB)'aT. 

The essential point is that the cross sections for the 
transformation of the ordinary wave into the extraordin
ary wave and vice versa are also smaller by a factor of 
~ (W/WH)2 than the Thomson cross section. In the case 
of the differential cross sections for the transformation 
of the ordinary wave into the extraordinary wave and 
vice versa we can proceed by analogy with the treatment 
given by Kanuto et al. [BJ to obtain the follOwing formulas 
which are valid for any ratio of W to wH: 

1 da~~(a-+a') (Ul')' 1 1 
sin a' da' 21lr,' UlB' - Ul' 1 + K.'(a) 1 +K,'(a') 

(' ')' l' 
x{ UlH -Ul K.'(a)sin'aK,'(a')sin'a'+-(1+Ul~) 

Ul' 2 Ul 

x [1 + K.'(a) cos' aJ[1 + K,'(a')cos''Il'J- 2~[K.(a)cos a (24) 
Ul 

x(1 + K,'(a') cos' a') + K,(a') cos a'(1 + K.'(a) cos' a) J 

+ 2 (1 + Ul:: )K.(a)cos a K,(a')cos a'}, 

where the parameter characterizing the polarization 
ellipticity is 

K.(a) = - 2cos e / :B sin' a -(-1)· ( :~' sin' a + 4 cos' a)"'. (25) 
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The differential cross section given by Eq. (24) satis
fies the condition 

do., (a - a') / dQ' = da,.(a' -+ a) / dQ. (26) 

This condition ensures that an equilibrium is set up be
tween the two types of normal wave well inside the med
ium. On the other hand, condition (24) can be obtained 
from thermodynamic considerations or from the re
ciprocity theorem. When W « wH the ellipticity param
eter is 

1 K.j = 11 1 K, 1 "'" (Ul cos a / UlH sin' a) <t: 1. 

We can then readily obtain the following approximate ex
pressions for the transformation cross sections: 

f da,,(a -+ a'). • • ( Ul )' 
a"(a)",, .•• sma da -a,,(a)- - aT. 

sma da UlH (27) 

It follows that in a plasma with a strong magnetic field 
one ordinary wave will be effectively generated and 
propagated when W «wH and TT(W/WH)2 « 1 even when 
TT » 1. The radiation emitted by such a plasma has 
strong plane polarization given by 

fl' = 11- K,'(a) 1/ (1 + K,'(a». 

The noncoherent scattering cross section for W « wH 
must be calculated from the quantum-mechanical equa
tion given by Eq. (8). The transition to the satellite with 
n = 1 takes place with the cross section 

The cross section for the next satellites falls rapidly as 
(kTe/mec2)ll(w/WH)2n. The cross section for the reverse 
process, i.e., from the satellite into the frequency range 
W « wH is of the same order of magnitude: 

a(Ul + UlH -+ Ul) - (kT./ m.e') (Ul / UlH)'aT <t: aT. 

F. Quantum Recoil Effect 

In accordance with the conservation laws, the change 
in the photon frequency on recoil in a magnetic field is 

I u> - noon 
Ul = 1+ (lIUl/m,e') cos a cos a" 

n = 0, ±1, ± 2, .... (28) 

Evaluating the matrix elements for Compton scattering 
by a resting electron in a magnetic field as given by Eq. 
(8) (see also[6J) we can show that, when W »wH »t.wq 
= nw2/me c2, the cross section for scattering with photon 
frequency change W - nWH is smaller by the factor 
(t.Wq/wH)n than the scattering cross section for n = O. 

The formation of the satellites is connected with tran
sitions between Landau levels. The electron can freely 
receive the momentum component parallel to the field. 
The satellites and the profile of the scattered radiation 
near the carrier frequency are shifted toward lower fre
quencies by an average amount of (1/3)112 t.wq • When the 
satellites are taken into account the rate of energy trans
fer from the scattered photons to the plasma is the same 
as in the absence of the field. 

3. COMPTON ENERGY TRANSFER BETWEEN 
ELECTRONS AND RADIATION IN HIGH
TEMPERATURE PLASMA WITH A STRONG 
MAGNETIC'f1 ELD 

When the Doppler broadening by scattering is t.wD 
» wH, the rate of Compton energy transfer is the same 
as in plasma without the magnetic field. We shall show 
that the rate of Compton transfer remains the same when 
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W »wH > tlwD' Consider the mean square change in 
the photon frequency 

-, 1 S dQ S (' )' da d' d'v Llw = - - w - w --, -, w ". 
aT 4n dQ dw 

(29) 

Using Eq. (9), we can readily show that 
Z +011 +-

Llw'= :~fdQ'le"el'J de8'(1+e)'J dte- i" 

x < il exp (+Hot) e-'q, exp ( - *-Hot) e,q'l i) . 
(30) 

In this expression e and e' are the polarization unit vec
tors before and after scattering, and Ho is the Hamilton
ian for the electron in a magnetic field. Using the opera
tor equation 

e'q'H(p)e-,q, = H(p - q) 

and averaging Eq. (30) over the initial states of electrons 
with 

kT, 1 [nnWH P"] F(p"n)= '/ exp ------- , nWH (2nm, kT,) • kT, 2m, kT, 

we obtain for liw « kTe 

_ r' ±~ [ . m ( q' )'] Llw'=-'-SdQ'le"el'Sdee'(1+e)'exp ---'-, e+--
2aT _~ 2kTeq 2m, 

2kT. , r,z SdQ'(l+ 'in(1 ft')- 2kT. , 
= m"cz 0) ~ cos -cos - mecz {J}. 

(31) 
The same result is obtained through direct evaluation of 
Eq. (29) after substitution into it of the differential cross 
section given by Eq. (10). 

The Kompaneets equation, therefore, which describes 
spontaneous Compton interaction between radiation and 
thermal electrons in plasma need not be modified in the 
presence of a strong magnetic field tlwD < wH < W 

(32) 

In this expression n = 2lT3C2Iw In w 3 is the photon occupa
tion number in phase space. 

We are indebted to Ya. B. Zel'dovich for stimulating 
remarks and to A. Z. Dolginov and A. F. Illarionov for 
useful discussions. 

'[vH] =vX H. 

oTitis formula is valid for nv/c < I. 
2)The existence of the satellites is not only a simple consequence of quan

tum-mechanical conservation laws but follows also from the classical 
formula given by Eq. (3). 
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3)Salpeter [14] has obtained the fluctuation spectrum for magnetoactive 
plasma. Sitenko [IS] has shown that the scattering cross section is pro
portional to the fluctuation spectrum. Salpeter [14] has used this spec
trum to investigate in detail the case of a weak field for wH ~ L:.WD' 
We shall be largely interested in the opposite limiting case. We note also 
that in the dipole approximation there are no satellites; they appear as 
the higher multi poles in the expansion in powers of kr. 

4)The differential probability given by Eq. (8) is the ratio of the light 
energy dI' scattered into the solid angle dn' to the energy flux density 
in the incident radiation. When Eq. (8) is converted so that it gives the 
number of photons, it must be multiplied by the ratio w/w'. 

S)A-vector potential, and P-generalized photon momentum. 

IJ. C. Kemp, J. B. Swedlund, J. D. Landstreet and 
J. R. P. Angel, Astrophys. J. 161, L77 (1970). 

2J. C. Kemp, R. D. Wolstencroft, and J. B. Swedlund, 
Astrophys. J. 173, L113 (1972). 

3G . Neugebauer, J. B. Oke, E. Becklin, and G. Garmire, 
Astrophys. J. 155, 1 (1969). 

4 A. S. Kompaneets, Zh. Eksp. Teor. Fiz. 31,876 (1956) 
[Sov. Phys.-JETP 4, 730 (1957)]. 

SA. F. Illarionov and R. A. Syunyaev, Astron. Zh. 49, 
58 (1972) [Sov. Astron.-AJ 16, 45 (1972)]. 

6 L . E. Gurevich and S. T. Pavlov, Zh. Tekh. Fiz. 30,41 
(1960) [Sov. Phys.-Tech. Phys. 5,37 (1960)]. 

7 Yu. M. Poskutov and Y. P. Leventuev, Yad. Fiz. 11, 
411 (1970) [Sov. J. Nucl. Phys. 11,229 (1970)]. 

By. Canuto, J. Lodenquai and M. Ruderman, Phys. Rev. 
D3, 2303 (1971). 

9 L . D. Landau and E. M. Lifshitz, Teoriya polya (Field 
Theory), Fizmatgiz, 1960. 

10 E . S. Saranchik and G. T. Schappert, Phys. Rev. D1, 
2738 (1970). 

llJ. P. Ostriker and J. E. Gunn, Astrophys. J. 160,979 
(1969). 

12Ya. B. Zel'dovich and A. F. Illarionov, Zh. Eksp. Teor. 
Fiz. 61,880 (1971) [Sov. Phys.-JETP 34,467 (1972)]. 

13 G . Bekefi, Radiation Processes in Plasma, Wiley, 1966. 
14 E . E. Salpeter, Phys. Rev. 122, 1663 (1961). 
15 A. G. Sitenko, Elektromagnitnye fluktuatsii v plazme 

(Electromagnetic Fluctuations in Plasma), 1965. 
lS y . A. Trubnikov, Phys. Fluids 4, 195 (1961). 
17y. L. Ginzburg, Rasprostranenie elektromagnitnykh 

voln v plazme (Propagation of Electromagnetic Waves 
in Plasma), Nauka, 1967. 

IBM. L. Goldberger and K. M. Watson, Collision Theory, 
Wiley, 1964. 

Translated by S. Chomet 
12 

Yu. N. Gnedin and R. A. Syunyaev 57 


