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Satellites of the fundamental frequency @ + 7wy appear following scattering of radiation by thermal
electrons. Compton exchange of energy between the plasma and radiation at (k7,/#) > @

> wy > Awp is due mainly to scattering into the satellites, but the energy exchange rate is not
altered compared to the case of absence of a magnetic field. Classical and quantum derivations of the
satellite intensities are presented. The scattering gives the main contribution to absorption of
radiation with @ ~ w, in the case of low density and weak plasma turbulence. In this case
nonlinear scattering of resonance radiation into the high frequency harmonics @’ ® nwy may be
great; this scattering simulates synchrotron radiation of a hot plasma with

kT. = my¥2 = e*E*/2m,(w — wy)® despite the fact that the plasma may be cold 7¢ € T.. At a
high brightness temperature of the resonance radiation k7, > m.c 2 and |w — wy| € @y, the electron
moves in the field of the wave with a relativistic velocity eE/m,|w — wy|c > 1. The presence of a

resonance in the scattering cross section at @ =

wy makes feasible the observation of *strong” wave

effects when the wave is in fact a “‘weak” one in the usual sense of the word: (eE/m,wc) > 1. At
® € wy the transition of an ordinary wave to an extraordinary one and the converse transition

during scattering occurs with a small cross section © o (w/wy)".

1. INTRODUCTION

The circular polarization of optical radiation observed
in the case of white dwarfs''} (and possibly for x-ray
starsrz]) suggests the presence of strong magnetic fields
H ~ 10°—10° G in these objects. We note that still
stronger fields (10¥—10"* G) appear to be present in
neutron stars and, in particular, in pulsars. X-ray stars,
which are compact objects, have a large optical depth
due to Thomson scattering (7 7T =N chR > 1) and small
bremsstrahlung depth for photons with hw < kTg L2 As
a result, the intensity in region hw ~ kTg is much lower
than the Planck intensity. Under these conditions, the
Compton effect may be an important mechanism for en-
ergy transfer between plasma and radiation, and for the
generation of the x-ray spectrum. Thus, the low-fre- .
quency bremsstrahlung photons increase their energy
(owing to the Doppler effect) during scattering by hot
electrons and diffuse into the Wien region of the spec-
trum [

Published analyses of the interaction of radiation with
electrons in a magnetic field refer to two extreme astro-
physical situations, namely, 1) an optically thin medium,
where it is sufficient to consider the radiation (its spec-
trum, polarization, and angular distribution), and 2) an
optically thick medium, where local thermodynamic
equilibrium is set up and radiative heat transfer has to
be considered. In the latter case, the scattering process
and its dependence on frequency, direction, and polar-
ization play an important role.

Scattering by a stationary electron in a magnetlc field
has been considered by Gurevich and Pavlov, tel Loskutov
and Leventuev, rn and, recently, by Kanuto et al.”
connection with astrophysmal applications. In this paper
we shall consider in detail the change in frequency upon
scattering. This is important in the intermediate case
when scattering has an important effect on the radiated
spectrum, i.e., the spectrum is shifted, approaching the
Wien form but not yet reaching the Planck equilibrium.
The ideas developed by Kompametsr 1 on the kinetics of
processes leading to equilibrium between plasma and
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radiation are extended to the case of magnetized elec-
trons.

The frequency change and energy transfer between
photons and electrons are connected with the recoil effect
in the case of scattering by an electron at rest and the
Doppler effect (when the thermal velocity of the electron
is taken into account). At first sight, the situation in a
magnetic field is quite different. The motion across the
field occurs over circular orbits and quantum theory
predicts the presence of discrete Landau levels with en-
ergies nfiwy =nheH/2mmgc. The longitudinal motion is
not quantized but its energy is only half the total thermal
energy. The change in the photon energy on scattering
consists of the recoil and the Doppler effect associated
with the longitudinal motion, and the change by an integer
in the number of Larmor quanta due to transition of the
electron from one Landau level to another. After scat-
tering, the monochromatic radiation is transformed into
a set of bands. However, detailed analysis shows that
when the frequency w of the radiation is greater than the
Larmor frequency wy, all the physical conclusions are
only slightly modified when the magnetic field is switched
on. The total scattering cross section, the average
change in energy, and the root mean square change in the
photon energy on scattering, calculated from the band
system, do not differ from those calculated from the
Gaussian scattering function for free unmagnetized elec-
trons. This result may be regarded as a natural conse-
quence of the Bohr correspondence principle. Neverthe-
less, it is very instructive to examine how this principle
becomes operative in the calculation.

The Landau levels form an equidistant system:
E, ., E, = hwy independently of n. In the dipole ap-
proximation the absorption or emission of photons occurs
with An = +1 and, therefore, in the case of scattering,
i.e. a process involving two photons, one would expect
An = 0, +2. Because of the equidistant property, all that
remains is An = 0, and transitions with An = +2 are for-
bidden in the dipole approximation. Harmonics (An # 0)
appear in the next orders of the expansion in terms of
the ratio of the orbit radius to the wavelength (and in
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principle when relativistic effects, which violate the
equidistant property, are taken into account).

Since the bands are equidistant, it turns out that, as in
the case of the harmonic oscillator, the classical analy-
sis of the motion of the electron over an orbit in the field
of the wave gives correct formulas for the scattering
cross section and the intensity of the harmonics (satel-
lites). Satellites of the carrier frequency, which appear
in the problem of the scattering of waves by free thermal
electrons, are directly connected with the presence of
the magnetic field and the thermal electron velocities.
The intensity of the satellites w + nwy decreases with
increasing n in proportion to

11(um oo (kT.)"(m)z" 1 (
27 nl cmu) T2l e “on 2"n!
The classical calculation of scattering by a harmonic

oscillator of frequency wo, leads to a similar result:
when w > w, the intensity of the satellites w + nwo is

ol, { @ \™

2mn! ( ®o ) (
where I is the intensity of the incident radiation and o
is the scattering cross section.
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As already noted, the scattering cross section ap-
proaches the Thomson value when the frequency of the
radiation is high (w > wy). At low frequencies (w <o)
the scattering cross section decreases and the electron
becomes nearly free in the magnetic field, but when the
electric field of the wave is perpendicular to the mag-
netic field the electron experiences a drift with the veloc-
ity (c/H?)[EXH]. When w < wy the Thomson cross sec-
tions for the ordinary and extraordinary waves are very
different. It is shown below that the transition from one
wave to the other during scattering is strongly sup-
pressed and takes place with the cross section
g~ aT(w/wH)z.

Finally, for magnetized plasma exposed to an external
source in astrophysical or laboratory situations one is
particularly interested in the resonance at w ® wy. A
relatively weak wave (weak in the sense that the rota-
tional velocity of the electron v = eE/mew in the field E
of the wave is small in comparison with the velocity of
light) may produce circular motion of the electron at
high—even relativistic—energy. The interaction between
a monochromatic strong wave and electrons has been
widely discussed in the literature,” ®**) and Zel’dovich
and Illarionovt'*) have considered the effect of a strong
wave on an electron in a strong magnetic field. It is
shown below that a weak wave, whose frequency is equal
to the gyrofrequency wy, may behave as if it were
strong. This is connected with the resonance in the rota-
tional velocity of the electron in the field of the wave:
v/c = eE/mgclw — wyl. When the magnetized plasma is
illuminated by radiation with the resonant frequency, the
resonance take-up of energy by the electrons can be de-
tected through the emission of harmonics. We note that
the necessary spectral width of the band of external
radiation must be greater than the resonance width, so
that the Doppler effect and the relativistic effects do not
take the electron out of resonance. Because of the pres-
ence of resonance in the Thomson cross section,rs'sj
this effect is of interest even when the optical thickness
of the plasma for Thomson scattering is small, and it is
particularly important under laboratory conditions.

The intensity of the harmonics w’ = nwy for

v/ic=¢eE/mc|lo —ox|<1
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decreases in proportion to*’

2 2n 2

® 1 v ® 1
(m—&)u)’T!(n_c) - (m—mH)'T![
We recall that, in the absence of the magnetic field, the
intensity of the harmonics w’ = nw during the scattering

of waves of finite amplitude by free electrons is very
small and decreases as

1 /nv\*™ 1 / neE \*

wle) =)
The interaction between radiation and magnetized elec-
trons and, in particular, the question of the scattering of

radiation, are of major interest both for astrophysics and
the theory of laboratory plasma.

nekE ]2"
melo —ogl 1 -

2. THOMSON SCATTERING BY THERMAL
ELECTRONS IN A MAGNETIC FIELD
The equation of motion for a nonrelativistic electron
in an external field H and the electric field Eelwt —ik-r
of an electromagnetic wave is
m.j—:= eEgi -kt +ic[vH]

where we have neglected the reaction of the radiation
and, in the special case when kr < 1,

1)*

iew

) ®
U= e’ (E, —i— E,,) + vo. exp (iout),
®

—_
m. (0" — o)
iew wi [ @ .
vy =——— e (—iE,r —iE, ) + vy, exp(iwat),

me((l)u — ) [0)]

(2)

v, = Vo + (eE. [ iom.) €™,

where Vo is the thermal velocity of the electron. The
magnetic field lies along the z axis and wy = eH/mgc is
the cyclotron frequency. We recall that, in magnetoactive
plasma, two types of wave may propagate independently
of one another, namely, extraordinary and ordinary
waves, each of which has its own absorption coefficient,
phase velocity, and polarization. In the general case of
propagation at an arbitrary angle to the magnetic field
these waves are elliptically polarized.

The Thomson cross section of a resting electron in a
strong magnetic field was calculated in" %) with the aid
of Eq. (2) for vo = 0. In this paper we shall consider the
noncoherent scattering of an electron in a magnetic field
and, in particular, the re-emission by the electron of the
energy carried by the wave of frequency w = wy at fre-
quencies which are multiples of the gyrofrequency.

Using the solution of Eq. (1), we shall calculate the
intensity radiated bx thermal plasma from the well-
known formula:f®*

Iup(u),Q)ZZ;(:';<|Jexpl —io(t-n. 1)) [nalnav 1122 ), (3)

where a and B assume the following values: 1—extra-
ordinary wave, 2—ordinary wave; (...) represents aver-
aging over the Maxwellian distribution and n_ is the
direction of observation of the normal wave of type «.

Equation (3) describes four processes: 1—the well-
known synchrotron radiation by thermal plasma (the
other three correspond to the scattering of electromag-
netic radiation by thermal plasma), 2—coherent scatter-
ing, including the Doppler effect (which in the absence of
the magnetic field and for w > wy corresponds to
Thomson scattering), 3—emission by the electron in the
field of the wave into harmonics of the wave frequency,
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and 4—processes in which the photon frequency changes
by multiples of the gyrofrequency.

A. Synchrotron Radiation

When v, > eE/m¢lw — wyl the formula given by Eq.
(3) describes the well-known synchrotron radiation by a
thermal electron at the resonances of the cyclotron fre-
quency w =nwy. The intensity of this radiation decrease<
with increasing n in accordance with the formula®!

1 n*kT, )
2"n! ( m.c*

when nv/c < 1.

B. Satellites of the Carrier Frequencyz)

For plasma in a magnetic field, the square of the
transverse (perpendicular to the magnetic field) compon-
ent of the thermal electron momentum is quantized, i.e.,
it assumes discrete values which are multiples of the
gyrofrequency:

p.’ | 2m, = shoy = sheH | 2nm.c,
where s is the number of the Landau level. This leads to
the following conservation laws:

z h ‘ ho’
&) +ho', pu+—:icosﬂ=pu'+ :) cos 67

.éi.+fm)
e 4)

pl'z/zm,—plz/Zm,-—-nﬁmH, n=s—s=0=+1,%2,....

In these expressions p, w and p’, w’ are electron mo-
menta and photon frequencies before and after scattering,
and 9, 6’ are the angles between the directions of motion
of the photon and the magnetic field before and after
scattering.

In general, the solution of Eq. (1) is difficult to ob-
tain. We shall therefore consider a number of special
cases. When w > wg the solution of Eq. (1) is
_eE
im.o
where r defines the trajectory of the thermal electron in
the magnetic field in the absence of the wave. By sub-
stituting this solution in Eq. (3), we obtain the differen-
tial cross section®’ for a photon with wave vector k — k':

2 m.c

do do [ k' <
_Go (¥ X,
o dk’ dQ’( k ) (anT,qu) ; (@)

= ike
V= y

: mec? o \? (5)
xo[ =g (¥ ) |
Xa(g)=— I vadv exp (- ’:k_l;') ) ®

In the above expansmn Jp, is the Bessel function of the
first kind, ¢ =k’ — k is the momentum transferred to the
electron on scattering,

do [ dQ’ = 30, (1 + cos*®) / 16,

and ¢ is the angle of scattering. The total scattering
cross section

| S e dk
is equal to the Thomson cross section, and the coherent
scattering cross section (the term with n = 0) is some-
what less than 0. The integral in Eq. (6) can readily be
evaluated in an explicit form:

q.°kT. kT.q,’

: )I"(m.,m,,2 ) ’
where I, is the Bessel function of the first kind of an im-
aginary argument.

X,.(qJ_)=exp(— (7)

m.wy
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Equation (5) can be obtained from the quantum-mech-
anical formula for the differential probability of scatter-
ing of a photon by an electron in a magnetic field:L®*3%’

( aw

r’

oo
where rg = ez/mec2 is the classical radius of the elec-
tron. The first term inside the modulus is the matrix
element for the transition of the system from the initial
to the final state, valued for the operator (e2/2mecz)A <A
in first-order perturbation theory. M, and M; are the
matrix elements of the operator (e/mgc)P A% calculated
in second-order perturbation theory. These elements are
small when w > wy- The vectors e and e’ are the polar-
ization unit vectors before and after scattering.

(_“’_) le"efle- e iy — M, — M,l?,  (8)
(0]

The total scattering probability can be obtained by
summing Eq. (8) over all the final states and averaging
over the initial states

aW = 2 aw ;.
7

Since the wave functions for the electron in the magnetic
field form a complete system, we have
aw rE e\ L. z+n +o o
’M:? (;) le"*el __‘;dt.»j;dtzexp[t(m — ) (t,—12)]

9)

X'(ilexp[iq;(t() Jexp[— iql:(tz) 11,
- i i
r(t)=exp (h—Hot) rexp( —h—Hr,t) )

where t(t) is the coordinate operator in the Heisenberg
representation, which acts on the electron wave functions
in the magnetic field. The operator in parentheses is
reduced to the product of commuting operators and,
therefore, the evaluation of the diagonal matrix element
(il...li) reduces to the replacement of these operators
by the classical values (functions of time) of the corre-
sponding quantities

{i|exp (iqr(t,)) exp (—iqrA(tz)) |i> = Ci|exp (iglr(t,) —r(t:) 1) |0,

X v v z
r(t)=r(0)+—:sinmot—l < cos mot+——v“t,
Yy o

0
where r(t) is the equatlon of the tra]ectory of the elec-
tron in the magnetic field and wo = wyy (1 — v¥/c®)*. f2

When we integrate with respect to t, and t; we use the
following well-known expansion in terms of the Bessel

functions:

elx sin 8 = Z einO]"(r).
Dividing Eq. (9) by the total interaction time T = 275 (0),
we obtain the expression for the scattering cross section
of an electron for a photon in a magnetic field. This re-
sult must be then averaged over the initial states of the
electrons, and the polarization states of the incident and
scattered photons. When fiwy <K kTe the magnetic field
does not affect the electron distribution function, and Eq.
(9) may be averaged over the Maxwell distribution. The
final result is Eq. (5).

In the case of a strong field, the argument of the
Bessel function qikTg /mewi 1. Expanding I, (z) into
a series in terms of the small arguments, we have from
Egs. (5) and (7)

do do kK \* m.c* ' m.c?
AR (Tg') (+) (szT,T,,) { oxp[ = g g O =0
= ¥ gl ()7 10
x exP[ 2kT¢:,, (k' k- "%)z]} :
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The summation over negative n in this expression is car-
ried out only up to n,, equal to the integer part of the
ratio ck/wg. This eliminates the possibility of negative
frequency.

The first term in Eq. (10) describes the Doppler
broadening in the case of Thomson scattering in a mag-
netic field; the width of the profile is determined only by
the parallel, nonquantized, component of the electron
velocity. In the case of isotropic radiation, the line width
is reduced by the factor of V3 in comparison with the
usual Doppler profile. The higher terms in the expansion
describe the change (both increase and reduction) in the
frequency of the photon by an amount which is a multiple
of wy (@’ = w % nwy). Radiation into high satellites
w’—w > wy has a directional angular distribution which
is symmetric about ' = 7/2, since

P =~sin*®/ (1 +cos*9).
Because of the strong angular dependence, this radiation
should be plane polarized and its degree of polarization
should be

=k’*sin* 0’ + k* sin® @ — 2kk’ sin 0’ sin O cos ¢.

The fraction of energy re-emitted into the satellite of
number n is lower by the factor

22l (i 1) (bwp /w 12I0| than the energy re-emitted
into the fundamentall? requency w. We recall that this re-
sult was obtained on the assumption that Awp < wq.

In the opposite case of a weak field, wy < Awp, we
can use the asymptotic behavior of the Bessel function
for large values of the argument to show quite readily
that Eq. (20) reduces to the well-known expression for
the Doppler broadening in the case of Thomson scatter-
ing by Maxwellian electrons:

o[-

do do m,c* )
( 2nkT.q*

Q' dk dQ’ 2kT b ]

Equation (10) depends on the square of the trans-
ferred transverse momentum, and hence the probabili-
ties of scattering into the satellites w + nwH and w = nwy
are not equal to one another: the transition probability
increases with increasing frequency, i.e., in the case of
noncoherent scattering the radiation receives energy
from the electrons. It will be shown below that noncoher-
ent scattering described by Eq. (10) is equivalent to the
root mean square Doppler increase in the photon fre-
quency.

Equation (10) is valid only for satellites whose num-

bers satisfy the condition

2 2

s ﬂ~n’&sin’e’<1 (11)

(DH m, c? m.C
For slightly relativistic plasma with Tg ~ 109 °K the
condition given by Eq. (11) is violated near 8’ ® 7/2 even
for the third resonance. The differential photon scatter-
ing cross section for weakly relativistic plasma is
evaluated in the same way as the intensity of cyclotron

radiation.[*® It is
do/dQ'dk’ = const- (k' / k)* exp [-R" (0’ — @; ¢, @) ];
i _(mey Mo —0 12
R(o" —; 9., q) ( T, )+2 AT, on zo+ ( )
+—-(2q ¢ (1 — ch z,) — z:[c’g)* — (0’ — @)*]}. (13)

The function xo is defined as the root of the transcenden-
tal equation ,
'91’ - ’
—0)? ] ’
(14)

c:qi‘z h
Xy — —————-———8Sh Ty =
° (0" — 0)*—c*q? ?

kT m—m[ -
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The angular distribution for the higher satellites
w + Injwyg > w is the same as the angular distribution
of cyclotron radiation by weakly relativistic plasma:(*®l .

e (o)l (R ) (-5 ]
(15)

The function f(x) is tabulated in,'*®) and when x > 1
f(z) = (482%)~".

C. The Resonance Region w = wy and the
Probability of the Various Processes

The coherent scattering cross section (without change
in the photon frequency) is usually calculated by solving
Eq. (1) and then substituting the result in Eq. (3). This
method involves very laborious calculations. 8 we
shall use a simpler approach based on the use of the
optical theorem and the dispersion relation for magneto-
active plasma. The refractive index of ma, g:netoactwe
plasma, with thermal motlon neglected, is

=1
_ 2v (1—v—id)
2(1—i8) (1—i6—v) — usin® 0 + (—)*[u?sin* 0 + 4u (1—i6 — v)> cos? 0]" '
t=0s/e’v=0,"/0*=4ne'N,/ m.o* §=T/o, (16)
where T" which governs the absorption of waves in
plasma.

In the special case of propagation in the direction of
the magnetic field, the refractive index given by Eq. (16)
assumes the simplest form

17)

On the other hand, it is well known (see, for example,t'®J)
that the refractive index is readily expressed in terms

of the forward scattering amplitude ay =2, for an in-
dividual electron:

nit=1—0,'/o(e F oyz—il).

n.t =1 —4nc*N.a, [ 0% (18)

Using Egs. (17) and (18), the optical theorem o

4mcw 'Ima,, and the well-known expression for the
damping of & harmonic oscillator T = y = 2/3(*w’/mgc’),
we obtain the following expression for the total scatter-
ing cross section of an electron in a magnetic field out-
side resonance |w — wyl| > T for 8 = 0:

o [y
(h(B—O)—OrW‘ 02_(e=0)=01m—. (19)
Similarly, when ¢ = 7/2 we have
= o*(0*+ og?) LAY
a.(e—7) or o o) 0. (9==-—2-)—or. (20)

Thus, the cross section for the extraordinary wave on
an electron at rest has a resonance near the gyrofre-
quency, which is connected with the electron velocity
resonance (2). It tends to the Thomson value for w > wg
and falls as (w/wH)on when w K wyg. The cross section
for the ordinary wave does not have a resonance and its
magnitude is close to the Thomson value o With the ex-
ception of the narrow angular region 8 < (w/wH)'" for
w/wy < 1, where 0 ~ op(w/wg)®. In collisional plasma

Yy(2r/ m,)"eN,L/ (KT,)"s

where L is the Coulomb logarithm. In this case, we have
the well-known formulas for bremsstrahlung absorption
by the electron 1n the field of the ion in plasma with a
magnetic field:t

B (0, H,0=0)=k;; (0, H=0) 0" (0 F 0x)?,

® (mg‘+m’)
2)z ?

F'=v,=

B (m H e=—2) =iy (0, B = 0)
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k/(/Z) (9 Z—Z) =k (o, H=0).

In plasma with thermal motion of the electrons, the
refractive index for 6 = 0 is (neglecting collisions)t"

tey © ( o Fox ( m.c* )‘/2)
ngt=1-— —) ),
oo F o) ® kT,
2

J(z)=xexp(~—zzi).]. dtexp (%)

Using Eq. (18) and the optical theorem, we obtain the
following expression for the bremsstrahlung absorption
coefficient for the extraordinary wave in the first reson-
ance w ® wy in the thermal plasma:t"

W oy nmec®\ ' @t [ me® (0~ ox)?
. (9"0)_( 8kT,) o P TR, T o ]

D. The Resonance Region w =~ wH and
Re-emission Into the Harmonics

The reradiation of scattered energy into the harmon-
ics of the carrier frequency w ~ wy may be due to two
processes: the first is independent of the amplitude of
the incident wave and is analogous to the emission of
satellites w’ = w + nwy which was considered above and
is connected with the presence of thermal electron
velocities, while the second is nonlinear in E and is
connected with the rotational motion of the electron in
the field of the wave. The cross section for the first
process for w ~ wyg or @’ ~ wy can be calculated from
the quantum-mechanical formula, ®®? averaging the final
result over the Boltzmann distribution. Calculations
show that when w 2 wy the transition cross section for
the first satellites have the resonance form

( +on) kT. ®?
—- ~g s
ole o Ox "me? (0—og)’+(Aos)?
kT, 00

ol >0 =) X T Aas

Near resonance these cross sections are of the order of
om. It is interesting that the cross section for the tran-
s'1]€ion from 2wy to wy may exceed the cross section for
bremsstrahlung absorption in the second resonance.

We must now consider scattering at the harmonics of
the carrier frequency, which is nonlinear in E. When
w = wy the rotational velocity of the electron in the field
of the extraordinary wave has the resonance

¢E

C mJo— oyl
whatever the dependence on the magnitude of the thermal
velocity (the resonance does not occur in the field of the
ordinary wave). This velocity may exceed the thermal
velocity of the electron and may even reach the velocity
of light although the wave itself is weak in the ordinary
sense: eE/mecw = b < 1. In the field of the wave the
electron will reradiate its energy at the harmonics of
the fundamental frequency. This process is quite weak
during the usual Thomson scattering when w > wy and -
b < 1. It can be readily shown from Eq. (3) that the in-
tensity of the harmonics decreases as (nb)2n/n!. How-
ever, at the resonance w ~ wy, where the rotational
velocity of the electron is high, this radiation may com- .
pete with the synchrotron radiation by the thermal elec-
tron and may even exceed it. Moreover, at low plasma
densities, and in the absence of appreciable plasma tur-
bulence, the situation may arise where the rate at which
the thermal energy is supplied is much less than the
radiation width, i.e., the time taken by the electron in
the magnetic field to radiate its transverse momentum.

eiot
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In this case, the thermal velocity of the electrons may

be neglected, the synchrotron absorption is unimportant,
and the growth in the vibrational velocity (characteristic
time ~ 1/Jw — wy|) is not prevented by collisions. The
high rotational velocities of the electrons will prevent
plasma recombinations and the radiation escaping from
it at the high harmonics of the carrier frequency w =nwy
will simulate the synchrotron emission by hot plasma
with kT, ~ 3/2m,v®, despite the low plasma temperature.

As already noted, the solution of the equation of mo-
tion (1) for the electron in the field of the wave in the
presence of the magnetic field is difficult to obtain in
the general case. It is, however, possible to use the
special case which has been treated by Zel’dovich and
Ilarionov.['?

Consider a strong, circularly polarized, electromag-
netic wave propagating in the direction of the magnetic
field, which is scattered by an electron whose motion
along the field is compensated by a longitudinal electric
field, i.e., v = 0. In this case, there is no difficulty in
allowing for the radiative friction. If I" is the effective
width of the resonance and is determined by damping
processes, the. velocity of the electron in the field of the
ordinary wave and the magnetic field is (v < ¢):

Uy =

(21)

e
cos Wyl, U,=

sin ®xt.
m, T

The radiation intensity emitted by an electron traveling
with this velocity when w = wy is, according to Eq. (3),

o’ [ v " eE
- tg? 0J. ( e')
2nc {Z[Cg wg m.cl sin

n=1

(22)

ek ’2 ® ek : ’ ’
+( m,cF) " ('m_;m,cf‘ sin® )]}6(nmﬂ—m ).

When v,; < eE/meTI" < ¢, Eq. (22) determines the
process of reradiation of the wave energy by a nonrela-
tivistic electron into the harmonics nwgy.

Expanding Eq. (22) into a series in powers of
eE/mgcT, integrating with respect to the angles and fre-
quencies, and dividing the result by cE /47, we obtain an
expression for the scattering cross section in the form
of a sum of harmonics:

_ (I)H (n -+ 1)n2n+1 eE 2n

B [1+Z @+ 1)1 (W\) ]
The first term in this sum corresponds to resonance
coherent scattering, and the last term to reradiation into
the w’ = = nwy. If T is determined by the radiation width

y = 2rew®/3c, the coefficient in front of the square
brackets in Eq. (23) becomes 0 = 671A% = 6nc’/wf}.

(23)

Scattering provides a contribution of the order of y/T
to the total absorption of radiant energy with w ® wy. In
tenuous plasma, and for a low degree of excitation of
plasma turbulence, we have I' = y. In this case, scatter-
ing becomes the dominant process whose cross section
exceeds the true absorption cross section by a factor of
y/(I' —v). If, on the other hand, eE/mel’ > 1, then we
have the case analogous to scattermg in a strong wave
which was discussed int'?). Under these conditions
by =eE/mecl’. The resonance is accompanied both by
the addltlonal increase in the cross section by a factor
of b and by the synchrotron rerad1at10n of the wave en-
ergy into the harmonics w’ = war Because of the
resonance in the scattering cross section there is a
rapid increase in light pressure on the electron, which
facilitates its acceleration. The harmonics are reradia-
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ted mainly at right-angles to the field. It is also impor-
tant to remember that with increasing rotational and
translational velocity (due to acceleration) the reson-
ance will occur not at the frequency wy but at wy/by.
However, for a sufficiently broad spectrum of the incident
radiation, Aw ~ wpy, and high brightness temperature
BTy =20%,c* ) 0* > m,c?
the strong-wave condition can be satisfied even for rela-
tivistic electrons in this spectral range. In the above
expression I, is the radiation intensity in erg/cm’ - sec.

In conclusion, let us estimate the plasma parameters
for which the damping y connected with the reradiation
of the wave energy exceeds the damping v, due to colli-
sions in the plasma. In a magnetic field H = 10° gauss
the gyrofrequency is wy =2 x 10" Hz and y = 2r§w;1/3c
= 40 Hz. In plasma with temperature Tg = 5 X 10* K and
density Ng = 10° cm™ the collision frequency is v ~ 4 Hz,
ie., v > vy and the reradiation of energy into the har-
monics is more effective than synchrotron absorption.

E. The Case w < o and Mutual Transformation of
Normal Waves

The cross section for coherent scattering of the
ordinary wave by an individual electron in a magnetic
field is close to the Thomson cross section, and when
w < wy we have 0: ® o sin’6 in a broad range of values
of the angle § between the direction of propagation and
the magnetic field H. In the narrow angular range
8 < (w/wy)'’® the cross section is 02 ~ (w/wp)’op. The
cross section for the extraordinary wave o1 ~ (w;wH)on
is small in the above range of frequencies w and angles
9."%) This is readily seen from the following discussion.
When (w/wg) < sin®6/2 cos 8, the electric vector of the
incident wave oscillates practically at right-angles to the
plane of propagation of the wave k and the magnetic field
H (the ellipticity of the polarization is ~w cos 9/wyg sin®¢
< 1), When w < wy it follows from Eq. (1) that the
vibrational velocity of the electron is equal to its drift
velocity:

v =cH-?[EH]e*",
Substituting the expression for the drift velocity-in Eq.
(3), we obtain the scattering cross section for the extra-
ordinary wave:

o= (0 / @z)’or.

The essential point is that the cross sections for the
transformation of the ordinary wave into the extraordin-
ary wave and vice versa are also smaller by a factor of
~ (w/wy)? than the Thomson cross section. In the case
of the differential cross sections for the transformation
of the ordinary wave into the extraordinary wave and
vice versa we can proceed by analogy with the treatment
given by Kanuto et al.L®? to obtain the following formulas
which are valid for any ratio of w to wy:

1 doas(6—6") =2m_2( ®* )’ 1 1
do’ ‘ 1+ K. (8) 1+K,2(6)

sin@’ 0 — 0

2 _ . 2)2 2
x{(—“"i’—“’) K.*(0)sin® 0K,* (6)sin* 0’ +%( 1 +‘i’(:_)
[0}

x[1 + K.*(8) cos* 0][1 +K,‘(e’)cos"e']—2%[&,(9)(:03 o (24)
(1 + Ky (8') cos* 8°) + Ky (6”) cos 8’ (1 + K.2(8) cos? 0) ]
+2(1 +“’—":)K,(e)cosex,(e')cos o},
[ .

where the parameter characterizing the polarization
ellipticity is

K.(0)= —Ztsose/—(‘)—ﬂsinze—(—1)m ( ©
®

2 s
= sin‘6+4cos’6) . (25)

®
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The differential cross section given by Eq. (24) satis-
fies the condition

02 (0 ~ 07 7 A’ — doye (07 — 6) /2, (26)

This condition ensures that an equilibrium is set up be-
tween the two types of normal wave well inside the med-
ium. On the other hand, condition (24) can be obtained
from thermodynamic considerations or from the re-
ciprocity theorem. When w < wg the ellipticity param-
eter is

|Ki| =1/ |K.| = (0 cos 0/ @xsin®0) < 4.

We can then readily obtain the following approximate ex-
pressions for the transformation cross sections:

cu(8)= | dou (0~ 6)

@ 2
N 5 .
sno g0 078"~ 0. (0) (mx )“’

27)
It follows that in a plasma with a strong magnetic field
one ordinary wave will be effectively generated and
propagated when w < wp and Tp(w/wy)® <K 1 even when
77 > 1. The radiation emitted by such a plasma has
strong plane polarization given by

P=|1—-K20)|/ (1 +EKHD)).

The noncoherent scattering cross section for w K wy
must be calculated from the quantum-mechanical equa-
tion given by Eq. (8). The transition to the satellite with
n = 1 takes place with the cross section

o(0—~> wxt+ o)~

kT, { @ \?
(=) o <o
Wy

m,c*
The cross section for the next satellites falls rapidly as
(kTe/mecz)n(w/wH)zn. The cross section for the reverse
process, i.e., from the satellite into the frequency range

w K wy is of the same order of magnitude:

o(o+ og—~+ o) ~ (kT,/ m.c*) (0 / ©x)*6r < or.

F. Quantum Recoil Effect

In accordance with the conservation laws, the change
in the photon frequency on recoil in a magnetic field is

O —nog (28)

"1+ (ho/m.c?) cos 0 cos 6

,

w0 =

n=0,+1,%£2,....

Evaluating the matrix elements for Compton scattering
by a resting electron in a magnetic field as given by Eq.
(8) (see also'®!) we can show that, when w > wy > Aw
= ﬁwz/mecz, the cross section for scattering with photon
frequency change w — nwy is smaller by the factor
(Awq/wH)n than the scattering cross section for n =0,

The formation of the satellites is connected with tran-
sitions between Landau levels. The electron can freely
receive the momentum component parallel to the field.
The satellites and the profile of the scattered radiation
near the carrier frequency are shifted toward lower fre-
quencies by an average amount of (1/3)*?Aw_. When the
satellites are taken into account the rate of énergy trans-
fer from the scattered photons to the plasma is the same
as in the absence of the field.

3. COMPTON ENERGY TRANSFER BETWEEN
ELECTRONS AND RADIATION IN HIGH-
TEMPERATURE PLASMA WITH A STRONG
MAGNETIC FIELD

When the Doppler broadening by scattering is Awp
> wy, the rate of Compton energy transfer is the same
as in plasma without the magnetic field. We shall show
that the rate of Compton transfer remains the same when
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w > wyg > Awp. Consider the mean square change in
the photon frequency

-—_ 1 +dQ , , do ) g
Bot=— J.-Ej(m ©)! o do’ 42, (29)
Using Eq. (9), we can readily show that
2 + oo +o
Aoz __ Te APRONE] 2 2 —igt
Ae*= [mfdQ le"el J‘dse (1+e) jdte
- - (30)

x<i exp (—’z—H.,t)e"’"exp(—é—Hot) e i> .

In this expression e and e’ are the polarization unit vec-
tors before and after scattering, and H, is the Hamilton-
ian for the electron in a magnetic field. Using the opera-
tor equation

¢vH (p)e=' = H(p—q)

and averaging Eq. (30) over the initial states of electrons
with

o ) kT, 1 ox [ nhoy p’ ]
7 N)=—— ; - - ’
P hox (2nm,kT.)" kT. 2m kT,
we obtain for Aw < kTg
T 2 te m, qZ 2
2 __° alonl2 2 2 _ d +
Ao %0 J.dQ le’*el :‘;de e*(1+e) exp[ e (e - ) ]
. . 2kT.
T T [ a2 (14 cost ) (1~ cos ) = ——~ 0.
m.c* 20 mec
(31)

The same result is obtained through direct evaluation of
Eq. (29) after substitution into it of the differential cross
section given by Eq. (10).

The Kompaneets equation, therefore, which describes
spontaneous Compton interaction between radiation and
thermal electrons in plasma need not be modified in the
presence of a strong magnetic field Awp < wy <w

on _ oNkT, 1 0  0on

M —
at me @ do  do

(32)

In this expression n = 27°c’[ ,/Hiw® is the photon occupa-
tion number in phase space.

We are indebted to Ya. B. Zel’dovich for stimulating
remarks and to A. Z. Dolginov and A. F. Illarionov for
useful discussions.

*[vH] =vX H.

DThis formula is valid for nv/c < 1.

IThe existence of the satellites is not only a simple consequence of quan-
tum-mechanical conservation laws but follows also from the classical
formula given by Eq. (3).
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ISalpeter ['*] has obtained the fluctuation spectrum for magnetoactive
plasma. Sitenko [!5] has shown that the scattering cross section is pro-
portional to the fluctuation spectrum. Salpeter [**] has used this spec-
trum to investigate in detail the case of a weak field for wH < Awp.
We shall be largely interested in the opposite limiting case. We note also
that in the dipole approximation there are no satellites; they appear as
the higher multipoles in the expansion in powers of kr.

YThe differential probability given by Eq. (8) is the ratio of the light
energy dI’ scattered into the solid angle d2' to the energy flux density
in the incident radiation. When Eq. (8) is converted so that it gives the
number of photons, it must be multiplied by the ratio w/w'.

$) A—vector potential, and P—generalized photon momentum.
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